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The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that
promotes cell responses to small molecules derived from the diet, microorganisms,
metabolism and pollutants. The AhR signal regulates many basic cellular processes,
including cell cycle progression, adhesion, migration, apoptosis and cell proliferation.
Many studies have shown that AhR is associated with chronic kidney disease (CKD)
and its complications. This article reviews the current knowledge about the role of AhR in
CKD, showing that AhR mediates CKD complications, including cardiovascular disease,
anemia, bone disorders, cognitive dysfunction and malnutrition, and that it influences
drug metabolism in individuals with CKD. AhR enhances the intestinal barrier function to
reduce the harmful effects of uremic toxins. Therefore, understanding the complex roles
of AhR during CKD is important to be able to target this transcription factor safely and
effectively for CKD prevention and treatment.

Keywords: aryl hydrocarbon receptor, chronic kidney disease, tryptophan metabolism, uremic toxin, CKD
complications, intestine homeostasis

INTRODUCTION

Chronic kidney disease (CKD) has become an emerging global disease during the past decade. The
all-age prevalence of CKD increased 29.3% worldwide from 1990 to 2017, involving 697.5 million
cases in 2017 (representing a global prevalence of 9.1%) (Bikbov et al., 2020). CKD results in
irreversible kidney structural and functional alterations that lead to end-stage renal disease, with
patients ultimately requiring dialysis or renal transplantation.

Chronic kidney disease is characterized by the accumulation of a mixture of uremic
toxins/solutes that persist even after standard dialysis (Vanholder and Glorieux, 2014; Sirich, 2017).
These toxins are divided into three categories: small soluble compounds, middle molecules and
protein-bound molecules (Duranton et al., 2012). Tryptophan-derived toxins are of particular
interest because they exhibit cardiovascular toxicity and are ligands of the aryl hydrocarbon
receptor (AhR) (Heath-Pagliuso et al., 1998; Schroeder et al., 2010). Multiple sensors detect
changes in the cellular milieu to adapt to toxic environments and generate responses to molecular
environment changes due to diet, symbiotic microbiome and host metabolism factors. One of these
sensors is AhR, a ligand-activated transcription factor involved in various cellular processes, such as
cell cycle, epithelial barrier function and neurological signaling, as well as responses to antioxidants
and xenobiotics (Murray et al., 2014).

Aryl hydrocarbon receptor regulation and its role during CKD has gained interest as a potential
source of biological processes that may guide the development of new therapeutic interventions.
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In this review, we summarize the current knowledge on the role
of AhR in CKD and/or its complications, and we address the
potential role of AhR as a therapeutic target.

AHR SIGNALING AND ITS LIGANDS

AhR Signaling Pathway
Aryl hydrocarbon receptor belongs to the periodic-AhR nuclear
translocator-single-minded protein (PER-ARNT-SIM [PAS])
superfamily. The PAS domain senses both endogenous factors
(such as cellular metabolites) and exogenous factors (such as
environmental toxins) (McIntosh et al., 2010).

As shown in Figure 1, there are two AhR signaling pathways.
One is the xenobiotic-responsive element (XRE)-dependent
control of gene expression by AhR, also called canonical AhR
signaling. Prior to AhR activation, AhR is inactive as part of a
protein complex that consists of two molecules of heat-shock
protein 90, one X-associated protein 2 (also known as an AhR-
interacting protein), one co-chaperon p23 and the protein kinase
Sarcoma (SRC) in the cytoplasm. The AhR chaperone complex
stabilizes AhR in the cytoplasm and keeps it in a conformation
that has high affinity for its ligands (Pongratz et al., 1992). Once a
ligand binds to AhR, the molecule undergoes a conformational
change to expose its N-terminal nuclear localization sequence,
facilitating translocation of the liganded AhR protein complex
into the nucleus. In the nucleus, AhR binds to ARNT (also
known as HIF-1β) through its PAS domain, forming a ligand-
bound AhR-ARNT dimer. The dimer gets recruited to a DNA-
specific sequence (referred to as a DRE or XRE for a dioxin-
or xenobiotic-responsive element) located within the promoters
of target genes, to promote transcription of a wide variety of
genes, such as cytochrome P450, family 1, member 1A (Cyp1A1);
cytochrome P450, family 1, member 2A; cytochrome P450, family
1, subfamily B; AhR repressor (AhRR) and cyclooxygenase-2
(Denison and Nagy, 2003). AhR-dependent gene transcription
ends upon separation of the AhR-ARNT complex from the DRE.
The N-terminal nuclear export sequence mediates AhR export
from the nucleus into the cytoplasm, where ubiquitin-mediated
AhR proteasome degradation occurs (Pollenz, 2002). The other
AhR signaling pathway is non-canonical AhR signaling, which
controls AhR gene expression through non-XRE DNA-response
elements. AhR can also interact with additional transcription
factors such as nuclear factor-κB (NF-κB), programmed death
ligand 1, signal transducer and activator of transcription (STAT)
and nuclear factor-erythroid-2-related factor 2 by binding to
them and modulating the expression of their target genes through
a non-genomic pathway that does not require ARNT (Kimura
et al., 2008; Puga et al., 2009; Wakamatsu et al., 2018; Singh
et al., 2019; Wang et al., 2019). Moreover, AhR functions as an
E3 ubiquitin ligase, regulating the half-life of other transcription
factors. For example, indoxyl sulphate (IS) directly activates
AhR, extending the half-life of tissue factor (TF) by inhibiting
its ubiquitination in vascular smooth muscle cells; TF is a
crucial mediator of injury-related thrombosis (Shivanna et al.,
2016). In addition, AhR activation triggers phosphorylation
cascades driven by SRC kinase released from the AhR chaperone

