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Psychiatric illnesses are a major public health concern due to their prevalence and
heterogeneity of symptom presentation resulting from a lack of efficacious treatments.
Although dysregulated dopamine (DA) signaling has been observed in a myriad of
psychiatric conditions, different pathophysiological mechanisms have been implicated
which impede the development of adequate treatments that work across all patient
populations. The ventral tegmental area (VTA), a major source of DA neurons in the
brain reward pathway, has been shown to have altered activity that contributes to
reward dysregulation in mental illnesses and drug addiction. It has now become better
appreciated that epigenetic mechanisms contribute to VTA DA dysfunction, such as
through histone modifications, which dynamically regulate transcription rates of critical
genes important in synaptic plasticity underlying learning and memory. Here, we provide
a focused review on differential histone modifications within the VTA observed in both
humans and animal models, as well as their relevance to disease-based phenotypes,
specifically focusing on epigenetic dysregulation of histones in the VTA associated
with early life stress (ELS) and drugs of abuse. Locus- and cell-type-specific targeting
of individual histone modifications at specific genes within the VTA presents novel
therapeutic targets which can result in greater efficacy and better long-term health
outcomes in susceptible individuals that are at increased risk for substance use and
psychiatric disorders.
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INTRODUCTION

Psychiatric disorders pose an extraordinary challenge to healthcare professionals due to their
high prevalence and distribution globally. This places an extreme burden on healthcare systems
from both an economic and resource standpoint due to a lack of sufficient understanding
of the development and progression of various psychiatric disorders. While various degrees
of genetic and phenotypic heterogeneity exist among patients, exposure to environmental risk
factors contributes to individual variability through their effects on developmental organization of
functional connections within discrete brain networks. This creates challenges in the development
of therapeutics that are efficacious, long lasting, and generalizable across patient populations.

It has become more apparent that environmental interactions can impact both the development
and function of the central nervous system (CNS). Although some psychiatric diseases have been
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found to have an underlying genetic basis due to mutations in the
coding of the DNA itself, there has been increasing interest in the
role of disease-based alterations to the epigenome (Klengel and
Binder, 2015). Coined by Waddington, “epigenetic” changes refer
to genomic modifications that do not alter the coding of DNA
within an organism, but rather influence chromatin architecture
which regulates the rate of gene transcription (Berger et al., 2009;
Deans and Maggert, 2015). There are various changes to the
epigenome that can either enhance or repress transcriptional
rates such as histone modifications (Kouzarides, 2007), DNA
methylation (Greenberg and Bourc’his, 2019), and non-coding
RNAs (Wei et al., 2017). This focused review centers on the
role of histone modifications within the ventral tegmental area
(VTA)—one of the major sources of dopamine (DA) neurons
in the mesolimbic reward pathway; however, we acknowledge
there is an extensive role for other epigenetic mechanisms such as
DNA methylation and non-coding RNAs in psychiatric disorders
(Kuehner et al., 2019). Ultimately, this review will provide a
succinct and up-to-date summary of major findings on different
histone modifications observed in the VTA specifically following
exposure to ELS and drugs of abuse as environmental risks for
psychiatric disorders (Figure 1).

VTA Dysfunction in Psychiatric Illnesses
The VTA is a heterogeneous structure consisting of DA (Zhang
et al., 2010), GABAergic (Margolis et al., 2012), and glutamatergic
neurons (Yamaguchi et al., 2007; Hnasko et al., 2012) with DA
neurons representing the greatest percentage in total cellular
composition (Morales and Margolis, 2017). The VTA has been

FIGURE 1 | Adverse interactions with the environment, such as early life
stress (ELS) or exposure to drugs of abuse, can induce chromatin remodeling
as a result of histone modifications. ELS- and drug-induced histone
modifications can drive dopamine (DA) dysfunction within the ventral
tegmental area (VTA) which contributes to the psychopathology observed in
psychiatric illnesses.

