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Immunotherapy has achieved success in the treatment of esophageal squamous cell
carcinoma (ESCC). However, studies concerning immune phenotypes within the ESCC
microenvironment and their relationship with prognostic outcomes are limited. We
constructed and validated an individual immune-related risk signature for patients with
ESCC. We collected 196 ESCC cases, including 119 samples from our previous public
data (GSE53624) to use as a training set and an independent cohort with 77 quantitative
real-time polymerase chain reaction (qRT-PCR) data, which we used for validation.
Head and neck squamous cell carcinoma (HNSCC) and lung squamous cell carcinoma
(LUSC) cohorts were also collected for validation. A least absolute shrinkage and
selection operator (LASSO) model and a stepwise Cox proportional hazards regression
model were used to construct the immune-specific signature. The potential mechanism
and inflammatory landscapes of the signature were explored using bioinformatics and
immunofluorescence assay methods. This signature predicted different prognoses in
clinical subgroups and the independent cohort, as well as in patients with HNSCC
and LUSC. Further exploration revealed that the signature was associated with specific
inflammatory activities (activation of macrophages and T-cell signaling transduction).
Additionally, high-risk patients exhibited distinctive immune checkpoints panel and
higher regulatory T cell and fibroblast infiltration. This signature served as an independent
prognostic factor in ESCC. This was the first applicable immune-related risk signature
for ESCC. Our results furnished new hints of immune profiling of ESCC, which may
provide some clues to further optimize associated cancer immunotherapies.

Keywords: esophageal squamous cell carcinoma, immune signature, immune checkpoints, inflammatory
landscape, individualized medicine

Abbreviations: AUC, Area under the curve; CI, Confidence interval; ESCC, Esophageal squamous cell carcinoma; GO,
Gene Oncology; GVSA, Gene Set Variation Analysis; HNSCC, Head and neck squamous cell carcinoma; HR, Hazard
ratio; KEGG, Kyoto Encyclopedia of Genes and Genomes; LUSC, Lung squamous cell carcinoma; NA, Not available; OS,
Overall survival; qRT-PCR, Quantitative real-time polymerase chain reaction; RFS, Recurrence-free survival; ROC, Receiver
operating characteristic; TME, Tumor environment.
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BACKGROUND

As reported by global cancer statistics in 2018, esophageal
cancer (EC) is the sixth leading cause of cancer deaths and
the seventh most common cancer worldwide (Bray et al.,
2018), with an estimated 70% of EC cases occurring in China
(Chen et al., 2019; Yin et al., 2020). EC primarily includes
two subtypes: esophageal squamous cell carcinoma (ESCC) and
esophageal adenocarcinoma (Pennathur et al., 2013). ESCC is
the predominant histopathological type in China and accounts
for almost 90% of all EC cases (Chen et al., 2019). Despite
advancements in the standard treatment of EC, the prospect of
enhancing the survival rate for such patients remains dismal
(Cohen and Leichman, 2015), with a 5-year overall survival (OS)
rate of 15–25% (Pennathur et al., 2013; Chen et al., 2016; Huang
and Yu, 2018). Meanwhile, neoadjuvant chemoradiotherapy
followed by resection has moderately improved the prognosis
of patients with locally advanced ESCC compared to traditional
surgery alone (Allum et al., 2011; Shapiro et al., 2015). Owing
to their high heterogeneity, patients with ESCC tend to exhibit
individual differences in therapeutic efficacy, even under the
same clinical guidelines and recommended treatment. This
may prevent clinical practices from being able to precisely
stratify patients with ESCC, leading to the predicament of
depersonalized, and often suboptimal treatment. There is an
urgent and obligatory need to search for novel therapeutic
strategies and stratification methods for patients with ESCC.

Over past decades, immunotherapy – recognized as a
milestone for cancer treatment – has advanced by leaps and
bounds and revolutionized available treatment choices for several
major cancer types (Akinleye and Rasool, 2019; Liu et al., 2019).
A clinical trial study of patients with advanced ESCC found
that pembrolizumab (also known as “Keytruda”), acting as a
second-line therapy, could remarkably improve OS compared
to chemotherapy (Metges et al., 2019). In 2019, the U.S. Food
and Drug Administration approved the use of pembrolizumab
for patients with advanced ESCC and high PD-L1 expression.
Immunotherapy is increasingly important to clinical practice and
has emerged as a promising and potentially effective modality for
treating ESCC. Several recent studies have focused on immune-
related parameters to predict OS in patients with EC, including
some important immune molecules and cells. The results of
these studies have further indicated the significance of the
immune tumor microenvironment (TME) (Huang et al., 2019;
Yagi et al., 2019). Unfortunately, precision immunotherapy is
hard to achieve without a comprehensive understanding of
the TME immune landscape. However, there have been few
comprehensive analyses of the immune phenotype within the
ESCC microenvironment and its relationship with prognosis and
treatment outcomes.