complex. For instance, SRC phosphorylates a broad variety of
target proteins including indoleamine 2,3-dioxygenase 1 (IDO1)
(Bessede et al., 2014), which promotes tryptophan transformation
into kynurenine, a ligand of AhR.

AhR Ligands
Aryl hydrocarbon receptor was discovered to be a receptor
binding to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (also
known as dioxin) with high affinity. The receptor can be
hyperactivated in a sustained manner, resulting in numerous
toxicological outcomes. In addition, many commercial and
consumer products, vegetables, fruits, and spices have exhibited
AhR activation potential (Jeuken et al., 2003; Zhao et al., 2013)
and can facilitate the induction or repression of the expression
of a range of genes, thereby regulating a diverse spectrum of
biological and toxic effects. Environment pollutants and myriad
endogenous molecules such as microbial metabolites (e.g., indolic
solutes) and naturally occurring flavonoids (e.g., resveratrol
and quercetin) are also AhR ligand candidates (Murray et al.,
2014; Gutierrez-Vazquez and Quintana, 2018; Rothhammer and
Quintana, 2019; Table 1).

For patients with CKD, the most important AhR ligands
are uremic toxins, especially those derived from tryptophan
metabolism. This essential aromatic amino acid is a biosynthetic
precursor of a large number of microbial and host metabolites
(Alkhalaf and Ryan, 2015). Tryptophan metabolism follows three
major pathways in the gastrointestinal tract: (1) the indolic
pathway in intestinal microorganisms that directly transforms
tryptophan into several AhR ligand molecules, such as indole-3-
acid-acetic (IAA), indole-3-aldehyde, indole-3-acetaldehyde, and
indole-3-propionic acid (Zelante et al., 2013; Hubbard et al.,
2015; Alexeev et al., 2018); (2) the kynurenine pathway via
the rate-limiting enzyme IDO1 that produces kynurenine and
downstream products such as quinolinic acid and kynurenic
acid (Clarke et al., 2012; Cervenka et al., 2017; Kennedy et al.,
2017) and (3) the serotonin pathway in enterochromaffin cells
that involves tryptophan hydroxylase-1 (Yano et al., 2015).
Some tryptophan metabolites such as IS, IAA and kynurenine
represent both important uremic toxins and potent AhR ligands.
We will summarize the associations between AhR and uremic
toxins in CKD below.

ACTIVATED AHR AGGRAVATES RENAL
DAMAGE

Patients with CKD are exposed to a variety of uremic toxins,
which are agonists of AhR. Early Lu et al. (2006) provided
evidence for a positive correlation between renal AhR expression
and CKD severity, suggesting that AhR activation has a
pathogenic effect in both male and female rats that have
undergone nephrectomy. Compared with healthy controls, CKD
patients and 5/6 of nephrectomy mice exhibited increased serum
AhR-activating potential, which was strongly correlated with
IS concentration and estimated glomerular filtration rate, and
which upregulated expression of the AhR target genes AhRR and
Cyp1A1 (Dou et al., 2018). Kim et al. (2020) reported higher

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 December 2020 | Volume 8 | Article 589752

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-589752 December 1, 2020 Time: 20:29 # 3

