
fcell-08-582370 October 7, 2020 Time: 19:42 # 1

MINI REVIEW
published: 09 October 2020

doi: 10.3389/fcell.2020.582370

Edited by:
Christiane Pienna Soares,

Sao Paulo State Universty, Brazil

Reviewed by:
Dan Longley,

Queen’s University Belfast,
United Kingdom

Adegboyega Oyelere,
Georgia Institute of Technology,

United States
Jiunn-Kiang Ko,

Chung Shan Medical University,
Taiwan

Sankar Renu,
The Ohio State University,

United States
Dimitrios Schizas,

National and Kapodistrian University
of Athens, Greece

*Correspondence:
Hirva Mamdani

mamdanih@karmanos.org

Specialty section:
This article was submitted to

Epigenomics and Epigenetics,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 11 July 2020
Accepted: 22 September 2020

Published: 09 October 2020

Citation:
Mamdani H and Jalal SI (2020)
Histone Deacetylase Inhibition

in Non-small Cell Lung Cancer: Hype
or Hope?

Front. Cell Dev. Biol. 8:582370.
doi: 10.3389/fcell.2020.582370

Histone Deacetylase Inhibition in
Non-small Cell Lung Cancer: Hype or
Hope?
Hirva Mamdani1* and Shadia I. Jalal2

1 Department of Oncology, Karmanos Cancer Institute, Detroit, MI, United States, 2 Department of Internal Medicine, Division
of Hematology/Oncology, Indiana University, Indianapolis, IN, United States

Epigenetic modulation, including acetylation, methylation, phosphorylation, and
ubiquitination, plays a pivotal role in regulation of gene expression. Histone acetylation—
a balance between the activities of histone acetyltransferases (HATs) and histone
deacetylases (HDACs)—is one of the key epigenetic events. Our understanding of the
role of HDACs in cancer is evolving. A number of HDAC isoenzymes are overexpressed
in a variety of malignancies. Aberrant histone acetylation is associated with dysregulation
of tumor suppressor genes leading to development of several solid tumors and
hematologic malignancies. Pre-clinical studies have demonstrated that HDAC-1 gene
expression is associated with lung cancer progression. Histone hypoacetylation is
associated with more aggressive phenotype in adenocarcinoma of the lung. HDAC
inhibitors (HDACi) have pleiotropic cellular effects and induce the expression of pro-
apoptotic genes/proteins, cause cellular differentiation and/or cell cycle arrest, inhibit
angiogenesis, and inhibit transition to a mesenchymal phenotype. Consequently,
treatment with HDACi has shown anti-proliferative activity in non-small cell lung cancer
(NSCLC) cell lines. Despite promising results in pre-clinical studies, HDACi have shown
only modest single agent activity in lung cancer clinical trials. HDAC activation has been
implicated as one of the mechanisms causing resistance to chemotherapy, molecularly
targeted therapy, and immune checkpoint inhibition. Therefore, there is a growing
interest in combining HDACi with these agents to enhance their efficacy or reverse
resistance. In this paper, we review the available preclinical and clinical evidence for the
use of HDACi in NSCLC. We also review the challenges precluding widespread clinical
utility of HDACi as a cancer therapy and future directions.

Keywords: histone deacetylase inhibitors, NSCLC, HDAC, vorinostat, epigenetic therapy, entinostat,
panobinostat

INTRODUCTION

Regulation of gene expression is a finely balanced process essential for maintenance of homeostasis.
Epigenetic modulation plays a critical role in this process. In eukaryotic cells, histones comprise
the protein backbone for the chromatin and provide a scaffold for various enzymes to regulate
the access of RNA polymerase and other transcription factors to their target genes (Glozak and
Seto, 2007; Damaskos et al., 2018). Histone acetylation—a balance between the activities of histone
acetyltransferases (HATs) and histone deacetylases (HDACs)—is one of the most extensively
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studied post-translational modifications of histones (Li and Zhu,
2014; Suraweera et al., 2018). HDACs remove the acetyl groups
from histones, allowing compacted chromatin to reform and
decrease gene transcription (Glozak and Seto, 2007). So far 18
HDACs have been identified in humans and classified into 4
groups (Class I, II, III, and IV) based on their resemblance with
yeast HDACs (Suraweera et al., 2018).