Herein, we sought to establish and validate an immune-
related risk signature for patients with ESCC. First, we collected
196 ESCC cases from two independent cohorts consisting of
GSE53624 and 77 frozen tumor samples. Then, we constructed
a risk signature by profiling an immune-related gene set with
information extracting from the GSE53624 cohort. This signature
was later validated in the independent cohort. We subsequently

built a practicable signature that was able to identify high-
risk patients with ESCC. These patients generally exhibit worse
survival than low-risk patients, both effectively and accurately.
Such a signature would be useful for the clinical management
and stratification of patients and will also help us understand the
association between the ESCC immune TME and corresponding
prognostic outcomes.

MATERIALS AND METHODS

Public mRNA Data and Samples
Collection
We used 196 ESCC cases in the present study, including 119
samples from our previously reported public data and 77 frozen
surgically resected ESCC tissue samples from an independent
cohort. We also downloaded a total of 1011 lung squamous cell
carcinoma (LUSC) and HNSC samples from The Cancer Genome
Atlas (TCGA) database1.

The correlative mRNA expression data and corresponding
clinical information of 119 ESCC samples are publicly available
(GSE53624) (Li et al., 2014). We also matched the unpublished
recurrence-free survival (RFS) data with these 119 patients. The
mRNA expression data of GSE53624 were log2 transformed and
quantile normalized, and the mean expression was regarded as
the expression of genes with several probes. The 77 frozen tumor
tissues collected from the First Affiliated Hospital of Zhengzhou
University from 2011 to 2014. This research was approved by
the Ethics Committee Board of the First Affiliated Hospital of
Zhengzhou University.

Quantitative Real-Time Polymerase
Chain Reaction Analysis
The quantitative real-time polymerase chain reaction analysis
(qRT-PCR) analysis assessed the expression of immune-related
genes in ESCC samples. Both RNA extraction and cDNA
synthesis were based on the manufacturer’s protocol. We
employed a 10 µL volume system, which includes 5 µL SYBR
Green Master Mix (Invitrogen), 3 µL nuclease-free water,
1 µL template, and 1 µL of each PCR primer in the Agilent
Mx3005P Real-Time PCR system. After that, all cDNA samples
were diluted for qRT-PCR analysis. The expression values of
six target genes were normalized to GAPDH, and then log2
transformed for the next analysis. The primer sequences of the
six target genes and GAPDH used for qRT-PCR were displayed
in Supplementary Table 1.

Immunofluorescence Technique
Esophageal squamous cell carcinoma tissues were fixed by using
10% neutral-buffered formalin and embedded in paraffin. Then
the tissue sections (3 µm) underwent deparaffinization and
blocking for subsequent experiments. Phosphate-buffered saline
(PBS), including 2% bovine serum albumin, was used to dilute the
primary and secondary antibodies, which were applied to stain α-
SMA and Foxp3. Next, the cells were washed three times by PBS

1https://cancergenome.nih.gov/
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and staining the cell nuclei using 4,6-diamidino-2-phenylindole
(DAPI). Two independent experiments were performed.

Functional Enrichment Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were carried out in DAVID
6.82 and Cytoscape 3.7.23.

xCell and Gene Set Variation Analysis
xCell4 is a novel tool used to analyze the cellular heterogeneity
landscape through gene profiles in bulk tumors including almost
64 different immune and stromal cell types (Aran et al., 2017). It
was used to estimate the abundance of immune and stromal cell
type of each patient with ESCC. Also, gene set variation analysis
(GSVA) was performed with the GSVA package included with R
software version 3.5.1.