Mo et al. AhR Effects During CKD

FIGURE 1 | Canonical and non-canonical signaling pathways of AhR. The upper part of the figure is a canonical AhR signal pathway. Prior to AhR activation, AhR is
inactive as part of a protein complex that consists of two molecules of HSP90, XAP2, p23 and the protein kinase SRC in the cytoplasm. Once a ligand binds to AhR,
the molecule undergoes a conformational change to expose its N-terminal nuclear localization sequence, facilitating translocation of the liganded AhR protein
complex into the nucleus. In the nucleus, AhR binds to ARNT through its PAS domain, forming a ligand-bound AhR-ARNT dimer. The dimer gets recruited to a
DNA-specific sequence located within the promoters of target genes, to promote transcription of a wide variety of genes, such as Cyp1A1, CyP1B1, AhRR, and
COX-2. AhR activity is strictly controlled by three different negative feedback loops, including: (i) degradation of AhR by proteasome, (ii) clearance of ligand by
metabolic pathway, (iii) destruction of AhR/ARNT complex by AhRR. The lower part of figure shows the non-canonical AhR signaling: (i) AhR can also interact with
NF-κB, Nrf2, PD-L1 and STAT proteins or other transcription factors to bind their specific binding sites and consequently modulate the activity and expression of
their target genes. (ii) AhR functions as an E3 ubiquitin ligase to regulate the half-life of other transcription factors. (iii) AhR activation triggers phosphorylation
cascades driven by SRC kinase when it releases from the AhR chaperone complex. AhR, aryl hydrocarbon receptor; AhRR, AhR repressor; ARNT, aryl hydrocarbon
receptor nuclear translocator; COX-2, cyclooxygenase-2; Cyp1A1, cytochrome P450; family 1, member 1A; Cyp1A2, cytochrome P450; family 1, member 2A;
Cyp1B1, cytochrome P450; family 1, sub family B; DRE or XRE, dioxin-or xenobiotic-responsive element; HSP90, heat-shock protein 90; NF-κB, nuclear factor-κB;
Nrf2, nuclear factor-erythroid-2-related factor 2; P23, co-chaperon p23; PD-L1, programmed death ligand 1; STAT, signal transducer and activator of transcription;
XAP2, X-associated protein 2.

AhR transactivating (AhRT) activity in patients with CKD than in
controls, and they showed that peritoneal dialysis treatment was
more effective at reducing this AhRT activity than haemodialysis.

Aryl hydrocarbon receptor signaling regulates many
fundamental cellular processes, such as cell cycle progression,
apoptosis and cell proliferation by regulating P53, FasR, Bcl-2
and cell cycle kinases (Zaher et al., 1998; Mohammadi et al.,
2017). Exposure to adenine and IS increases AhR activity in the
periglomerular region as well as in proximal and distal renal
tubules, leading to renal fibrosis (Walker et al., 2020). AhR
activated by IS induces podocyte injury, progressive glomerular
damage and a pro-inflammatory phenotype in vitro and in vivo
(Ichii et al., 2014). IS downregulates the expression of the
Mas receptor, which is associated with the inhibition of the
renin-angiotensin system, via the organic anion transporter
3/AhR/STAT3 pathway to upregulate TGF-β in proximal tubular
cells, thereby aggravating CKD (Ng et al., 2014). A possible
connection between AhR and renal fibrosis has been further
supported by the association between indole solutes and renal

fibrosis (Mutsaers et al., 2015b), which may be mediated
by AhR signaling.

In patients with diabetes mellitus, AhRT activity has
been positively correlated with the progression of diabetic
nephropathy (DN) and the severity of renal insufficiency (Kim
et al., 2013). Lee et al. (2016) investigated the role of AhR in
the pathophysiological processes of DN using AhR-knockout and
pharmacological-inhibitor α-naphthoflavone models, and they
found that AhR mediated renal oxidative stress in a diabetic
mouse model, resulting in macrophage infiltration, extracellular
matrix accumulation and mesangial cell activation.

Translocation of microbial antigens due to gut barrier
breakdown has been associated with gut microbiota and the
presence of systemic lupus erythematosus (SLE) and lupus
nephritis in animal and human studies. Clinical studies have
shown reduced gut microbiota diversity in patients with SLE, and
gut-derived pathobionts including Enterococcus gallinarum have
been detected in the liver (Manfredo Vieira et al., 2018). Animal
studies have shown that gut-derived E. gallinarum can reach
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TABLE 1 | exogenous and endogenous AhR ligands.

Ligand Biochemical pathway

Xenobiotic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) Halogenated aromatic hydrocarbons

3-methylcholanthrene

Benzanthracenes

Benzoflavones

Benzo[a]pyrene

Biphenyls

Dibenzofurans

Polyaromatic hydrocarbons

Leflutamide Pharmaceuticals

Tranilast

Omeprazole

6,2′,4′,-trimethoxyflavone Compound from chemical library

CH-223191

GNF351

StemRegenin 1 (SR1)

Indirubin Phytochemicals from plants

Indigo

Diet Galangin Flavonoids

Quercetin

Kaempferol

Resveratrol Polyphenol

Indole-3-acetonitrile Dietary metabolite of cruciferous vegetables

Indole-3-carbinole

Indolo[3,2-b]carbazole (ICZ)

3,3′-diindolylmethane (DIM)

Tryptophan metabolites 3-Methylindole (Skatole) Microbiota metabolism

Indole-3-acetaldehyde

Indole-3 acetic acid (IAA)

Indole-3-aldehyde (IAld)

Tryptamine (TA)

5-hydroxy-tryptophan (5HTP) Host metabolism

Cinnabarinic acid (CA)

