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INTRODUCTION

During their growth, all living cells undergo a process of polarization, defined as an asymmetric
deposition and confinement of molecules and cellular functions. Much effort has been put into
understanding how polarization is achieved andmaintained and how it can be artificially induced, a
field that has also been fueled by the fact that loss of polarity is a prerequisite for tumor development
(Royer and Lu, 2011). This led to a vast comprehension of the mechanisms underlying polarity
establishment and of the molecular components involved. On the other hand, we have limited
knowledge on how polarity clusters are resolved when they are no longer necessary and what
happens when this process fails. Here, we integrate our findings on polarity dispersion in budding
yeast with literature evidence for a mitotic role of Ras proteins. We then propose a unifying view of
how this GTPase might drive depolarization by direct recruitment of polarity factors.

DEALING WITH CELLULAR POLARIZATION

Polarization is a key event in cell life, as it allows the cell to compartmentalize the different
features that are required for its growth, differentiation, and for the development of the whole
organism. In all eukaryotes, polarity is controlled by the essential small GTPase Cdc42 (Etienne-
Manneville, 2004), and cells direct polarized growth by spatial modulation of Cdc42 activity.
A versatile tool to regulate the distribution of Cdc42-GTP in budding yeast is represented by
the relocalization of its main GEF Cdc24 (Zheng et al., 1994; Caviston et al., 2002). In late G1,
Cdc24 is found at the presumptive bud site, thus contributing to bud emergence; whereas in
S and M phases, it accumulates at polarity clusters accounting for the growth of the daughter
cell, before being sequestered in the nucleus in late mitosis (Nern and Arkowitz, 1999, 2000).
Until now, most of the scientific efforts have focused on the way Cdc24 accumulation at the
presumptive bud site drives bud emergence and growth. However, besides the relevance of polarity
establishment, the polarization machinery must eventually be dispersed throughout mitosis to
allow relocation of cellular factors and functions. We have reported a role for Haspin kinase in
promoting depolarization in budding yeast. Exploiting haspin mutants, we have identified the
consequences of failures in such process, which dooms the cells to death upon mitotic delays
(Panigada et al., 2013). We recently built up on these data to identify the underlying pathway,
unveiling the pivotal contribution played by Ras to the dispersion of polarity clusters (Quadri et al.,
2020).
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SHAPING THE CELL THROUGH GTP-Ras:
EVIDENCE FROM Cdc24

Ras is a eukaryotic small GTPase with a prominent role in
cell-cycle commitment. In particular, it integrates intracellular
and extracellular signals (e.g., nutrient availability or growth
factors) to trigger cellular proliferation (Stacey and Kazlauskas,
2002). Accordingly, hyperactivation of Ras pathway is frequently
observed in tumors (Fernández-Medarde and Santos, 2011),
where it drives the growth of the malignant mass and resistance
to apoptosis (Cox and Der, 2003). As a consequence, this GTPase
has long been studied with regard to its high relevance in cell
proliferation and carcinogenesis (Murugan et al., 2019).

We have recently reported a novel contribution of Ras to
mitotic depolarization in budding yeast cells (Quadri et al.,
2020), where it acts as a part of a bipartite pathway differentially
regulating localization of Cdc24 during the cell cycle. In early
stages of the cell cycle, Cdc24 binds to Bem1 and Rsr1 at the
presumptive bud site (Butty et al., 2002; Park et al., 2002), where
it promotes clustered Cdc42 activity leading to bud emergence
and growth (Woods et al., 2015). Highlighting the exclusive role
played by Bem1 and Rsr1 in the budding process, bem11rsr11
mutants are virtually unviable (Irazoqui et al., 2003) (with few
exceptions that possibly reflect a minor contribution by other
proteins; Smith et al., 2013; Woods et al., 2015). Later in mitosis,
polarized Cdc24 has to be dispersed (Gulli et al., 2000; Quadri
et al., 2020), causing the redistribution of Cdc42-GTP to the
whole daughter PM. Failure of this process leads to a persistence
of polarity clusters (Quadri et al., 2020), potential nuclear
missegregation, and cell death (Panigada et al., 2013). Thus, a
system that couples the formation and resolution of polarity
clusters to cell-cycle progression must be present. A convenient
mechanism would be a switch in binding partners of Cdc24 upon
reversible cell-cycle–dependent posttranslational modifications.
The idea of a dependence of Cdc24 localization on its PTMs
was first proposed by Gulli et al. (2000). The article reports
a strong preferential binding of Bem1 to hypophosphorylated
Cdc24 and a Bem1-dependent bud tip hyperaccumulation of the
GEF upon failures in its phosphorylation (Gulli et al., 2000).
Consistently, Cdc24 phosphorylation peaks after bud emergence,
and Cdc28-Cln and the PAK Cla4 were identified as the kinases
responsible for such PTMs (Gulli et al., 2000; Bose et al., 2001;
Wai et al., 2009; Rapali et al., 2017). However, until now, the
change in localization of the GEF was seen as a mere dissociation
from the bud tip in late stages of the cell cycle, and no roles
for this process were described. We have recently shown that
mitotic Cdc24 is actively redistributed from the bud tip to the
whole daughter PM in a phosphorylation-dependent manner.
Bem1 and Rsr1 are completely dispensable to this process, which
rather relies on a direct physical interaction of Cdc24 with GTP-
loaded Ras (Quadri et al., 2020), which is evenly distributed by
vesicles to the PM in mitosis (Quadri et al., 2020). By relocalizing
Cdc24, this pathway redistributes Cdc42 activity from the bud
tip to the whole PM, ultimately promoting depolarization. When
this mechanism is impaired, cells accumulate polarity factors at
the bud tip that, in case of mitotic delays, leads to unbalanced
nuclear segregation and cell death (Quadri et al., 2020). Following