Signature Generation and Statistical
Analysis
A univariate Cox proportional regression analysis was used to
screen the immune-related genes notably associated with OS.
Then, we used a least absolute shrinkage and selection operator
(LASSO) model to determine which prognostic genes exhibited
one standard error (SE) of the minimum criteria. Finally,
considering the expression of selected genes and correlation
estimated Cox regression coefficients, a risk score formula was
generated for each patient. The patients were divided into high-
and low-risk groups based on the optimal cutoff point, which was
determined by the “surv_cutpoint” function of the “survminer”
R package. OS of high- and low-risk patients was calculated
using the Kaplan–Meier survival analysis method. The univariate
and multivariate Cox proportional hazards regression model was
performed to identify whether the risk score was an independent
prognostic factor. All data analyses and generation of figures were
achieved by R software version 3.5.15 and SPSS 25.0 software.
All statistical tests were two-sided. P < 0.05 was regarded as
statistically significant.

RESULTS

Immune-Related Profiles Display
Significant Differences Between ESCC
Tissues and Adjacent Normal Tissues
A total of 119 patients with ESCC with clinical data from
GSE53624 were included as the training cohort, and the
demographics of the cohort are listed in Supplementary Table 2.
We downloaded 3,104 immune-related genes from the AmiGO2
website, and finally, 2,630 genes were matched in the GSE53624
training cohort. We analyzed the matched genes expression in
ESCC tissues versus adjacent tissues. Among those immune-
related genes, 513 were differentially expressed in ESCC and

2http://david.abcc.ncifcrf.gov/home.jsp
3https://cytoscape.org/
4http://xCell.ucsf.edu/
5https://www.r-project.org

adjacent tissues (P < 0.001) (Figure 1A). GO analysis using
Cytoscape 3.7.2 was performed to clarify the biological processes
and pathways of these significant genes, which were mostly
involved in the positive regulation of biological processes
and leukocyte migration (e.g., intracellular signal transduction,
cellular protein metabolic process, cell migration, and motility)
(Figure 1B).

Construction of the Immune-Related
Prognostic Signature
First, the univariate Cox proportional regression analysis showed
that 16 immune-related genes were statistically associated with
OS (P < 0.01) (Supplementary Table 3). We used the LASSO
Cox regression model to filter the immune-related genes with the
most prognostic value, and one SE of the minimum criteria was
chosen. Eight genes were selected by this procedure: TSPAN2,
AMBP, ITLN1, C6, PRLR, RBM47, PLA2GS, and MADCAM1
(Figures 1C,D). Then, to optimize this model and reduce
variables, a stepwise Cox proportional hazards regression analysis
was performed. This method filtered out a six-gene (TSPAN2,
AMBP, ITLN1, C6, PRLR, and MADCAM1) prognostic model.
To clearly reveal the screening process of these six genes, a
pipeline is presented as Supplementary Figure 1.

We established a risk score model based on the expressions
of these six genes and corresponding coefficients for patients
with ESCC: risk score = (0.1272 × TSPAN2 expression) +
(0.2423 × AMBP expression) + (0.2201 × C6 expression) +
(0.1651 × PRLR expression) − (0.2720 × ITLN1 expression)
− (0.2724 × MADCAM1 expression). The risk score of every
patient was calculated by this equation. All patients in the training
cohort were classified into high- and low-risk groups according to
the optimal cutoff point (Figures 2A–C). Patients in the low-risk
group had a longer OS than those in the high-risk group [hazard
ratio (HR) = 3.7144, 95% confidence interval (CI) = 2.2481–
6.1370, P < 0.0001] (Figure 2E). Similarly, low-risk patients
also exhibited better RFS than high-risk ones (HR = 2.2670,
95% CI = 1.3142–3.9104, P = 0.0026) (Figure 2F). The time-
dependent area under the receiver operating characteristic (ROC)
curves, demonstrating the predictive accuracy of this model,
were 0.734, 0.783, and 0.802 in the GSE53624 set at 1, 3, and
5 years, respectively (Figure 2D). To further explore whether the
risk score could serve as an independent prognostic factor for
ESCC, univariate and multivariate Cox regression analyses were
performed in the GSE53624 cohort. After incorporating some
important clinical variables, such as age, sex, tobacco use, alcohol
use, tumor location, tumor grade, T stage, N stage, and TNM
stage, the risk score was still independently related to OS and RFS
(Table 1 and Supplementary Table 4).

