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Molecular Mechanisms of Cadherin
Function During Cortical Migration
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During development of the cerebral cortex, different types of neurons migrate from
distinct origins to create the different cortical layers and settle within them. Along their
way, migrating neurons use cell adhesion molecules on their surface to interact with
other cells that will play critical roles to ensure that migration is successful. Radially
migrating projection neurons interact primarily with radial glia and Cajal-Retzius cells,
whereas interneurons originating in the subpallium follow a longer, tangential route and
encounter additional cellular substrates before reaching the cortex. Cell-cell adhesion
is therefore essential for the correct migration of cortical neurons. Several members of
the cadherin superfamily of cell adhesion proteins, which mediate cellular interactions
through calcium-dependent, mostly homophilic binding, have been shown to play
important roles during neuronal migration of both projection neurons and interneurons.
Although several classical cadherins and protocadherins are involved in this process,
the most prominent is CDH2. This mini review will explore the cellular and molecular
mechanisms underpinning cadherin function during cortical migration, including recent
advances in our understanding of the control of adhesive strength through regulation of
cadherin surface levels.
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INTRODUCTION

Whilst cellular movements are an essential developmental feature of most organs, the orchestration
of such movements in the nervous system is particularly relevant, as much of the central nervous
system is organized in distinct layers that typically share functional properties. In the brain, neurons
are generated in proliferative areas close to the ventricles and subsequently migrate to reach their
definitive positions in different regions. Neocortical projection neurons migrate radially from the
pallial ventricular or subventricular zone (Haubensak et al., 2004; Noctor et al., 2004), whereas
cortical interneurons migrate tangentially from the ventral telencephalon (de Carlos et al., 1996;
Anderson et al., 1997; reviewed in Marín and Rubenstein, 2001; Ayala et al., 2007; see also Figure 1).
During their journey, they all navigate through complex extracellular environments that include
other cells, which play critical roles in ensuring a successful migration. Interactions between Cajal-
Retzius cells in the marginal zone of the cortex and migrating projection neurons are crucial for
somal and terminal translocation (Gil-Sanz et al., 2013). Likewise, locomoting neurons use the
basal processes of radial glia progenitors as a scaffold to migrate along (Rakic, 1972). Contact
between migrating neurons and their cellular substrates is mediated by different cell-cell adhesion
molecules, including the cadherin superfamily, with over 100 members expressed preferentially
or exclusively in the nervous system in vertebrates. Cadherins are calcium-dependent cell-cell
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adhesion molecules, characterized by the presence of a variable
number of extracellular cadherin repeats, that can be broadly
subdivided into three main subfamilies (Sotomayor et al., 2014):
the classical cadherins and the clustered and non-clustered
protocadherins. Members of all three subfamilies have been
shown to play a role in cortical migration. Alpha clustered
protocadherins regulate radial migration through a pathway
involving WAVE, Pyk2 kinase and the small GTPase Rac1 (Fan
et al., 2018). Interfering with protocadherins DCHS1 and FAT4
also affects neuronal positioning (Cappello et al., 2013) and leads
to migration defects in human projection neurons (Klaus et al.,
2019). Protocadherin 20 determines the final position of layer 4
neurons in mice (Oishi et al., 2016), while another protocadherin,
Celsr3, is required for interneuron migration (Ying et al., 2009).
However, the cadherin with the best characterized role in cortical
migration is the classical cadherin CDH2 (N-cadherin), which
will therefore be the focus of this review.