Conventional hallmarks of cancer include self-sufficiency in
growth signals, evasion of apoptosis, sustained angiogenesis,
tissue invasion, and metastasis (Hanahan and Weinberg, 2011).
A number of these abnormalities are driven by epigenetic
modulation and result from altered activity of one of the
key enzymes involved in these processes including HDACs.
Several malignant tumors have been shown to have high levels
of HDACs (Li and Seto, 2016). Additionally, high expression
of various HADCs has been shown to be associated with
poor outcomes in patients with a variety of malignancies
(Weichert et al., 2008a,b; Oehme et al., 2009; Mithraprabhu
et al., 2014). These pre-clinical findings make HDAC a potential
target for the treatment of cancer. In addition to its anti-
cancer effect via transcription-dependent mechanisms, HDAC
inhibition impacts cell proliferation, survival, and angiogenesis
via modulation of molecular chaperones, signal transduction
proteins, cytoskeletal proteins, cytoplasmic-nuclear transport,
and inhibition of hypoxia inducible factors and vascular
endothelial growth factor (Glozak et al., 2005; Liang et al.,
2006; Witta, 2012). HDAC inhibitors (HDACi) strengthen the
immune system by up-regulating the expression of MHC class
I and II proteins, and co-stimulatory/adhesion molecules such as
CD80, CD86, human leukocyte antigen (HLA)-DR, HLA-ABC,
and intracellular adhesion molecule-1 (ICAM-1,28). HDACi may
also enhance immune responses by altering the activities of
immune cells, either directly or indirectly through cytokine
secretion modulation (Miyanaga et al., 2008). The effect of
HDACs on tumor metastasis is complex. While HDAC inhibition
reversed epithelial-mesenchymal transition via upregulation of
E-cadherin, thereby suppressing the tumor’s metastatic potential
in some studies, another study showed that inhibition of
HDAC11 in breast cancer animal models led to increased
migration and egress of tumor cells from lymph nodes to distant
sites, via increase in RRM2 (Witta, 2012; Leslie et al., 2019).
Finally, HDACs closely interact with a number of other pivotal
cellular pathways and proteins such as DNA repair pathways
and heat shock proteins, leading to alteration of a multitude
of essential cellular functions by HDACi (Bali et al., 2005;
Kiweler et al., 2020). The multiplicity of functions of HDAC
suggests potential synergistic role of HDACi with a wide variety
of agents used for the treatment of non-small cell lung cancer
(NSCLC) (Figure 1). Since certain HDACs are pathologically
overexpressed only in tumor cells, HDACi (especially selective
HDACi) can be expected to have a reasonable therapeutic
window where anti-tumor effect can be obtained with acceptable
side effect profile.

Four HDACi are currently approved by the US FDA for the
treatment of hematologic malignancies. These include vorinostat
and romidepsin for the treatment of cutaneous T cell lymphoma,
belinostat for the treatment of peripheral T cell lymphoma,

FIGURE 1 | Mechanism of anti-cancer activity of HDAC inhibitors.

and panobinostat for the treatment of multiple myeloma (Mann
et al., 2007; Grant et al., 2010; Sawas et al., 2015; Moore,
2016). Supplementary Table 1 summarizes HDAC class targets
of clinically relevant HDACi.

ALTERED HISTONE MODIFICATION IN
NSCLC

Accumulating evidence demonstrates a pivotal role of
histone modification in lung carcinogenesis. Lung cancer
cells harbor an abnormal pattern of histone modification in
comparison with normal lung cells, including hyperacetylation
of H4K5/H4K8, hypoacetylation of H4K12/H4K16, and loss of
H4K20 trimethylation (Van Den Broeck et al., 2008). Cigarette
smoke exposure also influences histone modifications. Nickel,
chromate, and arsenite present in tobacco smoke induce
H3K4 methylation, which in turn affects the expression of
tumor suppressor genes and leads to malignant transformation
of the cells (Zhou et al., 2009). Moreover, the majority of
squamous cell NSCLC tumors demonstrate elevated levels of
HDAC3 (Bartling et al., 2005). Similarly, higher expression of
HDAC1 and HDAC3 are associated with poor prognosis in lung
adenocarcinoma, while reduced expression of class II HDAC
(specifically HDAC5, 6, and 10) is associated with poor prognosis
in NSCLC (Osada et al., 2004; Minamiya et al., 2010, 2011).
A subset of NSCLC tumor overexpresses FLIP, which blocks the
extrinsic apoptotic pathway by inhibiting caspase-8 activation.
High cytoplasmic expression of FLIP significantly correlates
with shorter overall survival. Treatment with HDACi targeting
HDAC1-3 downregulates FLIP expression predominantly via
post-transcriptional mechanisms, and results in death receptor-
and caspase-8-dependent apoptosis in NSCLC cells, but not in
normal lung cells (Riley et al., 2013).