Kynurenic acid (KA)

Kynurenine (Kyn)

Xanthurenic acid

Indoxyl sulfate (IS) Microbiota and host metabolism

6-formylindolo[3,2-b]carbazole (FICZ) Photo-oxidation

Other metabolites Bilirubin Haem metabolism

Biliverdin

Lipoxin 4A Arachidonic Acid Metabolism

Prostaglandin PGG2

Hydroxyeicosatrienoic acid ([12(R)-HETE])

1,4-dihydroxy-2-naphtoic acid Microbiota metabolism

3-methylindole

7-ketocholesterol

Indirubin

Malassezin

Trypthantrin

the liver and induce the development of lupus autoantibodies,
partly via activation of the AhR/CYP1A1 pathway to trigger
Th17 and T follicular helper cell activation, crucial steps for
the production of systemic autoantibodies including anti-dsDNA
antibodies (Manfredo Vieira et al., 2018).

Therefore, AhR may be a therapeutic target in CKD. In
fact, resveratrol, a natural AhR antagonist, inhibits proteinuria,
hypoalbuminemia and hyperlipidemia in nephritic rats (Nihei
et al., 2001). Atrazine exposure has been shown to cause
environmental nephrosis via direct kidney injury, whereas
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supplementary lycopenes provide significant protection against
atrazine-induced renal injury and environmental nephrosis via
their inhibition of the activation of AhR and the expression
of cytochrome P450 isoforms (Xia et al., 2018). On the other
hand, ARNT, a transcriptional co-activator of AhR, has been
implicated in renal fibrosis and is sought as a therapeutic target
in CKD; strong experimental support exists for a mechanistic
model in which FK506 induces renoprotection (Tampe et al.,
2018; Haase, 2019).

AHR ACTIVATION MEDIATES VARIOUS
COMPLICATIONS IN INDIVIDUALS WITH
CKD

AhR and Cardiovascular Disease
Cardiovascular disease is a major cause of mortality in patients
with CKD. AhR is an important receptor for various toxins and
can activate pro-thrombotic and pro-inflammatory pathways;
thus, there is a close association between the accumulation
of uremic toxins and the cardiovascular complications of
CKD (Vanholder et al., 2016). In fact, even under non-
uremic conditions, AhR activation is associated with increased
cardiovascular risks (Sallee et al., 2014). Accordingly, individuals
exposed to AhR agonists are prone to increased cardiovascular
risks (Humblet et al., 2008). For example, individuals exposed
to the TCDD compound in Agent Orange during the Vietnam
War have been shown to have associated cardiovascular
complications ranging from coronary heart disease to stroke
(Lowenstein, 2014).

The accumulation of uremic toxins has effects similar
to those of AhR antagonists, making patients with CKD
more prone to cardiovascular disease through a series of
possible mechanisms. Ito et al. (2016) proved that AhR
activated by IS can stimulate the transcriptional activity of
activator protein-1 and induce the expression of E-selectin
in vascular endothelial cells, thereby increasing the level
of vascular inflammation and leukocyte adhesion. Assefa
et al. (2019) showed that IS-activated AhR upregulates the
activity of SRC to mediate the activity of vascular endothelial
cadherin, thereby increasing endothelium permeability and
promoting atherosclerosis. In human hepatoma HepG2 cells,
IS-induced AhR activation inhibits the expression of fetuin-
A, a liver-derived circulating protein that effectively suppresses
calcification. Therefore, IS-activated AhR may increase the
incidence of vascular calcification and cardiovascular mortality
(Ochi et al., 2015). In human umbilical vein endothelial cells,
AhR also mediates IS-induced cellular senescence (Koizumi
et al., 2014; Eckers et al., 2016) and stimulates the expression
of monocyte chemoattractant protein-1, a chemokine recruiting
monocytes from the bloodstream into the subendothelial space
to participate in the early stages of atherosclerosis (Watanabe
et al., 2013). AhR further plays a key role during platelet
production (Lindsey and Papoutsakis, 2011; Strassel et al., 2016)
and function (Lindsey et al., 2014). AhR agonists enhance
platelet aggregation by activating the AhR/p38MAPK pathway

in platelets (Pombo et al., 2015). In addition, activated AhR
increases the expression and activity of TF to induce a
procoagulant state in vascular smooth muscle and endothelial
cells (Gondouin et al., 2013; Shivanna et al., 2016); moreover,
it enhances the activation of the pro-inflammatory enzyme
cyclooxygenase-2 in endothelial cells (Dou et al., 2015). Vascular
dysfunction caused by AhR activation may lead to atherosclerotic
thrombosis, thus increasing the risk of myocardial infarction,
stroke and peripheral artery disease in patients with CKD
(Vanholder et al., 2016).