traditionally studied within the context of reward- and motivated
learning in that exposure to naturally rewarding stimuli results
in DA release which encodes for reward prediction errors
that reinforce reward-related behaviors (D’Ardenne et al., 2008;
Schultz, 2010; Cohen et al., 2012; Steinberg et al., 2014; Keiflin
and Janak, 2015). However, in juxtaposition, VTA DA neurons
also regulate aversion and incentive salience (Tan et al., 2012;
Lammel et al., 2014; Root et al., 2018). The VTA receives various
excitatory inputs from structures such as the medial prefrontal
cortex (mPFC), lateral dorsal tegmental area (LDTg), lateral
hypothalamus (LH), bed nucleus of stria terminalis (BNST), and
the lateral habenula (LHb) (Au-Young et al., 1999; Tzschentke
and Schmidt, 2000; Georges and Aston-Jones, 2001; Omelchenko
and Sesack, 2005; Caille et al., 2009; Lammel et al., 2012;
Kempadoo et al., 2013; Brown and Shepard, 2016). Additionally,
VTA DA neurons receive inhibitory signals from GABAergic
neurons within the VTA (Margolis et al., 2012), as well as from the
rostromedial tegmental nucleus (Kaufling et al., 2009) (RMTg;
sometimes referred to as the “tail of the VTA”) and nucleus
accumbens (NAc) (Matsui et al., 2014; Edwards et al., 2017).
Stimulation of these GABAergic populations restrain the release
of DA from the VTA (Matsui and Williams, 2011; Poller et al.,
2011; van Zessen et al., 2012; Matsui et al., 2014), but these
GABAergic structures can also indirectly mediate the inhibitory
effects on DA signaling from glutamatergic projections, such
as the LHb (Ji and Shepard, 2007; Matsumoto and Hikosaka,
2007; Omelchenko et al., 2009; Brown et al., 2017). Of interest,
VTA GABAergic interneurons also receive direct GABAergic
inputs from the NAc which promote DA disinhibition (Xia
et al., 2011) and therefore can contribute to reward dysregulation
independent of DA signaling (Brown et al., 2012; Creed et al.,
2014). VTA glutamatergic and GABAergic synapses exhibit both
drug-induced and stress-induced plasticity (Nugent et al., 2007;
Niehaus et al., 2010; Bellone and Luscher, 2012; Polter and
Kauer, 2014; Authement et al., 2015; Langlois and Nugent, 2017;
Polter et al., 2018), demonstrating how synaptic dysfunction
at distinct, yet interconnected neural circuits, can dysregulate
VTA DA neuronal responses and promote the formation of
more habitual and compulsive stress-/drug-related behaviors.
Importantly, stress and drugs of abuse “hijack” the brain reward
circuitry and alter DA signaling from the VTA (Volkow and
Morales, 2015; Langlois and Nugent, 2017; Bellone et al., 2020;
Doyle and Mazei-Robison, 2020). One of the hallmarks of
depression is anhedonia (inability to perceive pleasure) which
can also result from aberrant VTA DA signaling that mediates
reward deficits (Heshmati and Russo, 2015; Belujon and Grace,
2017). Human imaging studies have proven useful in helping to
corroborate the role of DA dysregulation in psychiatric illnesses
and substance use disorders (SUDs) (Volkow et al., 2007; Koob
and Volkow, 2010; Shen et al., 2012). Altogether preclinical and
clinical data highlight that VTA DA dysfunction is a major
contributor in the pathophysiology of reward dysregulation and
psychiatric disorders.