ROLE OF HDACi IN
NSCLC—PRECLINICAL EVIDENCE

HDAC inhibition with trichostatin A (TSA) and vorinostat
exert strong anti-tumor activity in NSCLC cell lines
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(Miyanaga et al., 2008). Treatment with TSA leads to activation
of intrinsic mitochondrial and extrinsic/Fas/FasL system
death pathways and results in dose-dependent apoptosis in
H157 lung cancer cells (Kim et al., 2006). Vorinostat leads
to upregulation of cyclin-dependent kinase inhibitor p21 in
NCI-H520 and NCI-H460 NSCLC cells, G0-G1 cell cycle arrest,
and decrease in C-myc and bcl-2 expression (Li et al., 2011).
Another HDACi CG200745 has been shown to increased global
level of histone acetylation and inhibition of proliferation
of NSCLC cells through epigenetic modification of critical
genes in cancer cell survival (Chun et al., 2015). Additionally,
HDAC6 supports Notch1 signaling in NSCLC cell lines
and promotes cell survival and proliferation. Consequently,
HDAC6 inhibition leads to G2 arrest, increased apoptosis,
and growth inhibition of NSCLC cells (Deskin et al., 2020).
Novel HDAC inhibitors, including SL142, SL325, HTPB, and
CG0006, demonstrate greater degree of apoptosis of NSCLC
cells through induction of caspase-3 activity, disruption of
F-actin dynamics, inhibition of mitochondrial membrane
potential 2 (MMP2) and MMP9, and increased p21 and p27
expression (Hwang et al., 2009; Han et al., 2010; Shieh et al.,
2012). Finally, HDAC inhibition results in downregulation of
TNF-alpha receptor-1 mRNA and surface protein expression,
leading to attenuated NF-kappa B nuclear translocation.
Therefore, HDAC inhibition might exert its therapeutic role
by reducing the responsiveness of tumor cells to TNF-alpha
mediated activation of NF-kappa B pathway (Imre et al., 2006).
This is of particular importance in tumors associated with
inflammatory microenvironment, which is the case in many
smoking associated NSCLC tumors.

CLINICAL UTILITY OF HDACi IN NSCLC

Over the past two decades, the therapeutic landscape of
NSCLC has evolved significantly to include multiple molecularly
targeted therapies and immune checkpoint inhibitors. However,
there remains a subset of patients who do not benefit
from these therapies. Moreover, the majority of patients
eventually experience disease progression following initial
response to these therapies. Therefore, there is an urgent
need for novel treatment strategies for the treatment of
NSCLC. Epigenetic modulation, including HDAC inhibition,
is a prospective therapeutic approach, which may evade
the challenges of tumor heterogeneity and dependability on
targetable molecular alterations.

HDACi Monotherapy in NSCLC
Despite the plethora of pre-clinical evidence supporting the
activity of HDACi in NSCLC, these agents have demonstrated
only modest single agent efficacy in clinical trials. In a phase
II trial of Pivanex in patients with previously treated advanced
NSCLC, only 3 out of 47 patients had partial responses (Reid
et al., 2004). Twelve percent of patients experienced grade 3/4
toxicity including fatigue, dyspnea, and chest pain. Another phase
II study of single agent romidepsin in previously treated advanced
NSCLC did not show any objective responses despite transient

stabilization of disease in some patients, enhanced acetylation
of H4, and increased p21 expression (Schrump et al., 2008).
Similarly, vorinostat monotherapy in patients with relapsed
NSCLC failed to show any objective tumor responses and was
associated with significant toxicity, including 28% grade 3/4
adverse events such as cytopenias and fatigue, and one possibly
treatment related death (Traynor et al., 2009).

The mechanisms underlying the lack of clinically meaningful
antitumor activity of HDACi remain speculative at this time,
including a hypothesis that the resistance to HDACi is a
critical evolutionary consequence of environmental exposure to
HDACi and that only those cancer cells that have developed
mutations that alter this response are inhibited by HDACi
(Halsall and Turner, 2016). HDACi demonstrate synergy
with not only conventional treatment modalities such as
chemotherapy and radiation, but also molecularly targeted
therapies, immune checkpoint inhibitors, and other epigenetic
therapies. Consequently, most clinical trials have focused on
combination strategies to harness the full therapeutic potential
of HDAC inhibition in lung cancer.