These summarized mechanisms of AhR activation in CKD
support efforts to target AhR and limit the detrimental effects of
uremic toxins on vascular outcomes. AhR has been considered
a therapeutic target for improving the management of the
cardiovascular complications of CKD (Shivanna et al., 2016).
In Gondouin’s study, IS and IAA elevated the production of
TF in peripheral blood mononuclear and endothelial cells after
AhR activation, generating a “dioxin-like” effect (Gondouin et al.,
2013). Addi et al. (2019) confirmed that CH223191, an AhR-
specific antagonist, could decrease the expression of TF in a
process mediated by IAA in human endothelial cells. Meanwhile,
Assefa et al. (2019) showed that resveratrol inhibits the activation
of SRC and downregulates the activity and permeability of the
vascular endothelium by blocking the IS/AhR pathway, thereby
provoking protective effects.

AhR and Anemia
Renal anemia is common in CKD patients and is an important
risk factor for CKD progression and mortality (Mohanram et al.,
2004; Levin et al., 2006). The prevalent cause of renal anemia
is the insufficient production of erythropoietin (EPO) that
results from renal interstitial fibrosis (Souma et al., 2015). The
transcription of EPO mRNA is mediated by a hypoxia-inducible
transcription factor (HIF) formed by HIF-αs (including HIF-1α

and HIF-2α) and ARNT. The expression of HIF-αs is strictly
regulated by the concentration of cellular oxygen molecules. HIF-
α degradation is inhibited under hypoxic conditions, and the
resulting nuclear accumulation of HIF-α and its dimerization
with ARNT promotes the expression of target genes including
EPO. Because both HIF and AhR are members of the PAS-
domain protein family and contain basic helix loops, AhR
competes with HIF-α subunits to combine with ARNT and
form heterodimeric transcription factor complexes in the nucleus
(Soshilov and Denison, 2008). In individuals with CKD, uremic
toxins elevate AhR levels and may provoke the accumulation
of AhR-ARNT complexes while inhibiting the formation of
HIF-α-ARNT complexes in the nucleus, leading to abnormal
intracellular HIF signal transduction and the transition of renal
interstitial EPO-producing tissues into a pathological fibrotic
state associated with impaired EPO production capacity (Souma
et al., 2013, 2016; Mascanfroni et al., 2015).

Asai et al. (2016), first reported that IS suppresses hypoxic HIF
activation and inhibits the production of EPO in rats and HepG2
cells, confirming the presence of IS-impaired HIF signaling due
to AhR activation in renal anemia. Later, the same researchers
found that indole glucuronic acid inhibits the expression of HIF-
dependent EPO by activating AhR, whereas the drug antagonist
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CH-223191 blocks AhR and abolishes the inhibiting effect of
indole glucuronide on HIF (Asai et al., 2018).

Renal anemia has the same signs as iron deficiency anemia,
which is caused by impaired iron utilization. Hepcidin, a liver-
secreted protein, is essential for iron metabolism regulation
(Park et al., 2001); it induces the internalization and degradation
of a cellular iron exporter called ferroportin that regulates
intracellular iron efflux (Nemeth et al., 2004). Therefore, the
increased hepcidin levels associated with CKD cause duodenal
iron absorption disorder and intracellular iron retention, which
aggravate the functional iron deficiency state in CKD. Hamano
et al. (2018) showed that the expression of hepcidin is increased
by IS in a dose-dependent manner and suppressed by AhR
silencing in HepG2 cells.

AhR and Bone Disorders
Chronic kidney disease mineral and bone disorders are
generally characterized by changes in bone metabolism.
These systemic disorders are common in patients with
CKD and are characterized by calcium and phosphorus
abnormalities, vitamin D deficiency, vascular calcification,
secondary hyperparathyroidism and bone abnormalities (Kidney
Disease: Improving Global Outcomes (KDIGO) CKD-MBD
Update Work Group, 2017).

Vidal et al. (2015) observed that the amount of tryptophan
degraded through the kynurenine pathway increases significantly
during the formation of osteoblasts and that osteoblast formation
is inhibited when IDO1, the enzyme that stimulates the
conversion of tryptophan to kynurenine, is blocked. Data
published by Refaey et al. (2017) showed that intragastric or
intraperitoneal kynurenine administration impairs osteoblast
differentiation and increases osteoclast absorption to accelerate
age-related bone loss.

Aryl hydrocarbon receptor is a cytoplasmic receptor of several
low-molecular-weight exogenous and endogenous molecules
that can control bone homeostasis by regulating osteoclast
differentiation through the RANKL/AhR/c-Fos signaling axis
(Izawa et al., 2016). Exposure to TCDD (the most widely known
exogenous AhR ligand) weakens the mechanical strength of bone,
hardens the bone matrix and makes the cortical bone thinner
and looser in wild-type mice, but these effects are diminished
in AhR-knockout mice (Herlin et al., 2013). In addition, AhR-
knockout mice exhibit decreased bone resorption and increased
bone mass. Kynurenine has been identified as an endogenous
AhR agonist (Opitz et al., 2011). Kalaska et al. (2017) observed
that the level of peripheral kynurenine is negatively correlated
with bone biomechanical variables, bone geometric variables and
bone mineral density, and that high peripheral kynurenine levels
cause pathological changes in bone microstructure and strength
through the AhR pathway in CKD rats that had undergone
subtotal nephrectomy.