CDH2 ROLES DURING NEURONAL
MIGRATION

After initial bipolar migration to the subventricular zone and
lower intermediate zone, newborn neurons adopt a multipolar
morphology before developing leading and trailing processes
and becoming bipolar in the upper intermediate zone to
progress into the cortical plate (Nadarajah et al., 2001; Tabata
and Nakajima, 2003; Noctor et al., 2004). The multipolar to
bipolar (MBP) transition is a crucial step that involves many
different proteins (Cooper, 2014). Failure to form a leading
process impedes migration into the cortical plate, which proceeds
first through somal translocation for early born neurons and
then by glia-guided locomotion (Kawauchi, 2015) followed by
terminal translocation as the cortical wall grows in thickness
(Nadarajah et al., 2001; Figure 1). Interneurons first migrate
tangentially from the ganglionic eminences into the cortex and
subsequently switch to radial migration to invade the cortical
plate (Marín and Rubenstein, 2001).

CDH2 has been involved in most of these steps. As one of
the main components of adherens junctions keeping radial glia
endfeet connected (Kadowaki et al., 2007), CDH2 first needs to
be downregulated to allow detachment of newborn neurons from
the adherens junction belt and their subsequent delamination
(Rousso et al., 2012). Once neurons reach the subventricular
zone/intermediate zone, CDH2 is needed for correct polarization
in the radial direction and for the specification of the leading
and trailing processes (Jossin and Cooper, 2011; Gärtner et al.,
2012; Xu et al., 2015). Further to its role in MBP transition,
CDH2-mediated adhesion between migrating neurons and radial
glia fibers is needed for the locomoting phase (Shikanai et al.,
2011), with adhesion sites providing traction for the forward
movement of the nucleus (Martinez-Garay et al., 2016). Similarly,
attachment of the leading process to radial glia endfeet and
Cajal-Retzius cells in the marginal zone for somal or terminal
translocation is also dependent on CDH2 (Franco et al., 2011;
Gil-Sanz et al., 2013). The following sections will focus on the
molecular mechanisms known to operate around CDH2 during

those different roles, with a significant part of the review devoted
to regulation of CDH2 surface levels, as this topic has been more
extensively studied.

REGULATION OF CDH2 LEVELS DURING
RADIAL MIGRATION

The strength of cadherin-mediated adhesions depends mainly on
the levels of cadherins at the cell surface. These levels are, in turn,
regulated by the balance between the rate of biosynthesis and
of delivery to the plasma membrane, and turnover of cadherin
molecules by endocytic processes. Recent reviews provide a
comprehensive account of cadherin trafficking (Cadwell et al.,
2016; West and Harris, 2016), so this section will mainly focus on
the specifics of CDH2 regulation in migrating neurons (Table 1).

Newly synthesized CDH2 in the endoplasmic reticulum
binds to β-catenin and p120-catenin (Wahl et al., 2003), which
regulates subsequent transport to the Golgi and the plasma
membrane through interaction with kinesin motors (Mary
et al., 2002; Chen et al., 2003; Teng et al., 2005; Wehrendt
et al., 2016). Internalization of surface CDH2 is mediated
by clathrin-dependent and independent endocytic mechanisms
(Sharma and Henderson, 2007; Tai et al., 2007; Chen and Tai,
2017) and binding of β-catenin and p120-catenin to CDH2
regulates this process, partly by masking key residues needed
for endocytosis (Chen and Tai, 2017). Internalized receptors
can be either recycled back to the cell membrane or routed
to the lysosome for degradation in an endosomal sorting
pathway mainly controlled by Rab GTPases and their effectors
(Wandinger-Ness and Zerial, 2014).

An intriguing possibility to further modulate cadherin
adhesion is allosteric regulation. This form of inside-out
signaling, well characterized in integrin-mediated adhesion
(Hynes, 2002), has so far been demonstrated for CDH1
(Shashikanth et al., 2015), but whether it could provide a way to
quickly control CDH2 adhesive strength is not yet known.

Regulation of CDH2 Total Levels
In migrating neurons, one way to adjust CDH2 levels is
through regulation of Cdh2 mRNA. FMRP binds Cdh2 mRNA
and in Fmr1−/− animals, which display increased numbers of
multipolar neurons in the intermediate zone, Cdh2 mRNA levels
are reduced and the migration defect is rescued by overexpression
of CDH2 (La Fata et al., 2014).