Combination Therapies Utilizing HDACi
in NSCLC
Combination of HDACi With Cytotoxic Chemotherapy
Mounting evidence has demonstrated the synergistic activity of
HDACi with cytotoxic chemotherapy. HDACi in combination
with paclitaxel exerts synergistic anti-tumor effect via induction
of p53 and tubulin hyperacetylation as well as prevention of
upregulation of p21 (Zuco et al., 2011). Similar synergistic effect
was observed with HDACi in combination with vinorelbine and
platinum via increased expression of CHK2, CHK1, p21, and
p27 leading to cell-cycle arrest and increased apoptosis (Gavrilov
et al., 2014; Groh et al., 2015). Interestingly, paclitaxel resistant
NSCLC cells demonstrate overexpression of HDAC1 and co-
treatment with HDACi SNOH-3 and paclitaxel overcomes
paclitaxel resistance (Wang et al., 2016). Based on this pre-clinical
evidence, a phase II clinical trial evaluating the combination
of vorinostat with carboplatin and paclitaxel as a first line
therapy for advanced NSCLC was conducted (Ramalingam et al.,
2010). In this randomized, double-blind, placebo-controlled trial,
patients were randomized to receive conventional doses of
carboplatin and paclitaxel with either vorinostat 400 mg daily
or placebo, given on days 1 through 14 of each 21-day cycle
for a maximum of 6 cycles. The response rate was higher in
vorinostat arm compared to placebo (34 vs. 12%, p = 0.02).
Median progression free survival (PFS) and overall survival (OS)
were numerically superior in the vorinostat arm; however, the
difference was not statistically significant. Addition of vorinostat
was associated with higher toxicity including nausea, vomiting,
fatigue, dehydration, and hyponatremia. Notably, 18% of patients
on vorinostat developed grade 4 thrombocytopenia compared to
3% on the placebo arm (p≤ 0.05). Another phase I trial evaluated
combination of belinostat with carboplatin and paclitaxel. In
this study, patients with chemotherapy-naïve advanced NSCLC
received IV belinostat on days 1–5 of each 21-day cycle in
combination with standard dose carboplatin and paclitaxel on
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day 3 of each cycle for up to 6 cycles. The most frequent adverse
events were fatigue, nausea, diarrhea, and neutropenia. Median
PFS was 5.7 months. The objective response rate was 35%, all
responses being partial responses (Waqar et al., 2016). A phase I
trial combining panobinostat with standard doses of carboplatin
and etoposide was terminated because of prohibitive side effects
of severe thrombocytopenia and febrile neutropenia at the lowest
dose of panobinostat (Tarhini et al., 2013). These studies indicate
that while the combination of chemotherapy with HDACi
potentially offers a therapeutic advantage, the toxicity of these
agents, especially myelosuppression and GI toxicity, prevent a
wider application of the strategy in clinical practice. In order to
leverage the synergistic therapeutic potential and to make side
effect profile more favorable, future clinical trials should utilize
more selective HDACi and explore sequential administration of
these agents, where patients don’t receive simultaneous treatment
with HDACi and cytotoxic chemotherapy. Preclinical studies
have shown that the cells arrested at the G1/S checkpoint by
cisplatin were more sensitive to subsequent treatment with
HDAC inhibitors (Sato et al., 2006).

Combination of HDACi With Immune Checkpoint
Inhibitors (ICI)
Immune checkpoint inhibition, either as single agent or in
combination with cytotoxic chemotherapy, has become the
standard of care first line treatment for advanced NSCLC
(Gandhi et al., 2018; Paz-Ares et al., 2018; Reck et al., 2019).
While a small subset of patients experiences remarkably durable
disease responses, the responses in the remaining majority of
the patients are short lived. One of the mechanisms of primary
or acquired resistance to immune checkpoint inhibition is the
paucity of T-cells in the tumor microenvironment and loss of
tumor neoantigens (Herbst et al., 2014; Tumeh et al., 2014;
Anagnostou et al., 2017). There is a growing interest in enhancing
or restoring responses to ICI through epigenetic modulation of
the tumor microenvironment (Beg and Gray, 2016; Weintraub,
2016). The interest in the combination of HDACi with ICI was
initiated by a study that evaluated dual epigenetic modulation
with entinostat and azacitidine. While the combination did not
yield expected anti-tumor response, a subset of these patients
subsequently went on to receive nivolumab. Five out of the six
NSCLC patients showed a progression-free survival of 6 months
post-treatment. This was a remarkable outcome for patients
who had previously progressed on an ICI (Banik et al., 2019).
HDACi have been shown to prime the tumor microenvironment
for response to ICI through multiple mechanisms, including
upregulation of MHC expression, T cell functionality, tumor
antigens, T-cell chemokines, stimulatory effects on T cells, and
the inhibition of suppressive cell types such as myeloid-derived
suppressor cells (Vo et al., 2009; Kim et al., 2014; Zheng
et al., 2016; Orillion et al., 2017; Topper et al., 2017). Analysis
of azacitidine-induced pathways in The Cancer Genome Atlas
(TCGA) project by mapping the derived gene signatures in
NSCLC tumors has showed that azacitidine upregulates genes
and pathways related to both innate and adaptive immunity
and genes related to immune evasion (Wrangle et al., 2013).
Additionally, dual HDAC and HSP90 inhibition decreases PD-L1

expression in IFN-gamma treated lung cancer cells suggesting
its impact on modulating immunosuppressive ability of the
tumor (Mehndiratta et al., 2020). A phase I/Ib study evaluated
combination of vorinostat with PD-1 inhibitor pembrolizumab in
patients with advanced NSCLC (Gray et al., 2019). Patients were
either ICI-naïve or ICI-pretreated in the initial phase but had to
be ICI-pretreated for phase Ib portion of the study. The treatment
consisted of standard dose pembrolizumab 200 mg IV every
3 weeks plus vorinostat 200 or 400 mg per day. No dose limiting
toxicities were observed. Fatigue and nausea/vomiting were the
most common side effects (33 and 27%, respectively). Of the total
30 evaluable patients (6 ICI-naïve, 24 ICI-pretreated), 4 (13%)
had partial response and 16 (53%) had stable disease, leading
to a disease control rate of 67%. In the ICI-pretreated cohort,
three patients had partial response and 10 had stable disease.
The results of this early phase study are very encouraging for
further evaluation of this combination in ICI pretreated patient
population. The long-term outcomes of patients treated on this
study and the results of multiple other ongoing studies evaluating
combination of various other HDACi (entinostat, panobinostat,
mocetinostat, abexinostat) with ICI are awaited.