AhR and Cognitive Dysfunction
The severity of cognitive impairment varies from mild cognitive
impairment to severe dementia and is characterized by the
loss of independence in daily activities (American Psychiatric
Association, 2013). Cognitive impairment may already be present

during the early stages of CKD, and it becomes more severe as
CKD progresses (Bugnicourt et al., 2013; Brodski et al., 2019). In
a 6-year longitudinal study conducted in the general population,
the impact of CKD on the risk of mild cognitive impairment and
dementia exceeded the impacts of long-term use of anti-anxiety
drugs, stroke or genetic factors (Lipnicki et al., 2017).

Factors such as white matter damage, asymptomatic
infarction and microhaemorrhages may be involved in cognitive
impairment (Bugnicourt et al., 2013), but vascular injury is the
basic factor underlying all these pathological manifestations. AhR
is thought to play an essential role in the vascular dysfunctions
seen in patients with cardiovascular disease.

Aryl hydrocarbon receptor is expressed in the cerebral cortex,
hippocampus, cerebellum and other sites of the brain (Lin et al.,
2008), and the receptor is thought to be associated with cognitive
dysfunction caused by oxidative stress or excitotoxicity (Kim
and Yang, 2005; Williamson et al., 2005). Walker et al. (2020)
found that activated AhR in brain microvascular endothelial
cells in CKD models induced by adenine and IS treatment
(in an uremic environment) plays a role in the biology and
pathology of central nervous system endothelium. An increase
in the production of reactive oxygen species (ROS) aggravates
inflammation in patients with neurodegenerative diseases (Hsieh
and Yang, 2013). In Adesso’s study, increased expression of AhR
in primary astrocytes and mixed glial cells was found after IS
treatment; in addition, ROS production was significantly reduced
after the addition of an AhR inhibitor, showing that the AhR/ROS
pathway is activated by IS in the central nervous system of
patients with CKD (Adesso et al., 2018).

AhR and Protein Energy Waste (PEW)
Protein energy waste (PEW) is a common complication
with adverse consequences in patients with CKD. PEW is
characterized by the gradual loss of protein and energy fuels
stored in the body (i.e., body muscle and fat mass) (Ikizler et al.,
2013). The loss of body muscle mass is caused by many factors,
including insufficient energy and protein intake, protein loss in
the urine and chronic inflammation (Carrero et al., 2013).

Enoki et al. (2016) demonstrated that IS activates the
AhR/NADPH oxidase/NF-κB pathway, leading to increased ROS
production, which then triggers the production of inflammatory
markers and increases the expression of atrogin-1, myostatin,
IL-6 and TNF-α to cause muscle atrophy. AhR inhibitors (e.g.,
CH-223191) and AhR-siRNA significantly inhibit the production
of inflammatory cytokines (ROS and atrophy-related genes in
C2C12 myoblasts), suggesting that the activation of AhR in cells
is associated with muscle atrophy (Enoki et al., 2016).

AhR and Drug Metabolism
Patients with CKD have high rates of complications and
comorbidities. Thus, they require the prescription of numerous
medications. However, the pharmacokinetics of drugs in these
patients are changed by the uremic environment, making drug
dosage adjustments challenging and drug-related adverse events
frequent. However, the cellular and molecular mechanisms
involved remain unclear. There are more than 200 P450 proteins,
and AhR signaling regulates three of them (CYP1B1, CYP1A1,
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FIGURE 2 | The negative effect of AhR poses on CKD individuals. Active AhR aggravates renal damage, mediates various CKD complications, including
cardiovascular disease, anemia, bone disorders, cognitive dysfunction, protein energy wasting, and influences drug metabolism. AhR, aryl hydrocarbon receptor;
Cyp1A1, cytochrome P450; family 1, member 1A; EPO, erythropoietin; HIF, hypoxia inducible factor; ROS, reactive oxygen species.

and CYP1A2) (Fujii-Kuriyama and Mimura, 2005). Mutsaers
et al. (2015a) showed that uremic toxins reduce the activity of
some drug transporters. Santana et al. (2018) proved that IS affects
the blood levels of cyclosporine by regulating transport proteins
such as P-glycoprotein through AhR activation. Therefore, AhR
seems to be associated with the altered drug clearance seen
in CKD. The regulation of AhR activity may be a target for
improving drug clearance in patients with CKD.