Histone Modifications
Histone modifications dynamically regulate the chromatin
structure that influences the rate at which genes are accessed
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for transcription and subsequent translation. Transcriptional
regulation has been widely demonstrated as an important set
of processes that can both temporally and spatially define
expression patterns of critical proteins and substrates which
underlie important processes such as synaptic plasticity and
neuronal excitability (Jiang et al., 2008; Sultan and Day, 2011).
Specifically, alterations to chromatin structure are impacted
by chromatin association with histones, which are octomeric
proteins consisting of a combination of four different protein
subunits: H2A, H2B, H3, and H4 (Luger et al., 1997); together,
these form the nucleosome. These protein subunits have
amino acid residues (also referred to as histone tails) that
can be chemically modified by various enzymes (Allfrey and
Mirsky, 1964; Allfrey et al., 1964). Chemical modifications to
these amino acid residues affect how tightly associated DNA
chromatin is bound to the histone. Thus, the chromatin state
can either be more tightly associated or more relaxed with
respect to the physical distance from the histone. A multitude
of histone modifications have been documented including:
methylation (Greer and Shi, 2012), acetylation (Graff and Tsai,
2013), phosphorylation (Rossetto et al., 2012), palmitylation
(Wilson et al., 2011), polyADP-ribosylation (Martinez-Zamudio
and Ha, 2012), sumoylation (Shiio and Eisenman, 2003), and
ubiquitination (Zhang, 2003). Most recently, serotonylation
(Farrelly et al., 2019; Fu and Zhang, 2019; Zlotorynski, 2019)
and dopaminylation (Lepack et al., 2020) are two new types of
histone modifications that have been observed. The importance
of temporal regulation of the chromatin structure via histone
modifications cannot be underestimated due to its importance
in human development and the possible contribution of “histone
code” alteration in disease (Borrelli et al., 2008).

Acetylation
Histone acetylation is the most understood histone modification
in the CNS (Maze et al., 2013) and is dynamically regulated
by two different classes of enzymes: histone acetyltransferases
(HATs) and histone deacetylases (HDACs). HATs transfer acetyl
groups to histone tails which results in chromatin relaxation,
generally increasing transcription rates; HDACs remove acetyl
groups which increase the chromatin-histone interaction and
thus decrease the rate of transcription (Marmorstein and Zhou,
2014). The role of HATs in the VTA have not been extensively
studied; however, one interesting study highlighted that cocaine
abstinence promoted an increase in BDNF transcripts due to
histone acetylation by CREB binding protein (CBP) in the
VTA (Schmidt et al., 2012). Given this observation, further
investigation into the contribution of HATs in psychiatric
illnesses is warranted.

In contrast, HDACs have received the most attention due
to their role in learning and memory (Graff et al., 2014;
Mahgoub and Monteggia, 2014). Briefly, histone deacetylases can
be classified based on the co-factor required for their activation,
being either zinc-dependent or NAD-dependent (Haberland
et al., 2009). The zinc-dependent HDACs consist of class I
(HDAC1, 2, 3, and 8), class II (HDAC4, 5, 6, 7, 9, and 10), and
class IV (HDAC11). NAD-dependent HDACs are also referred to
as sirtuins (SIRT1, 2, 3, 4, 5, 6, 7, 8). Importantly, class I, II, and

IV HDACs are primarily neuronal specific with class I HDACs
residing in the nucleus and class II HDACs shuttling between
nucleus and cytoplasm (Broide et al., 2007).