Combination of HDACi With Tyrosine Kinase
Inhibitors
Approximately 15% of advanced NSCLC tumors harbor
sensitizing mutation in Epidermal Growth Factor Receptor
(EGFR) and show marked response to EGFR tyrosine kinase
inhibitors (TKIs). Despite the dramatic initial responses, most
patients eventually develop resistance to the TKIs. One of
the resistance mechanisms is decreased activity of Bcl2-like
protein 11 (BIM). BIM is a proapoptotic molecule and its
upregulation is essential for the induction of apoptosis in
EGFR mutated lung cancer cells treated with an EGFR TKIs
(Faber et al., 2011; Costa et al., 2014). A functional BIM
deletion polymorphism is associated with inferior outcomes
with EGFR-TKIs in EGFR mutated NSCLC (Ng et al., 2012;
Isobe et al., 2014). Takeuchi et al. conducted a phase I
trial of HDACi vorinostat in combination with gefitinib in
BIM deletion polymorphism harboring EGFR-mutated NSCLC
(Takeuchi et al., 2020). Twelve patients with advanced EGFR-
mutated NSCLC, previously treated with an EGFR TKI and
chemotherapy, were treated with gefitinib and escalating dose
of vorinostat. The combination was well-tolerated and resulted
in a 6 weeks disease control rate of 83.3%, which is notable
since these patients previously had a disease progression on
an EGFR TKI. Although median PFS was 5.2 months, median
OS on this small early phase trial was encouraging at 22.1
months. Similarly, combination of HDACi panobinostat with
third generation EGFR TKI osimertinib has been shown to
enhance the induction of apoptosis and decrease the survival
of osimertinib resistant cell lines and xenograft models,
including those harboring C797S mutations, via elevation of BIM
(Zang et al., 2020).

Another postulated mechanism of resistance to EGFR TKI
is emergence of subpopulation of tumor cells with cancer
stem cell like properties and HDAC sirtuin-1 (SIRT1) mediated
survival advantage. Consequently, administration of a SIRT1
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inhibitor tenovin6 (TV6) in combination with gefitinib showed
tumor regression in resistant xenograft models. Additionally,
co-administration of TV6 leads to decrease in the dose of
gefitinib necessary to induce tumor response in preclinical
models (Sun et al., 2020). A phase I/II trial enrolled 132 patients
with advanced EGFR mutant NSCLC and randomized them
to erlotinib plus entinostat or erlotinib plus placebo (Witta
et al., 2012). Entinostat based combination led to superior OS
in the subset of patients with high E-cadherin levels (9.4 vs.
5.4 months; p = 0.03), indicating potential role of E-cadherin
as a biomarker for selecting patients for the treatment with
erlotinib and entinostat.

Combination of HDACi With Radiation
Ionizing radiation exerts its anti-tumor effect through
development of single–strand breaks, double-strand breaks
(DSBs), and inter-strand crosslinks (Ward, 1988). DNA damage
response pathways, specifically homologous recombination
(HR) and non-homologous end joining (NHEJ), are activated
in response to DSBs (Moynahan et al., 1999; Chapman et al.,
2012). Upregulation of these pathways is implicated as one
of the putative mechanisms for resistance to conventional
ionizing radiation. HDACi upregulate γH2AX, an established
marker of DSBs, in lung cancer cell lines in conjunction with
ionizing radiation (Geng et al., 2006; Cuneo et al., 2007; Samuni
et al., 2014). Additionally, HDACi downregulate the expression
of RAD51, CHK1, and BRCA2—key DNA damage response
pathway genes mediating repair of radiation-induced DNA
damage (Brazelle et al., 2010; Huang et al., 2014). Additionally,
HDAC inhibition leads to acetylation of Ku70/80 and XRCC4,
rendering the NHEJ pathway defective (Miller et al., 2010).
To build on the pre-clinical evidence, several clinical trials
are underway utilizing combination of HDACi with ionizing
radiation in NSCLC.