AHR ENHANCES INTESTINAL BARRIER
FUNCTION

As discussed above, AhR mediates renal damage and CKD
complications and seems to be harmful in CKD patients
(Figure 2). However, AhR is thought to play an active role
in intestinal homeostasis (Figure 3). AhR was found to be
expressed in almost all colonic muscularis layers, whereas it

was absent from the duodenal and jejunal muscular layers.
At the same time, only relatively weak signals were detected
in ileum terminal neurons, suggesting that AhR expression
in intestinal neurons is synchronous with the intestinal
microbial load (Obata et al., 2020). AhR influences different
aspects of intestinal barrier function. First, AhR is considered
important for specific monitoring pathways of the intestinal
nervous system that regulate intestinal responses to colonization,
the maintenance of intestinal functions and host defenses
(Obata et al., 2020). Therefore, pharmacological or dietary
interventions that modulate AhR activity in the cellular circuitry
to control intestinal peristalsis offer a realistic strategy for
the management of conditions associated with gut dysmotility,
including the constipation due to slow colonic transit common
in patients with CKD.

In addition to the role of AhR in neurogenic motility,
AhR-dependent transcriptional procedures are also essential
for the barrier function of intestinal epithelial cells (IECs)
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FIGURE 3 | AhR enhances intestinal barrier function. (i) AhR is identified as fulcrum of an enteric nervous system-specific surveillance pathway that regulates
intestinal peristalsis in response to microbial colonization, maintaining gut homeostasis and host defense. (ii) AHR in ISC stabilizes gut epithelial barrier function and
controls the regeneration of gut ILEs. (iii) AhR upregulates epithelial tight junction protein the tight junction between IECs. (iv) AhR is expressed by many adaptive and
innate immune cells in the lamina propria, including macrophages, mast cells, eosinophils, DCs, B cells and T cells, AhR signaling is pivotal to the regulation of
mucosal intestinal immune responses. AhR, aryl hydrocarbon receptor; AMPs, anti-microbial peptides; RELM-β, resistin-like molecule β; Reg3-γ, regenerating Islet
Derived Protein-γ; Reg3-β, regenerating Islet Derived Protein-β.

(Metidji et al., 2018; Rothhammer and Quintana, 2019). AhR
in intestinal stem cells stabilizes intestinal epithelial barrier
function and controls the regeneration of IECs. Lack of IEC-
specific AhR results in the failure to protect against Citrobacter
rodentium infection due to reduced quantities of mucus-
producing goblet cells (Metidji et al., 2018). AhR activation
by dietary ligands may restore barrier homeostasis and protect
the stem cell niche. Furthermore, AhR can upregulate epithelial
tight junctions. 6-formylindolo[3,2-b]carbazole (FICZ), a high-
affinity endogenous ligand of AhR, prevents the decrease of
ZO-1, occludin and claudin-1 to modulate intestinal epithelial
barrier function in dextran sulfate sodium-induced IECs (Yu
et al., 2018). A metabolite of Lactobacillus, indole-3-aldehyde,
stimulates lamina propria lymphocytes to secrete AhR/IL-22
pathway products and induces the phosphorylation of STAT3
to accelerate intestinal epithelial proliferation, thereby healing
damaged intestinal mucosae (Hou et al., 2018).

Furthermore, the expression of AhR by many adaptive
and innate immune cells in the lamina propria, including
macrophages, mast cells, eosinophils, dendritic cells (DCs),
B cells and T cells, suggests that AhR signaling is essential

for the regulation of intestinal mucosal immune responses.
DCs are prototypic targets of environmental exposure and
endogenous AhR ligands (Quintana et al., 2015). Macrophages
and DCs produce high levels of IL-1β, which promotes neutrophil
recruitment and pathogen elimination. AhR is also essential for
the function of innate lymphoid cells (ILCs) and Th17/Th22 cells
that control symbiosis and pathogens through IL-22-pSTAT3
(Wang et al., 2014; Piccinni et al., 2019) and mediate the
production of antimicrobial peptides by IECs (Sonnenberg et al.,
2011). Antimicrobial peptides can also participate in colonization
resistance against pathogens by shaping the microbiota, which
compete with pathogens for nutrients. Genetic AhR ablation
enhances gut ILC2 function during anti-helminth immunity,
and cell-specific activation of AhR enhances gut ILC3 function
for anti-bacterial immunity, suggesting the central role of
AhR expression for gut adaptation and ILC2-ILC3 balance
(Li et al., 2018).

