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Cysteine S-sulphenylation (CSO), as a novel post-translational modification (PTM), has
emerged as a potential mechanism to regulate protein functions and affect signal
networks. Because of its functional significance, several prediction approaches have
been developed. Nevertheless, they are based on a limited dataset from Homo sapiens
and there is a lack of prediction tools for the CSO sites of other species. Recently,
this modification has been investigated at the proteomics scale for a few species and
the number of identified CSO sites has significantly increased. Thus, it is essential to
explore the characteristics of this modification across different species and construct
prediction models with better performances based on the enlarged dataset. In this study,
we constructed several classifiers and found that the long short-term memory model
with the word-embedding encoding approach, dubbed LSTMyye, performs favorably
to the traditional machine-learning models and other deep-learning models across
different species, in terms of cross-validation and independent test. The area under
the receiver operating characteristic (ROC) curve for LSTMye ranged from 0.82 to 0.85
for different organisms, which was superior to the reported CSO predictors. Moreover,
we developed the general model based on the integrated data from different species
and it showed great universality and effectiveness. We provided the on-line prediction
service called DeepCSO that included both species-specific and general models, which
is accessible through http://www.bioinfogo.org/DeepCSO.

Keywords: machine learning, modification site prediction, deep learning, Cysteine S-sulphenylation, post-
translational modification

INTRODUCTION

Protein Cysteine S-sulphenylation (CSO) is the reversible oxidation of protein cysteinyl thiols to
suphenic acids. S-sulphenylation functions as an intermediate on the path toward other redox
modifications, such as disulfide formation, S-glutathionylation, and overoxidation to sulfinic and
sulfonic acids (Paulsen and Carroll, 2013; Huang J.J et al., 2018). This modification has been
reported to influence protein functions, regulate signal transduction and affect cell cycle (Van
Breusegem and Dat, 2006; Men and Wang, 2007; Paulsen and Carroll, 2013; Hourihan et al., 2016;
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Choudhury et al., 2017; Mhamdi and Van Breusegem, 2018).
So far, thousands of CSO sites have been identified from
different species including the mammal Homo sapiens and the
plant organism Arabidopsis thaliana using the chemoproteomics
approach (Yang et al, 2014; Li et al., 2016; Gupta et al,
2017; Akter et al, 2018; Huang et al, 2019; summarized
in Supplementary Table 1). Nevertheless, the CSO site
detection remains a major methodological issue due to low
abundance and dynamic level of CSO-containing proteins
in vivo. In contrast to the time-consuming and expensive
experimental approaches, computational methods for predicting
CSO sites have attracted considerable attention because of their
convenience and efficiency.

Several computational methods have been developed for the
prediction of CSO sites, mainly based on a single human dataset
containing 1105 identified CSO sites (Yang et al., 2014). They
include MDD-SOH (Bui et al, 2016a), iSulf-Cys (Xu et al.,
2016), SOHSite (Bui et al., 2016b), PRESS (Sakka et al., 2016),
Sulf FSVM (Ju and Wang, 2018), S-SulfPred (Jia and Zuo, 2017),
Fu-SulfPred (Wang et al., 2019), SulCysSite (Hasan et al., 2017),
SOHPRED (Wang et al, 2016), and PredCSO (Deng et al,
2018). Out of them, two are based on protein three-dimensional
structures, in which PRESS relies on four different protein
structural properties (Sakka et al., 2016) whereas PredCSO is an
ensemble model that combines bootstrap resampling, gradient
tree boosting and majority voting with the 21 features refined out
using a two-step feature selection procedure (Deng et al., 2018).
The advantage of both classifiers is the inclusion of accurate
structural features but their drawback is the limitation of the
available structures. The rest classifiers are based on protein
sequences. They can be classified into two clusters in terms of
model complexity. The first cluster contains four relatively simple
models. ISulf-Cys is an SVM (Support Vector Machine)-based
classifier with the integration of three features including binary,
PSAAP, and AAindex (Xu et al., 2016). SOHSite is an SVM-based
classifier with the combined features of position-specific scoring
matrix (PSSM) and AAindex (Bui et al., 2016b). SulCysSite is
an RF (Random Forest)-based classifier with the integration
of multiple features (Hasan et al., 2017) and Sulf FSVM is
an fuzzy SVM classifier using mRMR feature selection from
three kinds of features (Ju and Wang, 2018). The second
cluster includes four relatively complex models. MDD-SOH
contains two-layered SVMs trained with MDDLogo-identified
substrate motifs (Bui et al., 2016a). S-SulfPred is an SVM-
based classifier with the balanced training dataset established
using one-sided selection undersampling for negative samples
and synthetic minority oversampling for positive samples (Jia
and Zuo, 2017). Fu-SulfPred contains two layers of forest-based
structure with the reconstruction of training datasets for data
balance (Wang et al., 2019). SOHPRED was built by integrating
four complementary predictors (i.e., a naive Bayesian predictor,
an RF predictor, and two SVM predictors), each of which was
associated with different training features (Wang et al., 2016). In
summary, the characteristics of these sequence-based models are
the combination of distinct types of features, or/and the balancing
of training data, or/and the integration of different classifiers.
Although the developed classifiers have made contribution to the

prediction of CSO sites, most of them are currently inaccessible.
Moreover, there is a lack of prediction tools for the CSO sites of
multiple species. With the growing number of CSO sites verified,
it is essential to develop species-specific prediction models with
high accuracy or even a general model.