Validation of the Signature in Stratified
Cohorts of ESCC
Because lymph node metastases are important contributors
to ESCC prognosis (Kakegawa, 2003), we investigated the
relationship between OS and risk score for both lymph node
metastasis positive (LN+) and lymph node metastasis negative

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 December 2020 | Volume 8 | Article 580005

http://david.abcc.ncifcrf.gov/home.jsp
https://cytoscape.org/
http://xCell.ucsf.edu/
https://www.r-project.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-580005 December 11, 2020 Time: 21:2 # 4

Zhang et al. An Immune Signature in Esophageal Cancer

FIGURE 1 | Filter out the most prognostic candidates from the differentially expressed immune-related genes in ESCC. (A) Heatmap of differentially expressed
immune-related genes between ESCC and adjacent normal tissues. (B) GO analysis in Cytoscape of these differential genes. (C) One-hundred-fold cross-validation
for tuning parameter selection in the LASSO model. (D) LASSO coefficient profiles of the most useful prognostic genes.

(LN−) samples in the GSE53624 cohort. In both subgroups, low-
risk patients exhibited significantly longer OS than high-risk ones
(Supplementary Figures 2A,B).

In the high-risk group, we also found that this signature
suggested significantly poorer OS in the clinical feature subtypes
of the training cohort, including early stage, advanced stage,
older (age ≥60 years), younger (age <60 years), male, female,
non-smoker, smoker, non-drinker, and drinker (Supplementary
Figures 3, 4). It is evident that the prognostic performance of the
six-gene signature was well validated when the training set was
stratified by some important clinical features.

Validation of the Signature in the
Independent Cohort
To assess whether the six-gene signature could be applied in
the clinical practice, we further validated in the independent
cohort using qRT-PCR analysis. The clinical characteristics of
this validation cohort are shown in Supplementary Table 2. Risk
scores of all patients were calculated using the same formula
and then assigned to high- and low-risk groups accordingly.
This risk signature was well validated in the independent cohort.

High-risk patients suffered unfavorable prognostic results in
OS (HR = 4.4096, 95% CI = 1.6414–11.8465, P = 0.0013) and
RFS (HR = 4.7875, 95% CI = 1.8440–12.4295, P = 0.0004)
(Figures 3A–E). In the same way, we detected the connection
between OS and risk scores in the LN+ and LN− patients,
respectively. Patients in the LN+ subgroup showed longer OS
than their high-risk counterparts. However, this risk score
showed a borderline difference between high- and low-risk
patients in the LN− subgroup with a P = 0.0540 (Figures 3F,G).
We also used the same univariate and multivariate Cox regression
model to analyze whether the risk score could also function as an
independent predictor of prognosis in the independent cohort.
As expected, we received the same conclusion as with the training
cohort, the risk score was independently associated with OS and
RFS (Table 2 and Supplementary Table 5).

Biological Pathways Analysis of the
Immune-Related Signature
We applied a GO analysis to determine the biological roles
of this signature. The genes with Pearson |R| > 0.4 were
considered strongly linked to the risk score. We then
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FIGURE 2 | Risk score distribution and survival of patients in the training cohort. (A) The risk scores for 119 patients of the training cohort (GSE53624). (B) The
survival of each patient in the training cohort (GSE53624). (C) Expression distribution of the six genes in the training cohort, with red indicating higher expression and
blue indicating lower expression. (D) ROC analysis of immune-related genes signature for prediction of survival at 1, 3, and 5 years in the training cohort. (E,F)
Kaplan–Meier curves of OS and RFS in 119 patients of the training cohort based on risk score, respectively.

generated a heatmap for these genes and the distribution of
clinical features for every patient (Figure 4A). To identify
fundamental biological functions, GO and KEGG analyses
were carried out. We found that the risk score was related
to several pathways, such as the cell adhesion, leukocyte
transendothelial migration, and cancer progression, which
may be associated with cancer metastasis (Figures 4B,C).
These findings may indicate that patients in the high-
risk group may be more likely to suffer lymphatic
metastases.

Relationship Between the Risk Score
and Immune Landscapes
Owing to the establishment of the risk based on immune-
related genes, we speculated that the risk might be relative
to immune activities, immune response, and TME. First,

we chose seven well-studied clusters of 104 genes in total,
which were then defined as metagenes (HCK, interferon,
LCK, MHC-I, MHC-II, STAT1), representing different types
of inflammatory and immune responses. As illustrated in
Figure 5A, we found that most clusters were positively associated
with the risk score, such as HCK and MHC II clusters.
These seven clusters were subjected to the GSVA to verify
what we found in the seven metagene clusters. The results
suggested that the high-risk score was mainly based upon genes
related to the activation of macrophages and T-cell signaling
transduction (Figure 5B).