Several studies from our lab and other groups have
corroborated the role of HDAC-mediated alterations to VTA
histone acetylation that contributes to VTA DA dysfunction.
Using a rat model of ELS (maternal deprivation, MD), we have
found that MD induces GABAergic metaplasticity at GABAergic
synapses onto VTA DA neurons that preferentially promotes
long-term depression (LTD) (Authement et al., 2015). Moreover,
MD-induced GABAergic synaptic dysfunction in VTA DA
neurons was associated with altered A-kinase anchoring protein
(AKAP150) signaling and decreased BDNF abundance possibly
through HDAC2-mediated histone modification (Shepard et al.,
2018). Specifically, HDAC2 was upregulated in VTA DA
neurons with concomitant decreases in acetylation at H3K9
in protein isolates harvested from VTA tissues. Additionally,
MD also increased VTA DA neuronal excitability involving
altered AKAP150 signaling (Shepard et al., 2020). Interestingly,
administration of CI-994 (a selective class I histone deacetylase
inhibitor, HDACi) recovered GABAergic plasticity, histone
acetylation, BDNF abundance, (Authement et al., 2015; Shepard
et al., 2018), and VTA DA excitability (Shepard et al., 2020).
Indeed, transcriptional regulation of the Bdnf gene through
histone modifications including deacetylation of H3K9 via
HDAC2 has also been reported (Chen et al., 2003; Wang et al.,
2014; Chen and Chen, 2017). This raises the possibility that
MD may lead to transcriptional repression of Bdnf gene in
VTA DA neurons through increased HDAC2 occupancy at Bdnf
promoters and histone H3K9 deacetylation in specific Bdnf gene
promoters. MD-induced dysregulation of BDNF signaling in
the VTA could potentially impact synaptic plasticity and VTA
DA excitability through its effects on AKAP150 complex. In
fact, BDNF signaling has previously been shown to regulate
proteasome-dependent synapse remodeling and synaptic protein
concentrations including the scaffold protein AKAP150 (Jia
et al., 2008). Recent evidence also suggests that the reduction of
AKAP150 from the postsynaptic density (PSD) via proteasomal
degradation results in endocytosis of GluA1-containing AMPA
receptors and promotion of LTD in mouse-cultured neurons
(Cheng et al., 2020). Therefore, it will be worthwhile to
investigate whether MD-induced epigenetic dysregulation of
BDNF expression through HDAC2-histone hypoacetylation
promotes degradation of AKAP150 at GABAergic synapses. This
can act in concert with MD-induced disruption of AKAP150-
PKA anchoring at GABAergic synapses (Shepard et al., 2018) to
increase endocytosis of GABAA receptors and induce AKAP150-
dependent LTD in VTA DA neurons (Dacher et al., 2013;
Authement et al., 2015).

Drugs of abuse have also been shown to induce changes in
histone acetylation (Renthal and Nestler, 2009), which possibly
contribute to the etiology and maintenance of SUDs. Studies
involving alcohol administration have also showed that alcohol
increases HDAC2 expression, decreases acetylation of H3K9 and
dysregulates GABAAR signaling in the VTA; the effects of alcohol
can be ameliorated with HDAC inhibition (Arora et al., 2013;
You et al., 2018). In fact, it has been documented that the
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metabolic breakdown of ethanol and production of acetate can
contribute to changes in histone acetylation (Mews et al., 2019).
Given that HDAC inhibition could attenuate alcohol-seeking
behaviors, this further builds on evidence that dysregulated
histone acetylation dynamics can contribute to maladaptive
behaviors (Jeanblanc et al., 2015; Simon-O’Brien et al., 2015);
however, whether these observations are exclusive to the VTA
or involve other brain structures have not been fully elucidated.
Morphine and its precursor, heroin, also have been observed to
alter histone acetylation within the VTA (Authement et al., 2016;
Xu et al., 2016). Moreover, acute exposure to morphine has been
shown to dysregulate VTA synaptic transmission. Interestingly,
HDACi treatment can normalize synaptic transmission and
histone hypoacetylation in the VTA that are associated with
acute morphine administration (Authement et al., 2016).
Collectively, these studies highlight that HDAC-mediated histone
modifications (such as histone hypoacetylation) within the VTA
can contribute to transcriptional changes in BDNF signaling,
AKAP150-dependent synaptic remodeling and stress- and drug-
induced synaptic plasticity in VTA neurons that are reversible.
Given that targeting HDACs with HDACi can ameliorate VTA
synaptic dysfunction and the associated stress- and drug-related
behaviors (Covington et al., 2009; Machado-Vieira et al., 2011),
the use of HDACi could prove useful in treating or preventing
neuropsychiatric disorders that stem from VTA dysfunction.