Similarly, downregulation of the small GTPase Rab23 also
leads to a decrease of CDH2 levels in newborn neurons (Hor and
Goh, 2018). This reduction, which is apparent at contact surfaces
between interacting neurons, affects both the full-length protein
and its processed cytoplasmic fragment, and is accompanied by a
decrease in mRNA levels. Phenotypically, it leads to an increase
in the number of multipolar neurons in the intermediate zone
that fail to progress into the cortical plate. At the molecular
level, diminished Rab23 levels seem to impair activation of
PDGFRα and its subsequent phosphorylation of ERK1/2; indeed,
pharmacological inhibition of ERK1/2 also led to a reduction in
CDH2 levels (Hor and Goh, 2018).
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FIGURE 1 | Molecular mechanisms of CDH2 during the different steps of radial neuronal migration. Projection neurons are born from Radial Glia progenitors (gray
cell, RGC) in the ventricular zone (VZ) or from intermediate progenitors in the subventricular zone (SVZ). They undergo multipolar migration while in the SVZ and
intermediate zone (IZ) (step 1, brown cell), before developing a leading process and an axon, and acquiring bipolar morphology. They enter the cortical plate (CP) as
bipolar cells and use the processes of the Radial Glia progenitors as scaffold to migrate along (step 2, green cell). Once they are close enough to the marginal zone
(MZ) for their leading process to make contact with RGC endfeet and Cajal-Retzius cells (CR cell), neurons switch to terminal translocation for the last phase of their
migration (step 3, blue cell). Early born neurons do not need a locomoting step because the cortical wall is still very thin at the time of their migration, so they ascend
directly through somal translocation after becoming bipolar. Box 1a shows the molecular mechanisms regulating CDH2 total or surface expression during multipolar
migration and multipolar to bipolar transition (step 1), while box 1b shows downstream effects of CDH2 at this stage. Similarly, boxes 2a and 2b show regulation of
CDH2 and downstream effects during glia-guided locomotion (step 2), and box 3 shows regulation of CDH2 surface levels during somal translocation (step 3). For
details, see text.

Another Rab GTPase involved in the control of total CDH2
levels is Rab18. Knockdown of this GTPase or interference with
its function leads to a migration defect in the intermediate zone
that can also be partially rescued by overexpression of CDH2.
In this case, reduction of surface CDH2 levels as revealed by
TIRF microscopy are correlated with a global decrease in CDH2
through lysosomal degradation rather than protein expression
(Wu et al., 2016).

Regulation of CDH2 Surface Levels
In addition to adjusting global CDH2 levels, migrating neurons
also dynamically regulate CDH2 surface levels through several
pathways, allowing for more flexible responses to varying
extracellular environments (Solecki, 2012; Figures 1,1a,2a,3).

Regulation by Rab GTPases
As main regulators of endosomal trafficking, Rab GTPases are
ideal candidates to control CDH2 surface levels. Kawauchi et al
showed that Rab11 and Rab5 play opposing but essential roles
in the trafficking of CDH2 to and from the plasma membrane
(Kawauchi et al., 2010; Kawauchi, 2011; Figures 1,1a,2a).
Knockdown of Rab5 reduces Rab5-mediated endocytosis,
leading to an accumulation of cells in the intermediate zone
with abnormal morphology and increased adhesion between
neurons and radial glia processes. This migration defect is

partially rescued through slight downregulation of CDH2 levels,
implicating Rab5 in the internalization of CDH2 (Kawauchi et al.,
2010). This same study showed that Rab11 is needed for correct
recycling of CDH2 back to the cell membrane after endocytosis.
Electroporation of dominant negative (DN)-Rab11 results in
redistribution of CDH2 from the cell surface to perinuclear
regions and its accumulation in transferrin positive vesicular
compartments, concomitant with a delay in radial migration.