Immune checkpoints are extremely essential molecules in
the immune TME. Therefore, we sought to examine the
correlation between the risk score and immune checkpoints
expression. We altogether enrolled 30 immune checkpoints
in our analysis, including TNF superfamily (BTLA, TNFSF14,
CD40, TNFRSF4, TNFRSF9, CD27, CD40LG, TNFSF4, TNFSF9,
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TABLE 1 | Univariable and multivariable Cox regression analysis of the six-gene immune-related signature and overall survival in GSE53624 cohort.

Univariable analysis Multivariable analysis

Variable HR 95% CI P value HR 95% CI P value

Age

≥60 or <60 1.4206 0.8963–2.2516 0.1352

Sex

Male or female 1.2094 0.6846–2.1364 0.5126

Smoking history

Yes or no 0.8596 0.5322–1.3883 0.5361

Alcohol history 1.0521 0.6559–1.6876 0.8333

Yes or no

Tumor location

Upper, middle, or lower 0.9610 0.5827–1.5851 0.8763

Tumor grade

Well, moderate or poor 1.2195 0.8550–1.7394 0.2733

T stage

1, 2, 3, or 4 1.1270 0.8387–1.5146 0.4277

Lymphatic metastasis

Yes or no 2.1594 1.3191–3.5350 0.0022 1.2331 0.5187–2.9317 0.6354

TNM stage

I, II, or III 1.9011 1.2262–2.9476 0.0041 1.2777 0.5372–3.0389 0.5794

Risk score

High or low 3.7144 2.2481–6.1370 <0.0001 4.2511 2.4042–7.5166 <0.0001

HR, hazard ratio; CI, confidence interval.

CD70, and TNFRSF18) (Ward-Kavanagh et al., 2016), B7-
CD28 family (CD274, PDCD1LG2, ICOSLG, CD276, VTCN1,
HHLA2, CTLA4, ICOS, PDCD1, and TMIGD2) (Janakiram
et al., 2015; Zhang et al., 2018, 2020), and other immune
checkpoint members (HAVCR2, IDO1, LAG3, FGL1, ENTPD1,
NT5E, SIGLEC15, C10orf54, and NCR3) (Chretien et al., 2019;
Wang et al., 2019a,b). The heatmap for immune checkpoints
expression was produced, taking other clinical characteristics
into consideration, such as sex, age, TNM stage, and lymphatic
metastasis (Figure 5C). We observed that TNFSF4, ICOSLG,
PDCD1LG2, HAVCR2, and ENTPD1 were obviously upregulated
in patients of the high-risk group. In contrast, HHLA2,
NCR3, and FGL1 were downregulated (Figures 5D,E). Most
of these upregulated molecules are potential targets for cancer
immunotherapy (Du et al., 2017; Marinelli et al., 2018). This
suggests that high-risk patients may benefit from the new
immune targeted therapies.

Then, the xCell method was performed to investigate the
TME cell infiltration. According to the analyzed result, high-
risk groups exhibited increased infiltration of regulatory T cells
(Tregs), CD4+ memory T cells, memory B cells, macrophages,
several dendritic cells, and fibroblasts, and low infiltration of
plasma cells, neutrophils, basophils, eosinophils (Figures 6A–
C). The previous research proved that Tregs could promote
progression of ESCC, whereas both Tregs and fibroblasts were
relevant to unfavorable survival in patients with ESCC (Fu
et al., 2011; Nabeki et al., 2015; Yue et al., 2020). Meanwhile,
α-SMA and Foxp3 are specific biomarkers of fibroblasts
and Treg cells (Korn and Muschaweckh, 2019; Zhan et al.,
2019). To confirm our analytical results, we first selected two

representative tumor samples from the high- and low-risk
groups and stained α-SMA and Foxp3 in the two tumor sample
slices using the immunofluorescent assay method. The results,
including case 1 (a low-risk patient) and case 2 (a high-risk
patient), are shown in Figure 6D. These images verified that
high-risk group patients demonstrate a higher infiltration of
fibroblasts and Tregs.