Methylation
Similar to histone acetylation, histone methylation is regulated
by two classes of enzymes: histone methyltransferases (HMTs)
and histone demethylases (HDMs). However, unlike histone
acetylation, the addition and/or removal of methyl groups from
histone tails by HMTs or HDMs, respectively, is not limited
to a single chemical alteration. In fact, histone tails can either
be mono-, di-, or tri-methylated depending on the amino
acid residue which can have differential effects on the rate of
transcription based on the methylation site (Black et al., 2012).
Methylation of histones is accomplished by three families of
HMTs that use S-adenosylmethionine (SAM) as the substrate that
transfers the methyl group(s): (Su(var)3-9, enhancer of Zeste,
trithorax)-domain containing proteins (Rea et al., 2000), DOT1-
like proteins (Nguyen and Zhang, 2011), and protein arginine
N-methyltransferases (PRMTs) (Di Lorenzo and Bedford, 2011).
Demethylation of histones is carried out by two classes: amine
oxidase LSD1 (KDM1) (Shi et al., 2004) and the Jumonji (JmjC)
domain protein family (Klose et al., 2006; Tsukada et al., 2006).
Given that histone acetylation can regulate VTA transcriptional
activity and subsequently physiology, it is not surprising that
alterations to histone methylation dynamics can also contribute
to VTA pathophysiology.

In one study, decreased levels of BDNF transcript from
VTA tissues were observed in samples obtained from both
postmortem heroin users and rodent models (Koo et al.,
2015). Chronic morphine was shown to increase trimethylation
at both histone-3-lysine-4 (H3K4me3) and histone-3-lysine-27
(H3K27me3) which was associated with the BDNF II promoter.
It was identified that H3K27me3 was mediated by the HMT
enhancer of zeste homolog 2 (EZH2) in that overexpression

and knockdown resulted in a decrease and increase of BDNF,
respectively. Additionally, the actions of EZH2 on histone
methylation impacted morphine’s behavioral effects. However,
only one study, the findings of this study, strongly suggests that
overactivity of HMTs might be involved with drugs of abuse, such
as morphine. Given that less is known about histone methylation,
more research is required to understand if these alterations
are specific to morphine or if they can extrapolate to other
conditions.

Dopaminylation
Most recently, novel modifications to histones have been
identified that can be modulated by neurotransmitters
themselves: specifically, serotonylation (Farrelly et al., 2019;
Fu and Zhang, 2019; Zlotorynski, 2019) and dopaminylation
(Lepack et al., 2020). These intriguing findings suggest how
dysregulated neurotransmission of monoamines, such as
serotonin (5-HT) or DA themselves, can impact the epigenome
to produce neuroadaptations involved in psychiatric diseases.
Postmortem analysis of VTA tissue from cocaine users identified
decreased dopaminylation of H3Q5 which was also observed
in a rodent model of cocaine administration immediately
after withdrawal; however, the levels of H3Q5 dopaminylation
increased during prolonged withdrawal (30 days) (Lepack et al.,
2020). This dopaminylation also was associated with altered
transcription and increased release of DA into the NAc. Taken
together, this novel finding opens up a previously unknown
mechanism involved in histone regulation and suggests that
monoamines themselves alters transcription of genes with
subsequent changes in VTA physiology and related behaviors.

CONCLUSION

Precision-based medicine and advancements in genetic
sequencing technologies have rapidly changed how we
understand disease states, including psychiatric disorders.
It has now become more greatly accepted that there is a genetic
basis to many neuropsychiatric conditions. More importantly,
the role of environmental modulation of epigenetic processes
is being established through human and animal studies. This
also poses an important and interesting question as to whether
epigenetic alterations can be inherited (Heard and Martienssen,
2014). Transgenerational epigenetic inheritance has been
documented in the case of DNA methylation (Sen et al., 2015),
but not yet in the case of histone modifications. This observation
begs the question as to whether epigenetic modifications need to
be targeted during a critical period or can be possibly used pre-
emptively to prevent adaptations that will result in psychiatric
illnesses later in life. Thus, targeting enzymes mediating histone
modifications should be further investigated and represent new
pharmacological targets. In fact, certain compounds such as
HDACi are already used in the treatment of cancer (West and
Johnstone, 2014) and are being considered for use in psychiatric
conditions (Covington et al., 2009; Machado-Vieira et al., 2011).
One of the most interesting recent discoveries has been the
possible contribution of serotonylation (Farrelly et al., 2019;
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Fu and Zhang, 2019; Zlotorynski, 2019) and dopaminylation
(Lepack et al., 2020) to histone modifications—two previously
unknown epigenetic mechanisms. These two new mechanisms
of histone modification alone add a new layer of complexity
when studying epigenetic contributions to psychiatric disorders,
but also give exciting and new targets for the development of
therapies.