Two other proteins have been shown to regulate CDH2
surface levels through an interplay with Rab11. Lack of
HTT, which is expressed in the upper intermediate zone and
the cortical plate, results in migration defects with neurons
failing to acquire a bipolar morphology and showing abnormal
interaction with radial glia fibers. HTT and CDH2 normally
co-localize in the leading process of migrating neurons, but
in the absence of HTT, CDH2 is relocated to transferrin
positive vesicles in the perinuclear region and CDH2 surface
levels are significantly reduced. Interestingly, co-expression of
Rab11 or its constitutively active form rescues the migration
defect of HTT depleted cells, as does overexpression of CDH2
(Barnat et al., 2016; Figures 1,1a).

The small GTPase Arf6 localizes to a subpopulation of
early and recycling endosomes and interfering with its function
disrupts migration and increases intracellular CDH2. This
increase is not due to changes in the internalization of CDH2,
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TABLE 1 | Regulators of CDH2 levels in migrating neurons.

Protein Paradigm1 Effect on CDH2 levels Migration stage References

Afadin KD (shRNA) (in vitro)2 ↓ surface ST Gil-Sanz et al., 2013

ARF6 KD (shRNA) iuEP ↑ intracellular MBPT Hara et al., 2016

Caveolin 1 KD (shRNA) (in vitro) ↑ surface MBPT Shikanai et al., 2018

CDK5 Cdk5 ko (in vitro)
DNCDK5 (K33T) (293T cells)

↓ levels
= total levels
↑ intracellular

MBPT
MBPT

Ye et al., 2014
Lee et al., 2019

DBNL KD (shRNA) (in vitro)
FIP3 1ABD (in vitro)
FIP3 1RBD (in vitro)

↓ surface MBPT Inoue et al., 2019

ERK 1/2 Inhibition of phosphorylation with PD98059, U0126 (in vitro) ↓ levels MBPT Hor and Goh, 2018

FIP3 KD (shRNA) iuEP ↑ intracellular MBPT Hara et al., 2016

FMRP Fmr1 ko (WB, RT-qPCR) ↓ Cdh2 mRNA
↓ CDH2 protein

MBPT La Fata et al., 2014

HTT Httlox/lox ;NexCRE/+

ND:CRE-GFP iuEP into Httlox/lox (WB, in vitro)
= total levels
↓ surface
↑ perinuclear

MBPT Barnat et al., 2016

MYO10 KD (shRNA) (293T cells) ↓ surface
↑ cytoplasmic

MBPT Lai et al., 2015

Nectin 1/3 Primary neurons cultured on Nectin-1 vs. PLL ↑ surface ST Gil-Sanz et al., 2013

RAB5 DNRAB5 (S34N) (in vitro)
KD (shRNA) (in vitro)

↑ surface MBPT
GGL

Kawauchi et al., 2010

RAB11 DNRAB11 (S25N) (in vitro, iuEP)
KD (shRNA) (in vitro, iuEP)
DNRAB11 (S22N) (in vitro, iuEP)

↑ perinuclear

↑ perinuclear

MBPT
GGL
MBPT

Kawauchi et al., 2010

Barnat et al., 2016

RAB18 KD (shRNA) (in vitro) ↓ surface MBPT Wu et al., 2016

RAB23 KD (shRNA) (in vitro, iuEP)
Rab23lox/lox ;Emx1CRE/+ (WB)

↓ protein (FL and cytopl. fragment)
↓ Cdh2 mRNA

MBPT Hor and Goh, 2018

RAP1 conditional KO (Rap1a + b) (IHC of EP brain slices)
RAP1GAP OE (in vitro, iuEP)
RAPGEF2 KD (shRNA),
RAPGEF2 S1124A (in vitro)

↓ levels
↓ surface
↓ surface

MBPT
MBPT
MBPT

Shah et al., 2016
Jossin and Cooper, 2011
Ye et al., 2014

REELIN Application of reelin to reeler neurons cultured on Nectin-1 ↑ surface ST Gil-Sanz et al., 2013