Popularized the Signature in the LUSC
and Head and Neck Squamous Cell
Carcinoma
Esophageal squamous cell carcinoma resembled squamous
carcinomas of other organs more than esophageal
adenocarcinomas, especially LUSC and HNSC. Moreover,
ESCC, LUSC, and head and neck squamous cell carcinoma
(HNSCC) had familiar genetic backgrounds (Lin et al., 2018).
We collected 494 LUSC cases and 517 HNSCC samples from
the TCGA database. The same risk score formula was applied to
these two cohorts. The patients were separated into high- and
low-risk groups based on risk score. The patients with a high-risk
score in the HNSCC cohort exhibited worse OS (HR = 1.6729,
95% CI = 1.1297–2.2936, P = 0.0012) and RFS (HR = 1.7928,
95% CI = 1.1293–2.8463, P = 0.0121). For the LUSC cohort,
patients in the high-risk group also demonstrated worse OS
(HR = 1.5045, 95% CI = 1.1407–21.9843, P = 0.0036); however,
this risk score exhibited a borderline difference between high-
and low-risk group in RFS (P = 0.0576) (Figure 7). These results
suggest that our signature had a favorable promotion value.
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FIGURE 3 | Risk score distribution and survival of patients in the clinical validation cohort. (A) The risk scores for 77 patients of the clinical validation cohort. (B) The
survival of each patient in the clinical validation cohort. (C) Expression distribution of the six genes in the clinical validation cohort. (D,E) Kaplan–Meier curve of OS
and RFS in clinical validation cohort. (F,G) Kaplan–Meier curves of OS in LN+ and LN- patients of clinical validation cohort.

DISCUSSION

Despite the combination of surgery, chemotherapy, and
radiotherapy used to treat ESCC, patients continue to suffer poor
clinical outcomes. Immunotherapy has produced promising
clinical results for ESCC and is considered an emerging treatment

for ESCC (Metges et al., 2019). Thus, it is essential to construct a
useful and meaningful immune-related signature for ESCC. Such
a signature could help us to assess the immune status of patients
with ESCC. If applied correctly, this immune-related signature
could act as a prognostic biomarker for ESCC and enable
immunotherapeutic result stratification. Up to now, there was a

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 December 2020 | Volume 8 | Article 580005

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-580005 December 11, 2020 Time: 21:2 # 8

Zhang et al. An Immune Signature in Esophageal Cancer

FIGURE 4 | Relationship between risk score and most relevant immune-related genes and biological pathways. (A) Details of risk score and the most relevant
genes. (B) Gene enrichment with GO terms of the selected genes. (C) Gene enrichment with KEGG terms of the selected genes. Young and old represent age <60
and age ≥60 years, respectively.

TABLE 2 | Univariable and multivariable Cox regression analysis of the six-gene immune-related signature and overall survival in the independent validation cohort.

Univariable analysis Multivariable analysis

Variable HR 95% CI P value HR 95% CI P value

Age

≥60 or <60 2.2471 0.7655–6.5952 0.1406

Sex

Male or female 1.5951 0.5438–4.6793 0.3951

Lymphatic metastasis

Yes or no 5.3376 1.9912–14.3080 0.0009 2.9974 0.9399–9.5586 0.0636

TNM stage

I, II or III 2.0551 1.2530–3.3709 0.0043 1.5058 0.7484–3.0298 0.2512

Risk score

High or low 4.4097 1.6414–11.8465 0.0033 2.8332 1.0113–7.9372 0.0475

HR, hazard ratio; CI, confidence interval.

limited immune-related signature to predict prognosis in patients
with ESCC. We generated a six-gene–based immune-related
signature through profiling an immune-related gene set. This
signature exhibited a close connection with OS in patients with
ESCC and effectively identified patients with ESCC at high risk
of poor prognosis in the validation cohort. Meanwhile, high-risk

patients exhibited an enhanced local immune phenotype in
contrast to their low-risk counterparts. This indicates that
high-risk cases may benefit from immunotherapies.

Our prognostic signature was constructed using various
immune-related genes containing protective (ITLN1 and
MADCAM1) and risky (TSPAN2, AMBP, C6, and PRLR) genes.
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FIGURE 5 | Relationship between risk scores and immune metagenes and immune checkpoints. (A,C) Expression of metagenes heatmap and corrgram in the
training cohort. (B) The expression profile of immune checkpoints landscapes in the training cohort. (D,E) Different expression of immune checkpoints in high- and
low-risk groups. *, **, and *** represent P < 0.05, P < 0.01, and P < 0.001, respectively. Young and old represent age <60 and age ≥60 years, respectively.