Combination of HDACi With Other Epigenetic
Therapy
Combination therapy with HDACi with DNA methyltransferase
inhibitors is based on robust preclinical data showing promotor
hypermethylation as a key epigenetic even in lung cancer
initiation and progression (Witta, 2012). Stage I NSCLC
harboring hypermethylation of two of the four genes, CDKN2a,
CHD13, APC, or RASSF1a, has been demonstrated to be
associated with poor survival outcomes (Brock et al., 2008). In
a phase I/II trial of 5-azacitidine and entinostat in heavily pre-
treated advanced NSCLC, 1 out of 34 evaluable patients had a
complete response that lasted for 14 months (Juergens et al.,
2011). One patient had partial response, and 10 had stabilization
of disease that lasted at least 12 weeks. Demethylation of the four
genes, CDKN2a, CDH13, APC, and RASSF1a, detected in serial
blood samples was associated with improved PFS (p = 0.034)
and OS (p = 0.035) with the combination, indicating their
potential role as predictive biomarkers for the benefit from
treatment with HDACi and hypomethylating agents. Adjuvant
treatment with 5-azacitidine and entinostat prolongs disease
free survival (DFS) and OS in mice models following removal
of primary lung, breast, and esophageal tumors, by inhibiting

the trafficking of myeloid derived suppressor cells through
downregulation of CCR2 and CXCR2 leading to disruption
of premetastatic niches and inhibition of development of
metastatic disease (Lu et al., 2020). Based on this finding,
two trials evaluating the role of azacitidine and entinostat as
adjuvant and neoadjuvant therapy for resectable NSCLC were
initiated. However, these trials were terminated early because
of slow accrual.

Table 1 summarizes notable completed and ongoing clinical
trials utilizing HDACi in NSCLC.

CHALLENGES AND FUTURE
DIRECTIONS

Despite encouraging results from numerous preclinical and
early clinical studies evaluating combination of HDACi with
several other established or emerging treatment strategies,
the utility of HDACi in the treatment of NSCLC remains
exploratory. There are no randomized phase III trials utilizing
HDACi in NSCLC. One of the major challenges is the
toxicity profile of these agents, especially when combined with
cytotoxic chemotherapy. HDACi are associated with several
collateral toxicities on account of their widespread impact on
a multitude of key cellular functions and limited selectivity for
tumor cells. Of the four classes of HDACs, class 1 HDACs
(HDAC 1, 2, 3, and 8) are primarily involved in promoting
carcinogenesis and metastasis, and are the most well-studied
HDACs, while class IV HDAC is the most poorly understood
HDAC. Given the heterogeneity of various HDACs and their
role in regulating genes involved in different cellular pathways,
development of more selective HDACi, preferably HDAC
class I inhibitors, with potent anti-tumor activity and more
favorable side effect profile is desirable. Recent development
of technologies to utilize nanocarriers, such as polymeric
nanoparticles, PEG-coated nanoparticles, colloid carrier systems,
PLGA nanoparticles, and albumin microspheres, are being
investigated in clinical studies to deliver HDACi with enhanced
solubility, tumor specificity and less toxicity (Enriquez et al.,
2013; Martin et al., 2013; Goswami et al., 2018; Bertrand
et al., 2019; Lee et al., 2019). Moreover, the optimum timing
of administration of HDACi with other treatments remains
unknown. The results of most of the early clinical trials are
heterogeneous with only a subset of patients benefiting from
HDACi based therapies.

A logical approach for future studies would be to develop
strategies to mitigate some of the toxicities of HDACi by
development of more tumor selective HDACi and explore
different timing of administration of HDACi. Development
of predictive biomarkers to allow better patient selection and
consideration of variable impact of expression of different
classes of HDACs on the prognosis of NSCLC will be of
paramount importance. Additionally, the synergistic anti-tumor
activity of HDACi with a number of anti-cancer therapies,
such as chemotherapy, ICIs, radiation, and targeted therapies,
suggests that combination strategies with multiple agents should
be explored. The combinations of ICI with chemotherapy,
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TABLE 1 | Select completed and ongoing clinical trials evaluating efficacy of HDACi in NSCLC.

Completed trials

HDAC
inhibitor

Regimen Trial design Efficacy Toxicity

Monotherapy

Pivanex (Reid
et al., 2004)

Pivanex: 2.34 gm/m2/d IV on days
1,2,3 of a 21-day cycle

Phase II
Previously treated
advanced NSCLC
(n = 47)

ORR 6.4%
SD 30%
mPFS 1.5 mo
mOS 6.2 mo

Grade 3 and 4 toxicity in 6 patients each,
including fatigue, asthenia, dyspnea, and
chest pain

Romidepsin
(Schrump et al.,
2008)

Romidepsin: 17.8 mg/m2 IV on days 1
and 7 of a 21-day cycle

Phase II
Previously treated
advanced NSCLC
(n = 19)

No objective responses.
Ten patients had transient
stabilization of disease.

Four patients had grade 3, 4 patients had
grade 3/4 neutropenia, 1 patient had grade
4 thrombocytopenia.