1Note that in some of the references in the table, other experimental paradigms were used in addition to the ones listed. However, the table reflects the ones used when
assessing effects on CDH2 levels, rather than migration as a whole. 2 In vitro refers to cortical primary neurons cultured in vitro, either from mutant brains, electroporated
brains, or obtained from control brains and transfected. KD, knockdown; shRNA, short hairpin RNA; iuEP, in utero electroporation; MBPT, multipolar to bipolar transition;
GGL, glia-guided locomotion; ST, somal or terminal translocation; FL, full length.

but rather to its defective recycling back to the cell surface. Only
Arf6 capable of interacting with its effector FIP3 and with Rab11
can rescue the migration defect of Arf6 knockdown (Hara et al.,
2016; Figures 1,1a).

Regulation by Rap1
The small GTPase Rap1 is one of the major regulators of
CDH2 surface levels, both during multipolar migration and the
MBP transition, and during somal and terminal translocation
(Figures 1,1a,3). Jossin and Cooper showed that interfering with
normal Rap1 function delays the progression of neurons to a
bipolar state (Jossin and Cooper, 2011). This cell-autonomous
defect is due to reduced surface levels of CDH2 and can be
rescued by CDH2 overexpression. The molecular mechanism
linking Rap1 to CDH2 involves Vav2, an activator for Rac1, and
other small GTPases (RalA/B and Rac1/Cdc42). Interestingly,
reelin signaling acts upstream of Rap1 to regulate CDH2
membrane levels in the intermediate zone, as it does in the upper
cortical plate during somal or terminal translocation (Franco

et al., 2011; Jossin and Cooper, 2011). In translocating neurons,
reelin activates Rap1 through RapGEF1 (C3G) (Franco et al.,
2011), but CDH2 recruitment to the cell surface is dependent on
nectin-mediated adhesion between migrating neurons and Cajal-
Retzius cells (Gil-Sanz et al., 2013). CDH2 overexpression rescues
migration defects caused by downregulation of nectin 3 or its
effector Afadin, which interacts with Rap1 and p120 catenin,
providing a link between Rap1 activation and CDH2 (Gil-Sanz
et al., 2013; Figures 1,3). Recently, the reelin-induced increase in
CDH2 surface levels in translocating neurons has been shown to
be transient rather than sustained, but the mechanism behind it
remains unknown (Matsunaga et al., 2017).

Another molecule acting upstream of Rap1 to regulate
CDH2 surface levels is CDK5. Despite initial reports of
CDK5 negatively regulating cadherin-mediated adhesion and
the interaction between β-catenin and CDH2 (Kwon et al.,
2000), this negative effect of CDK5 on CDH2 adhesion has not
been reproduced in vivo. CDK5 phosphorylates RapGEF2 in
the developing cortex, enhancing its GEF activity toward Rap1
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(Ye et al., 2014). RapGEF2 is strongest expressed in the upper
intermediate zone and is required for MBP transition, since its
knockdown leads to multipolar neurons that accumulate in the
lower intermediate zone. Membrane CDH2 levels are reduced in
the Cdk5−/− cortex and in neurons electroporated with either
shRNA against RapGEF2, or its non-phosphorylatable form
S1124A, and migration defects caused by RapGEF2 inhibition
can be rescued by moderate overexpression of CDH2 (Ye et al.,
2014). Similar results were reported in a recent study that
looked at the link between CDK5 and CDH2 in the developing
cortex, which showed that migration defects caused by in utero
electroporation of DNCDK5 at E14.5 could be partially rescued
by co-electroporation with CDH2 (Lee et al., 2019; Figures 1,1a).