Moreover, one of the largest challenges in assessing epigenetic
alterations, such as histone modifications, is understanding
how they affect the CNS with region- and cell-type and
locus-specificity. Previous experimental approaches of either
transcriptional activation or suppression make it difficult to
dissect contributions of epigenetic alterations to physiology
and behavior due to artificial changes in gene expression
that are not physiological (Yim et al., 2020). The advent of
new epigenome-editing tools offer opportunities for precise
locus-specific post-translational histone modifications including
histone acetylation and histone methylation at specific genes
in a single cell type/brain region (Hamilton et al., 2018b; Xu
and Heller, 2019; Yim et al., 2020). The emerging and exciting
field of neuroepigenetic editing tools allows for interrogation of
epigenetic modifications in discreet brain regions and provides
the opportunity to study causal relationships between gene
transcriptional activity and the subsequent neural plasticity
and behavior. For example, drug-induced activation of Fosb
gene through increased histone acetylation (Levine et al., 2005)
and decreased histone methylation (Maze et al., 2010) at its
promoter has been observed, although the functional relevance
of these correlated global histone post-translational modifications
to drug-related behavior has been limited. To overcome this
limitation, locus-specific targeting of the Fosb promoter with
engineered transcription factors fused to zinc-finger proteins
(ZFPs) facilitated bidirectional regulation of 1FosB expression
in mouse NAc neurons. Upregulation and downregulation
was achieved using the transcriptional activator, p65, which
promoted histone acetylation at H3K9/14 and the transcriptional
repressor, G9a (promoting histone methylation at H3 lysine
9 dimethylation, H3K9me2) specifically at Fosb, respectively.
Additionally, this bidirectional regulation of Fosb gene expression
through these locus-specific histone manipulations was sufficient
to induce opposing cocaine-related behaviors. Furthermore,
they provided a direct causal link between H3K9me2-mediated
reduction in Fosb/1Fosb expression in mouse NAc and the
promotion of depression- and anxiety-like behaviors after social
stress (Heller et al., 2014). Similarly, in another study, the
same viral-epigenetic approach was employed to induce these

complementary histone modifications at the cyclin-dependent
kinase 5 (Cdk5) locus in mouse NAc and found that Cdk5-
targeted H3K9/14 acetylation promoted Cdk5 gene expression
and cocaine-induced locomotor behavior and resilience to
social stress while Cdk5-targeted H3K9me2 induced Cdk5 gene
repression and suppressed cocaine-related behaviors (Heller
et al., 2016). Cre-dependent cell type-specific expression of
Fosb-ZFPs in NAc D1- versus D2-medium spiny neurons
(MSNs) allowed for cell-specific interrogations and provided
compelling evidence for the opposite roles of Fosb-targeted
histone acetylation and methylation in D1 and D2 MSNs in
social defeat stress behavior (Hamilton et al., 2018a). This study
also further highlights the necessity to consider differences in
cell type-specific alterations to epigenetic modifications and their
relationship with neurophysiology and behavior.

Given the robust regulatory role of HDAC-mediated histone
modifications in VTA DA function, future epigenetic research
should also employ these invaluable in vivo neuroepigenetic
editing approaches for studying the causal relationships between
an epigenetic modification at a single locus induced by stress
or drugs of abuse within the specific neuronal populations
of the VTA to its downstream functional outcomes at the
transcriptional, cellular, circuit and behavioral levels. This
locus- and cell type-specific targeted epigenome mapping and
manipulation could help create more specific interventions
that have more reliable, long-lasting, and efficacious treatment
options for patients with psychiatric disease.
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