polarity clusters removal, at the time of cytokinesis, Cdc24
is dephosphorylated (Bose et al., 2001), likely disrupting Ras
interaction and making it available for the next cell cycle.

Our findings integrate Gulli’s hypothesis that mitotic
phosphorylation of Cdc24 by Cla4 acts as a molecular switch
to modulate its physical interactions. Accordingly, mitotic cells
lacking Ras are characterized by a diffused, cytoplasmic Cdc24
with only a residual accumulation of the GEF at the bud tip
(Quadri et al., 2020). This excludes a competition between Ras
and Bem1/Rsr1 in favor of a change in the GEF interactors upon
its phosphorylation. Noteworthy, Cdc24, Cdc42-GTP, Bem1, and
Cla4 have been reported to constitute a positive feedback loop
to build robust polarity clusters promoting symmetry breaking
and bud emergence in G1 (Howell and Lew, 2012; Witte et al.,
2017). However, our results (Quadri et al., 2020), along with
previous findings (Gulli et al., 2000; Rapali et al., 2017), support
a bipartite role of this complex, with a second, negative feedback
loop promoting polarisome dispersal later in the cell cycle. The
molecular switch that triggers Cla4 activity toward Cdc24 is still
to be elucidated, but likely resides in a priming phosphorylation
event on the GEF by a G2/M-specific kinase. An ideal candidate
might be Clb-coupled Cdc28, as it promotes the switch from
apical to isotropic growth (Lew and Reed, 1993), and mutants
that fail to activate Cdc28-Clb kinase accumulate Bem1-bound
Cdc24 at the bud tip (Gulli et al., 2000).

EXTENDING THE MODEL: A MITOTIC
SIGNATURE FOR Ras-GTP BINDING AND
CELLULAR DEPOLARIZATION IN YEAST

A similar system has been described to regulate the localization
of Lte1, a putative GEF that takes a non-essential part in the
mitotic exit network (Falk et al., 2011) and shows an impact
on polarity in budding yeast (Geymonat et al., 2009, 2010). The
pattern andmechanism regulating Lte1 distribution along the cell
cycle exhibit remarkable analogies with those of Cdc24, possibly
highlighting a common mean to drive mitotic relocalization of
polarized proteins to the PM. Recruitment of Lte1 to the bud
tip in early cell-cycle stages depends on a physical interaction
with a polarisome component, Kel1 (Seshan et al., 2002; Gould
et al., 2014). Similarly to Cdc24, Lte1 is phosphorylated by
Cla4 and Clb-Cdc28 (Seshan and Amon, 2005; Geymonat et al.,
2010), and overexpression of CLA4 is sufficient to promote
recruitment of Lte1 to the bud cortex in the absence of Kel1
(Seshan et al., 2002). This suggests that the phosphorylation
of Lte1 acts as a molecular switch to promote binding to
different cortex scaffolds. Accordingly, later works have shown
that phosphorylation by Cdc28 and Cla4 primes Lte1 for direct
physical interaction with GTP-Ras (Yoshida et al., 2003; Seshan
and Amon, 2005; Geymonat et al., 2009, 2010), leading to its
accumulation along the bud cortex. Similarly to Cdc24, at the
end ofmitosis dephosphorylation of Lte1 leads to its dispersion in
the cytoplasm (Jensen et al., 2002; Seshan et al., 2002). Although
the exact contribution of Lte1 to depolarization has not been
unveiled, the observation that Lte1 mutants defective for Ras-
binding experience hyperpolarized growth (Geymonat et al.,
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FIGURE 1 | Model—In the early stages of the cell cycle, bud emergence and growth are promoted through the accumulation of polarity factors (e.g., Cdc24 and Lte1)

at the presumptive bud site and later on at the bud tip, thanks to physical interaction with polarisome components. At the time of G2/M phase, however, some of

these proteins need to be redistributed to the whole daughter cortex to prevent the detrimental effects of hyperpolarization. This redistribution is regulated by

Cdc-Clb/PAK–mediated phosphorylation of such polarity factors, which acts as a molecular switch to promote their binding to the evenly distributed GTP-Ras,

thereby leading to isotropic growth. At the end of the cell cycle, the phosphatase Cdc14 removes the phosphate groups, replenishing the cellular pool of

polarization-promoting proteins.