Regulation by Other Proteins
In addition to small GTPases, other proteins linked to
endocytosis and the actin cytoskeleton are involved in the
control of CDH2 surface levels in migrating neurons. The
actin motor MYO10 interacts with CDH2 through its FERM
domain and seems to mediate its transport from the Golgi to
the plasma membrane. Downregulation of this unconventional
myosin reduces surface CDH2, but not its total levels. This
leads to accumulation of cells in the intermediate zone that
display disrupted interaction with radial glia fibers and decreased
locomoting speed in those neurons that make it to the cortical
plate. MYO10 also colocalizes with markers for early, late and
recycling endosomes, suggesting that it might play a role in the
trafficking of CDH2-containing endosomes (Lai et al., 2015).
Drebrin-like (DBNL) is an adaptor protein that binds F-actin
and Dynamin 1 and is thus involved in receptor-mediated
endocytosis and remodeling of the actin cytoskeleton. As in the
case of MYO10, knockdown of DBNL reduces CDH2 levels at
the cell surface. How this reduction is brought about at the
molecular or cellular level is not known, but it seems to involve
phosphorylation of two Tyr residues in Dbnl by Fyn. Dbnl-
deficient neurons complete the MBP transition despite defects in
neurite extension and polarization, but do not enter the cortical
plate (Inoue et al., 2019). In both cases, overexpression of CDH2
partially rescues the migration defects (Figures 1,1a).

Despite neurons not displaying caveolae, caveolin 1 is
expressed in the developing cortex, particularly in the neurites
of multipolar cells in the intermediate zone, where it is involved
in clathrin-independent endocytosis. Downregulation of caveolin
1 increases the ratio of surface to total levels of two adhesion
proteins: CDH2 and L1CAM, while decreasing their levels
in early endosomes, suggesting that caveolin 1 is needed for
their internalization (Shikanai et al., 2018). Neurons deficient
in caveolin 1 acquire bipolar morphology, but their leading
processes are shorter and more branched than in control neurons,
with increased immature neurites that are retained even after
leading process formation (Figures 1,1a).

MECHANISMS DOWNSTREAM OF CDH2

Compared to the wealth of information about the regulation of
CDH2 surface levels in migrating neurons, much less is known

about the mechanisms operating downstream of CDH2. With
regards to the initial specification of neuronal processes, in vitro
experiments suggest that opposing gradients of active RhoA at
the leading process and Rac1 in the axon are established as
a consequence of CDH2-mediated contact (Xu et al., 2015).
Although the exact mechanism by which this is accomplished
remains unclear, work in C2C12 fibroblasts has shown that CDH2
engagement decreases Rac1 and Cdc42 activity and increases
RhoA activity (Charrasse et al., 2002). This could explain the
formation of the gradients, as sites of CDH2 adhesion between
neurons and radial glia fibers provide a positional cue for
the development of the leading process while directing axonal
formation to the opposite pole of the cell (Gärtner et al., 2012;
Xu et al., 2015; Figures 1,1b).

A second mechanism at play during CDH2-mediated
neuronal polarization involves its interaction with FGFRs
to prevent their ubiquitination and subsequent lysosomal
degradation. This interaction happens in cis and, surprisingly,
does not require CDH2-mediated adhesion. As a result of higher
levels of FGFR at the cell membrane, the ERK1/2 signaling
pathway is activated. Since similar results in ERK1/2 activation
are obtained by long treatment with reelin in vitro, FGFR
and ERK1/2 can be considered downstream components of the
reelin – Rap1 – CDH2 axis (Kon et al., 2019; Figures 1,1b).

Glia-guided locomotion requires CDH2-mediated adhesion
and its connection to the actin cytoskeleton through alpha-N-
catenin. When CDH2 (and CDH4) adhesion is weakened by
electroporation of different dominant negative forms, neurons
can still polarize and extend leading processes into the cortical
plate. However, nucleokinesis fails and the leading processes
become twice as long as in control neurons. The collapse of the
processes upon induced actomyosin contraction indicates that
CDH2-mediated contacts between neurons and radial glia fibers
probably act as sites for traction generation to allow nuclear
movement. In addition, neurons electroporated with DNCDH
also show an abnormal accumulation of LIS1 in the leading
process, hinting to a potential mechanism involving microtubules
downstream of CDH2 in migrating neurons (Martinez-Garay
et al., 2016; Figures 1,2b).