Regarding the two protective genes, ITLN1 – also known
as ometin-1 – is a 34-kDa secretory protein and pleiotropic
adipocytokine, possessing metabolic, inflammatory, and
immune-related properties. ITLN1 is highly expressed in the

visceral adipose tissue, particularly in the stromal vascular cell
(Jaikanth et al., 2013). ITLN1 also carries prognostic value for
various malignant tumors, such as colorectal, gastric cancers, and
neuroblastoma. ITLN1 is a tumor suppressor in patients with
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FIGURE 6 | Relationship between risk score and different cells estimated by xCell. (A) The landscape of risk score and different cell infiltration. (B,C) Different
distributions of estimated cells in high- and low-risk groups. (D) Immunofluorescence images of Tregs and fibroblasts in tissues from the high-risk group (Case 1) and
low-risk group (Case 2), respectively. The foxp3 is marked as red, and α-SMA is marked as green (200×) *, **, and *** represent P < 0.05, P < 0.01, and P < 0.001,
respectively. Young and old represent age <60 and age ≥60 years, respectively.

gastric cancer and neuroblastoma. It is also related to improved
survival in patients with gastric cancer (Li et al., 2015a,b).
Kim et al. (2012) reported that ITLN1 is a favorable prognostic
biomarker in patients with stage IV colorectal cancer (CRC). In
the contrary, a retrospective cohort research study revealed that
there was a positive correlation between the level of circulating
ITLN1 concentrations and CRC risk (Aleksandrova et al., 2016).
MADCAM-1, a principal ligand of α4 integrins, is mainly
expressed on endothelial cells and high endothelial venules
of gut-associated lymphoid tissues, mediating the recruitment
and activation of lymphocytes (Rose et al., 2002; Kuhbandner
et al., 2019). Steiniger et al. (2001) specialized that fibroblasts

expressing MAdCAM-1 may attract CD4+ T cells and instruct
them into the periarteriolar T-cell area. However, there is no
prognostic research of ITLN1 and MADCAM-1 in ESCC. Our
findings suggest that ITLN1 and MADCAM1 are protective genes
for ESCC. More studies are needed to further illuminate the
prognostic value of ITLN1 and CAMDAM-1 and their relevant
mechanisms in patients with ESCC.

The roles of TPSNA2, AMBP, and PRLR have not been
confirmed in ESCC, but they are involved in the progression
of various malignant cancers. For instance, TPSNA2 performs a
key function to suppress ROS production, leading to increased
invasiveness and metastasis in lung and liver cancers. TPSNA2
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FIGURE 7 | Risk score distribution and survival of patients in the LUSC and HNSCC cohorts. (A) The risk scores for 494 patients of the LUSC cohort, the survival of
each patient, and gene expression distribution in the LUSC cohort. (B,C) Kaplan–Meier curve of OS and RFS in the LUSC cohort, respectively. (D) The risk scores
for 517 patients of the HNSCC cohort, the survival of each patient, and gene expression distribution in the HNSCC cohort. (E,F) Kaplan–Meier curve of OS and RFS
in the HNSCC cohort, respectively.
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is also a poor outcome biomarker for patients with lung
adenocarcinoma and a protective gene for patients with acute
myeloid leukemia (Otsubo et al., 2014; Lin et al., 2020).
AMBP is an important member of the lipocalin superfamily,
modulating the processes of inflammation (Akerstrom et al.,
2000). Sekikawa et al. pointed out that low expression of
AMBP predicts an unfavorable prognosis in patients with oral
squamous cell carcinoma (Sekikawa et al., 2018). PRLP acts as
a vital receptor of PRL hormone. After their combination, the
PRLP-PRL complex activates signals that suppress the epithelia–
mesenchymal transition processes and promote the invasiveness
of breast cancer cells (Nouhi et al., 2006). PRLR is an independent
predictor of better outcomes in patients with breast cancer
(Hachim et al., 2016). Conversely, it is a negative prognostic
marker for patients with HNSCC (Bauernhofer et al., 2011).
Finally, in our former study, C6 was regarded as a risk-
promoting factor in ESCC, in agreement with our present results
(Li et al., 2017).