Vorinostat
(Traynor et al.,
2009)

Vorinostat: 400 mg/day orally Phase II
Previously treated
advanced NSCLC
(n = 16)

No objective responses.
mTTP 2.3 mo
mOS 7.1 mo

One possible treatment related death, two
grade 4 toxicities, 13 occurrences of grade
3 toxicities

Entinostat
(Ryan et al.,
2005)

Entinostat: Orally once a day or once
every 14 days (q14-day) schedule with
dose escalation

Phase I
Previously treated
advanced solid tumors
(n = 31; 4 NSCLC patients)

No PR or CR.
One NSCLC, 1 cervical cancer,
and 2 melanoma patients had
stable disease

Daily dosing intolerable.
Q14-day schedule better tolerated.
DLT—nausea, vomiting, anorexia, fatigue.

Combination with chemotherapy

Vorinostat
(Ramalingam
et al., 2010)

Vorinostat 400 mg/day orally or placebo
on days 1–14 + Chemotherapy
(Carboplatin AUC 6 + Paclitaxel 200
mg/m2) IV on day 3 of each 21-day
cycle, for maximum of 6 cycles

Randomized phase II
Previously untreated
advanced NSCLC
(n = 94)

ORR: 34% with vorinostat vs.
12.5% with placebo (p = 0.02)
mPFS: 6 months vs. 4.1
months (p = 0.48)
mOS: 13 months vs. 9.7
months (p = 0.17)

Grade 4 thrombocytopenia, nausea,
vomiting, fatigue, dehydration, and
hyponatremia more frequent in vorinostat
arm.

Belinostat
(Waqar et al.,
2016)

Belinostat IV on days 1–5 (starting at
1,000 mg/m2 dose) + Chemotherapy
(Carboplatin AUC 6 + Paclitaxel 200
mg/m2) IV on day 3 of each 21-day
cycle, for maximum of 6 cycles

Phase I
Previously untreated
advanced NSCLC
(n = 23)

MTD 1,400 mg/m2
ORR: 35%
mPFS: 5.7 mo

Most frequent adverse events: fatigue
(91%), nausea (78%), constipation (74%)
anemia, and diarrhea (65%), neutropenia
(61%) dizziness, vomiting (57%), headache
(52%)

Panobinostat
(Tarhini et al.,
2013)

Panobinostat orally 3 times a week
(2-weeks on/1 week off) + Carboplatin
AUC 5 on day 1 + Etoposide 100
mg/m2 IV on days 1–3 of each 21-day
cycle for maximum of 6 cycles
-> followed by panobinostat
maintenance.

Phase I
Previously
treated advanced NSCLC
(n = 6)

– Two of the first 6 patients at the lowest
dose level of panobinostat experienced
DLT—grade 4 thrombocytopenia and grade
4 febrile neutropenia. Study was
terminated.

Combination with hypomethylating agent

Entinostat
(Juergens et al.,
2011)

Entinostat 7 mg/day orally on days
3–10 + Azacitidine SQ 30 mg/m2/d in
3 patients and 40 mg/m2/d in 42
patients on days 1–6 and 8–10 of each
28-day cycle

Phase I/II
Previously treated
advanced NSCLC
(n = 45)

One patient had CR lasting for
14 months.
One patient had PR lasting for
8 months.
SD: 22%
mOS among patients who
received at least one cycle of
therapy: 8.6 mo

No DLTs.
Grade 3 or 4 toxicities in 28% of patients
during cycle 1. Most common grade 3 or 4
toxicity was fatigue (12.5%).

Combination with radiation

Vorinostat (Choi
et al., 2017)

Vorinostat (200, 300, 400 mg/day)
orally for 14 days + SRS for brain
metastasis on day 3

Phase I
NSCLC with up to 4 brain
metastasis, ≤2 cm in size.
(n = 17)

No local failures with median
follow-up of 12 months

No DLT
MTD: Vorinostat 400 mg/day
Acute adverse events were reported by 10
patients (59%). Five patients discontinued
vorinostat early and withdrew from the
study. The most common reasons for
withdrawal were dyspnea (n = 2), nausea
(n = 1), and fatigue (n = 2).

Vorinostat (200, 300, 400 mg/day)
orally per RT fraction + Palliative
thoracic radiation (30 Gy over 2 weeks)

Phase I
(n = 17)

– No DLT
Most common non-serious adverse events:
Anemia (12.5%) and fatigue (12.5%)
(Results available on clinicaltrials.gov
NCT00821951)

(Continued)
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TABLE 1 | continued

Completed trials

HDAC
inhibitor

Regimen Trial design Efficacy Toxicity

Combination with ICI

Vorinostat (Gray
et al., 2019)

Vorinostat (200 or 400 mg/day)
orally + Pembrolizumab 200 mg IV
every 3 weeks

Phase I/Ib
ICI-naïve and -pretreated
advanced NSCLC patients
in phase I, ICI-naïve
patients only in phase Ib
(n = 33)

ORR: 13%
SD: 53%
ICI-pretreated patients:
ORR-12.5%, SD-42%

No DLT
RP2D dose:
Pembrolizumab 200 mg IV every
3 weeks + Vorinostat 400 mg/day
Any-grade adverse events were mainly
fatigue (33%) and nausea/vomiting (27%).