ROLE OF CDH2 IN INTERNEURON
MIGRATION

CDH2 is also involved in the generation and migration of
cortical interneurons. As well as maintaining the organization
of the neuroepithelium through adherens junctions, CDH2
engagement stimulates interneuron motility (Luccardini et al.,
2013). Interneurons expressing DNCDH in vitro show disrupted
centrosome dynamics and non-muscle myosin IIB localization,
while complete elimination of CDH2 reduces their migration
speed and impairs polarity. In vivo, interneurons lacking CDH2
are less efficient in leaving the medial ganglionic eminence and
reaching the cortex, as well as in invading the cortical plate
(Luccardini et al., 2013, 2015). Interestingly, the effect of CDH2
on the ability of interneurons to migrate to the cortex and
colonize it seems to be cell type specific, as knockout of CDH2
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in Dlx5/6 expressing cells selectively reduces the numbers of
calretinin and somatostatin positive interneurons, but does not
alter other interneuronal types (László et al., 2020). However,
the molecular mechanisms underpinning the role of CDH2 in
interneuron migration remain to be elucidated.

DISCUSSION

The involvement of CDH2 in every step of radial migration
and its function in interneurons underscore the importance of
this adhesion molecule in mediating cell-cell interactions during
cortical development. However, we still have a fragmented view
with different observations that need to be integrated to provide
a full picture of CDH2 function during neuronal migration. It
is still not known if and how the different players regulating
CDH2 levels are coordinated. For example, it remains to be
determined whether Rap1 and Rab GTPases act in parallel
pathways of if they cooperate to regulate CDH2 surface levels.
The molecular signals activated upon CDH2 adhesion are also
poorly understood, and the fact that mechanisms downstream of
cadherins seem to be context specific means that caution should
be exerted when extrapolating from different cellular systems and
assumptions should be experimentally verified. It is important
to keep in mind that the timepoint of intervention, dependent
on age at electroporation but also on the use of different
promoters, will influence results. The timing until analysis is
also important because delays in polarization might mask roles
in later migration phases, and the use of different dominant
negative cadherin forms, sometimes at different concentrations,
will also impact the phenotypes observed. These factors might
explain why locomotion was considered relatively independent
of CDH2 in one study (Jossin and Cooper, 2011), while being
shown to be needed for this process in others (Shikanai et al.,
2011; Martinez-Garay et al., 2016). Similarly, the requirement
for CDH2 adhesion during MBP transition is questioned by a
recent study (Kon et al., 2019), but this might reflect separate

functions of CDH2 at slightly different timepoints during this
complex process. Another controversy that might be explained, at
least in part, by different experimental conditions is the fact that
although reelin-mediated Rap1 activation seems to be required
for MBP transition (Jossin and Cooper, 2011), Dab1 deficient
neurons polarize correctly, enter the cortical plate and only show
defects in somal translocation (Franco et al., 2011).

A final open question is the extent to which CDH2 cooperates
with other adhesion molecules. Beyond its cooperation with
nectins during somal translocation, no equivalent mechanism
has been described for other migration phases. Connexins 43
and 26 also provide adhesion between cortical migrating neurons
and radial glia fibers (Elias et al., 2007) and, interestingly,
Cx43 directly downregulates CDH2 transcription during neural
crest cell migration (Kotini et al., 2018). In addition, CDH2
binds astrotactin in cerebellar migration (Horn et al., 2018),
raising the possibility of a similar function in the cortex. These
examples highlight the potential for functional interactions
between adhesion proteins and the need to expand our studies
beyond individual molecules.
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