Since Meijers proposed the existence of a gut-kidney axis
(Meijers and Evenepoel, 2011), some studies have discovered
that damage to the gut barrier function induced by intestinal
dysbiosis in CKD allows the translocation of endotoxin and
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bacterial metabolites into the circulation, which causes uremic
toxicity, inflammation, CKD progression and cardiovascular
disease (Meijers et al., 2019). As our understanding of the
association between the gut and the kidney continues to grow,
various therapies targeting the colonic microenvironment in
CKD have been developed, such as regulating gut microbiota,
blocking lipopolysaccharides, attenuating inflammation or
targeting uremic toxin end-products of microbial fermentation
(Ramezani and Raj, 2014). Although few therapies target AhR
to improve intestinal barrier function in patients with CKD, the
potential exists to uncover many novel avenues to delay CKD
progress; for example, baicalein, a flavonoid from Scutellaria
baicalensis used in Chinese herbal medicine, induces regulatory
T-cell differentiation through AhR and enhances intestinal
barrier function through its regulation of tight junctions in a
mouse model of food allergies (Bae et al., 2016).

CONCLUDING REMARKS

Initial studies on AhR were focused on its role as a chemical
sensor signaling molecule responding to environment pollutants,
but the range of subjects researched has gradually expanded
to include diseases such as cancer and cardiovascular and
kidney disorders. AhR mediates CKD progression and its
complications, including cardiovascular disease, anemia, bone
disorders, cognitive dysfunction and malnutrition, and it affects
the drug metabolism of individuals with CKD. On the other
hand, AhR enhances intestinal barrier function and reduces
the harmful effects of uremic toxins. Therefore, whether AhR
helps patients with CKD to deal with the pathological changes
they face or increases their risk for pathologic complications
remains unclear. Based on the available data, we could not
draw a definite conclusion about a positive role for AhR in
intestinal homeostasis, but we know that it mediates renal
damage and CKD complications outside the gastrointestinal
tract. AhR-mediated detoxification mechanisms stimulate the
clearance of endobiotics and xenobiotics by the kidney. AhR may
help individuals to survive in changing environments or promote
self-recovery during the early stages of disease, but once the
normal physiological or protective responses of the AhR pathway
are interrupted, the severity of disease increases. Regulating the
AhR pathway is without a doubt an attractive treatment strategy
for CKD. However, more studies are needed to overcome the
interpretation challenges of the current data.

First, AhR ligands have different sources and structures,
present diverse receptor affinities and produce different
downstream signal transduction effects. Whether a certain
type of AhR ligand is beneficial or detrimental under a specific
situation needs to be determined. New metabolomics methods
are helping researchers to discover, isolate and identify new
exogenous and endogenous AhR ligands. An effective AhR
ligand may not be able to play a “one size fits all” role throughout
the entire CKD treatment process. In fact, even in a single model,
an AhR-ligand combination may be temporarily effective in
terms of protecting the body, but as the disease progresses,
the interaction may turn harmful, or vice versa. In view of

the conflicting observations on whether AhR promotes or
inhibits inflammation, identifying and developing specific
high-affinity AhR ligands to slow down the development of
CKD and its complications is difficult. The ligands need to
display targeted absorption, distribution, metabolism and
excretion characteristics.

Second, a food-as-medicine approach could be used as
a strategy based on bioactive nutrients to target the AhR
pathway in patients with CKD. Natural bioactive compounds,
including galangin, quercetin, kaempferol, resveratrol and dietary
metabolites of cruciferous vegetables, are AhR ligands and
potential nutritional therapeutic agents that may modulate
the expression of pro-inflammatory factors. Suitable diet-
derived AhR ligands should be considered during the dietary
management of nutrients in patients with CKD, to put the
ancient adage of “let food be thy medicine” into practice.
Moreover, bioactive nutrients such as flavonoids and polyphenol
compounds are widely distributed in natural products such
as medicinal plants, tea, fruits and vegetables. In view of
the important roles of the above-mentioned compounds in
regulating AhR activity, further studies should address the
regulation of AhR activity by natural compounds, to reveal their
potential as therapeutic agents for CKD and demonstrate their
molecular mechanisms.

Third, inducing the organism to produce appropriate AhR
ligands is also a potential therapeutic strategy. Both indole-3-
pyruvate (IPYA) and IS are derived from gut bacterial metabolism
of the essential amino acid tryptophan. IPYA depends on
AhR; it protects the intestine against excessive permeability by
maintaining the integrity of apical junctional complexes and the
associated actin regulatory proteins (Mafra et al., 2020), whereas
IS induces intestinal barrier injury by impairing IRF1/DRP1 axis-
mediated mitophagy (Huang et al., 2020). Therefore, inhibiting
or promoting certain enzyme activities or regulating the intestinal
flora for the metabolism of some key substances may induce the
production of AhR ligands that are beneficial to the body.

Finally, although AhR is a promising target for clinical
applications, most of the knowledge about its physiological and
pathological functions in CKD comes from animal models, and
the translation of experimental results into clinical applications
for patients with CKD is difficult. Therefore, further research
is needed to better understand the complex roles AhR plays in
individuals with CKD, so as to be able to use it as a safe and
effective target for CKD prevention and treatment.
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