Combination with EGFR TKIs

Panobinostat
(Gray et al.,
2010)

Panobinostat + Erlotinib – with various
dosing schedule

Phase I
Previously treated NSCLC
and head and neck cancer
patients. EGFR alteration
not required.
(n = 15)

Of 12 evaluable patients, 7 had
SD and 5 had PD.

The most common toxicities were rash
(73%), nausea (67%), fatigue (67%), and
diarrhea (47%). Grade 3/4 toxicities
included nausea, neutropenia, and QTc
prolongation.
RP2D: Panobinostat 30 mg twice weekly
for 2 weeks) and earlotinib 100 mg daily

Vorinostat
(Takeuchi et al.,
2020)

Vorinostat dose escalation (200, 300,
400 mg/day) on days 1–7 + Gefitinib
250 mg/day on days 1–14 of each
14-day cycle until disease progression

Phase I
BIM deletion
polymorphism/EGFR
mutation
double-positive NSCLC
(n = 12)

mPFS: 5.2 mo
6-weeks DCR: 83.3%

No DLT
RP2D of Vorinostat: 400 mg/day
Treatment-related grade 3 adverse events
included grade 3 hypokalemia (17%), lung
infection and thrombocytopenia (8%)
No treatment-related death or grade 4
adverse events were observed.

Entinostat
(Witta et al.,
2012)

Erlotinib 150 mg/day on days
1–28 + Entinostat 10 mg/day orally on
days 1 and 15 of each 28-day cycle
(EE) or Erlotinib + Placebo (EP)

Randomized phase II
Previously treated patients
with stage IIIB/IV
non–small-cell lung cancer,
no prior EGFR-TKIs
(n = 132)

ORR: 3% with EE vs. 9.2% with
EP (p = 0.13)
mPFS: 1.97 months with EE vs.
1.88 with EP (p = 0.98)
mOS: 8.9 months with EE vs.
6.7 months with EP (p = 0.39).
In subgroup of patients with
high E-cadherin, OS 9.4
months with EE vs. 5.4 months
with EP (p = 0.03)

Rash, fatigue, diarrhea, and nausea the
most common AEs in both groups.
Percentage of patients with a serious AE
(EE, 49.2% vs. EP, 46%) or with an AE
leading to treatment discontinuation (EE,
43.1% vs. EP, 42.9%) were similar between
groups.

Ongoing trials

HDAC
inhibitor

Regimen Trial design Clinicaltrials.gov identifier

Vorinostat Vorinostat + Pembrolizumab II NCT02638090

Entinostat Entinostat + Pembrolizumab II NCT02437136

Entinostat + Azacitidine + Nivolumab II NCT01928576

Panobinostat Panobinostat + Anti PD-1 antibody
PDR001

I NCT02890069

Mocetinostat Mocetinostat + Nivolumab II NCT02954991

ACY-241
(Citarinostat)

ACY-241 + Nivolumab I NCT02635061

Abexinostat Abexinostat + Pembrolizumab I NCT03590054

*ORR, Objective response rate; SD, Stable disease; PFS, Progression free survival; OS, Overall survival; TTP, Time to progression; PR, Partial response; CR, Complete
response; DLT, Dose limiting toxicity; MTD, Maximum tolerated dose; RP2D, Recommended phase 2 dose; RT, Radiation therapy; ICI, Immune checkpoint inhibitor; TKI,
Tyrosine kinase inhibitor.

EGFR TKIs with chemotherapy, and ICI with radiation have
been shown to offer significant therapeutic advantage for
NSCLC. Therefore, development of clinical trials incorporating
selective HDACi with the already established combinations is
a logical path forward. Finally, it is imperative to keep in
mind the early pre-clinical evidence that in certain tumor
types HDACi may in fact promote tumor cell migration
and metastasis.

CONCLUSION

HDAC driven epigenetic modulation is emerging as one of
the key mechanisms promoting carcinogenesis and metastasis,
making HDAC a potential target for cancer therapy. While
HDACi are not highly efficacious as single agents for the
treatment of NSCLC, the results of early phase clinical
trials utilizing combination strategies have been encouraging,
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especially the combination with ICI and TKIs. Nonetheless,
side effect profile of HDACi and their combination with
chemotherapy is a challenge. Additionally, optimum timing of
HDACi administration in the context of combination therapy
is an area of ongoing research. Development of nanocarrier
technologies for delivery of HDACi is an exciting step toward
improving targeted delivery of these drugs. Finally, development
of more selective HDACi and exploring the predictive biomarkers
to guide patient selection for HDACi based therapy is imperative
for continued future development of these agents. Ultimately, the
answer to the question of whether HDAC inhibition is a hope or
mere hype as a treatment strategy for NSCLC awaits results of
multiple ongoing clinical trials.
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