We further investigated the relevant and possible mechanisms
of the local immune risk signature. The genes related to
the risk score were predominantly focused on cell adhesion,
leukocyte transendothelial migration, and cancer progression
pathways, which are related to cancer metastasis. Subsequently,
the relationship between the risk score and seven well-defined
metagenes was explored (Rody et al., 2009). These seven
clusters of metagenes represent the relatively comprehensive
inflammation and immune response in the TME, including the
functions of B lymphocytes (immunoglobulin G), macrophages
and cells of the monocyte/myeloid lineage (HCK), T cells
(LCK), major histocompatibility class II complex on professional
antigen-presenting cells for their interaction with T cells (MHC-
II), the major histocompatibility class I for the presentation of
intracellular antigens (MHC-I), interferon signal transduction
(STAT1), and the interferon response of cells (interferon). As a
result, the risk score was found positively associated with HCK
and MCH metagenes. Thus, high-risk scores were based on genes
relevant to the activation of macrophages and T-cell signaling
transduction. Interestingly, one of the key genes in the signature –
MADCAM1 – was closely related to immune cell infiltrations,
especially for T cells (Mlecnik et al., 2010). Meanwhile, one of
the risky genes – TSPAN2 – inhibited macrophage secretion
of lipopolysaccharide-induced tumor necrosis factor α (TNF-
α) and interleukin 6 (IL-6) (Qiang et al., 2008). Tissue-resident
macrophages expressing PRLR are able to promote fibrosis of
the TME in cases of pancreatic cancer (Tandon et al., 2019).
PRLR also influences the survival and differentiation of T-cell
progenitors (Carreño et al., 2005). These observations further
suggest that risk score is closely related to macrophage and
T-cell activities. High-risk patients exhibited higher expression
of TNFSF4, ICOSLG, PDCD1LG2, HAVCR2, and ENTPD1. These
molecules are strongly associated with T-cell activation and
responses. For example, TNFSF4 – also known as OX40L – is a
ligand of OX40, and its combination with OX40 regulates T-cell
proliferation, activation, and survival and even has an effect on
cytokine release from T cells (Reuter et al., 2015). ICOS signaling
helps regulate TH1, TH2, and TH17 immunity (Wikenheiser and
Stumhofer, 2016). ICOSLG, a vital ligand of ICOS, also plays

a crucial role in the regulation of T cell immunity (Marinelli
et al., 2018). PDCD1LG2, HAVCR2, and ENTPD1 contribute
to immune tolerance in the TME and suppress the antitumor
function of T cells (Sabatos et al., 2003; Rozali et al., 2012; Duhen
et al., 2018). Considering that these immune checkpoints are
potential and promising targets for cancer immunotherapies,
the high expression of these molecules in the signature-based
high-risk patients may provide an additional immunotherapeutic
possibility.

We also found higher infiltration of Tregs in high-risk
patients. Tregs are well-known mediators that contribute
to immunologic tolerance, weakening T-cell activation, and
responsiveness (Yang et al., 2019; Aykut et al., 2020). Tregs
may also destabilize and reprogram under some certain acute
proinflammatory signals such as IL-6 and interferon γ. This
attenuates the immunosuppressive activities of Tregs, promoting
a proinflammatory state and functioning as an antitumor
agent (Munn et al., 2018). This emerging understanding may
also provide a potential and prospective target for tumor
immunotherapies. All these findings remind us that high-risk
cases are more likely to profit from immunotherapies. In the
meantime, these results can help us to comprehend the real
immune status of patients within different risk cohorts, which
also may be conductive to clinical instruction.

We constructed an initial immune-related signature to predict
prognosis for patients with ESCC (Li et al., 2017); however,
there were some limitations to this research. Although we
enrolled approximately 708 immune-related genes, this may not
be sufficient for a comprehensive analysis. On the other hand, our
previous study lacked a qRT-PCR validation to avoid the false-
positive error of sequencing. The design of this study addressed
these limitations to some degree. We enrolled 2,630 immune-
related genes in the present study, applied the robust risk score
method, and further validated our findings in an independent
cohort. However, our present study also has several limitations.
This project lacked a large population cohort to make further
validations. Additionally, this was retrospective research and
should be tested in prospective cohorts. Finally, tumors are
considered heterogenic tissues, especially for the immune TME.
Considering that a tumor’s characteristics and composition vary
by location, the predictive capacity of our six-gene immune-
related signature may vary in different areas with tumor tissue.

In conclusion, we established a feasible and reproducible
immune-related risk signature for ESCC and furnished new
information related to immune profiling of ESCC. The clinical
value and application range of this signature cannot be
ignored. We also believe our findings may assist clinicians
decide on individual management and treatment strategies for
patients with ESCC.
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