2010) highlights the role of the GTPase in promoting polarity
cluster dissolution.

A common scheme thus emerges from these observations
(Figure 1). Proteins (possibly bearing a GEF-like domain) that
take part in polarization first accumulate at the presumptive bud
site by physical interaction with components of the polarisome.
By the time of mitosis, however, the polarity clusters have to
be redistributed to promote an isotropic growth and prevent
detrimental hyperpolarization. To this end, a convenient docking
site is provided by GTP-loaded Ras, which is at this stage
evenly distributed to the whole PM (Quadri et al., 2020).
We propose that the molecular switch that regulates this
change in interactions is represented by phosphorylation events
performed by Clb-Cdc28 and the kinase Cla4, whose activity
is coupled to late stages of the cell cycle, thus preventing
unscheduled depolarization. At the end of the cell cycle, mitotic
phosphorylation is removed by Cdc14, detaching polarisome
components from GTP-Ras and making them available for a new
cell cycle.

Ras CONTRIBUTION TO CELL SHAPE IN
OTHER ORGANISMS

All the components of the pathway described in Saccharomyces
cerevisiae, namely, Ras, Cdc42, and its GEFs and PAK, are
conserved throughout the eukaryotic lineage. Several lines of
evidence suggest that similar mechanismsmight promote mitotic
depolarization in other eukaryotes.

Links between Ras and polarity have been reported in
Schizosaccharomyces pombe and Cryptococcus neoformans
(Chang et al., 1994; Nichols et al., 2007), where a physical
interaction between GTP-Ras and Cdc24 has been observed.
However, although hyperpolarization has been observed in Ras
mutants (Ballou et al., 2013), the GTPase seems to be mainly
related to polarity establishment rather than to the resolution of
polarity clusters.

A major difference between interphase and most mitotic
animal cells is represented by the loss of cellular protrusions,
substrate attachments, and cell–cell interactions observed during
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mitotic roundup (Théry and Bornens, 2008). In this scenario,
Cdc42 is required to regulate the actin cytoskeleton and
determine mitotic spindle orientation, which in turn will define
the polarity axis of the daughter cells (Jaffe et al., 2008). Although
the underlying mechanisms are still to be elucidated, alterations
in Ras pathway impact on spindle orientation (Tang et al.,
2011). Moreover, multiple high-throughput screenings identified
physical interactions between RAS and CDC42 regulators and
effectors (Adhikari and Counter, 2018; Steklov et al., 2018;
Kovalski et al., 2019), including several RHO GEFs with
putative activity for CDC42, although none of these have been
validated yet.

On the other hand, the idea that mitotic redistribution
of Cdc42 activity drives cellular depolarization is backed by
multiple observations. Indeed, several studies highlight a loss
of cellular polarity upon increased Cdc42 activity in multiple
systems (Florian et al., 2012; Gao et al., 2019). Although it is not
clear whether the observed phenotype is induced by an active
depolarization mechanism or a deficient polarization machinery,
this clearly demonstrates that a diffuse Cdc42 activity might be
a mean to counteract cellular polarization. Moreover, a previous
work inDrosophila melanogaster reported a redistribution Cdc42
to achieve a homogenous PM localization in mitosis (Rosa et al.,
2015). The authors also reported that overexpression of the Pbl
Cdc42 GEF leads to a diffuse relocalization of a Cdc42-containing
polarity complex in non-mitotic cells, suggestive of a GEF-based
mechanism to induce cellular depolarization in this stage of the
cell cycle.

Although such evidence does not directly infer the existence of
a mechanism for depolarization based on Ras-dependent mitotic
redistribution of Cdc42 activity, it suggests that a similar network
might be present also in other eukaryotes.

Mitotic cellular depolarization results from the integration
of multiple pathways that ensure proper cell division and that
share some remarkable features with the proposed Ras-based
mechanism. The planar cell polarity (PCP) is a network active

in epithelial cells that detects environmental cues and transduces
them in a tissue-homogeneous planar polarization (Butler and
Wallingford, 2017). The establishment of this polarity axis
is granted in interphase by a differential accumulation of
PCP components at opposite domains with distinct functions.
However, during mitosis, PCP clusters must be resolved to
avoid disruption of tissue polarity (Devenport et al., 2011).
This process is promoted by the mitotic kinase Plk1, which
phosphorylates the PCP subunit Celsr1 (Shrestha et al., 2015),
priming it for internalization by endocytosis (Devenport et al.,
2011; Heck and Devenport, 2017). Thus, it appears that
phosphorylation of polarity factors by mitotic kinases and
vesicle-driven mechanisms might be a conserved way to
couple cell-cycle progression with resolution of polarity clusters.
Additional studies will be required to elucidate this possibility
and to dissect the contribution of Ras to mitotic depolarization
in higher eukaryotes, eventually lighting a path for further Ras
targeting to tackle cancer progression.
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