Compared to traditional machine-learning (ML) algorithms
(e.g, SVM and RF) used in the prediction approaches
described above, the deep-learning (DL) architecture is a
promising ML algorithm. In the DL algorithm, a suitable
representation of the input data can be transformed into
highly abstract features through propagating the whole
model. Superposition of hidden layers in neural networks
can increase the ability of feature extraction, resulting in a
more accurate interpretation of latent data patterns. Indeed,
several frequently utilized DL models have been recently
applied in the field of Bioinformatics, especially the prediction
of post-translational modification (PTM) sites. For instance,
deep neural networks were utilized for the prediction of
protein nitration and nitrosylation sites (Xie et al, 2018),
recurrent neural networks (RNNs) were employed for the
prediction of lysine Malonylation sites (Chen et al, 2018b)
and convolutional neural networks (CNNs) were used for the
prediction of phosphorylation sites and crotonylation sites
(Wang et al., 2017; Zhao et al., 2020). Deep learning algorithms
have demonstrated their advantages in the application of
large data sets, compared to the traditional ML methodology
(Chen et al., 2018b). Because of this, the introduction of
DL algorithms into the prediction of CSO sites would be a
promising move to provide reliable candidates for further
experimental consideration.

In this study, we constructed a number in silico approaches for
the prediction of the CSO sites for H. Sapiens and A. thaliana.
These approaches included the RF and SVM algorithms, one-
dimensional CNN (1D-CNN), two-dimensional CNN (2D-
CNN) and long short-term memory (LSTM) that is an RNN type.
The LSTM model with the word-embedding encoding approach,
called LSTM g, compared favorably to the rest approaches with
AUC as 0.82 and 0.85 in human and Arabidopsis in terms of
cross-validation. Moreover, LSTMyyg trained using the data from
one organism achieved outstanding performance in predicting
CSO sites of other organisms (e.g., AUC = 0.80 for the prediction
of Arabidopsis CSO sites using the human model), suggesting
that CSO is highly conserved. Therefore, we constructed a general
CSO prediction model. These models will facilitate the discovery
of new CSO sites and thus will contribute to the understanding of
roles and functions of CSO in diverse cellular processes.

MATERIALS AND METHODS

Data Collection and Preprocessing

The experimentally identified CSO sites were derived from two
different organisms including H. Sapiens and A. thaliana (Yang
et al,, 2014; Li et al., 2016; Gupta et al., 2017; Akter et al., 2018;
Huang et al., 2019). The data of the species were pre-processed
and the related procedure was exemplified using the A. thaliana
data, as listed below (Figure 1A).
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FIGURE 1 | The flowchart of the dataset process for A. thaliana (A) and H. sapiens (B).

We mapped 1537 Arabidopsis CSO sites (Huang et al,
2019) to the UniprotKB database (UniProt Comstortium, 2011)
and 1535 sites from 1130 proteins were retained as positive
sites. The rest 8819 Cysteine residues in the same proteins
were defined as negative sites. Moreover, we truncated these
protein sequences into 35-residue segments with the Cysteine
located at the center and the positive/negative sites correspond
to positive/negative segments, respectively. It should be noted
that if the central Cysteine was located around the N-terminus
or C-terminus of a protein sequence, the gap symbol
” was added to the corresponding positions to ensure that
the segment had the same length. The segment length was
optimized as a hyper-parameter in the Bayesian optimization
method (see details in Section of “Optimization Methods for
Hyper-Parameters”) and finally determined as 33. Furthermore,
to reduce the potential influence of the segments with high
similarity on the performance of the models to be constructed,
we set the identity of any two sequences with less than
40%, referring to previous studies (Bui et al., 2016a; Wang
et al., 2016; Xu et al, 2016). When the identity was >40%
between two positive segments or two negative segments,
one was randomly removed. When the identity was >40%
between a positive segment and a negative segment, the positive
was retained and the negative was discarded. As a result,
1380 positives and 7421 negatives were retained. Finally, we

randomly separated the positive and negative segments into
11 groups of which 10 were used for 10-fold cross-validation
(1254 positives and 6746 negatives) and the rest for an
independent test (126 positives and 675 negatives) (Figure 1A).
Similarly, the cross-validation dataset for H. sapiens contained
16,249 samples (2507 positives and 13,742 negatives) and the
independent test set comprised 1625 samples (251 positives and
1374 negatives) (Figure 1B). These datasets are available at
http://www.bioinfogo.org/DeepCSO/download.php.

Feature Encoding Schemes

Numerical Representation for Amino Acids (NUM)

The NUM encoding approach maps each type of amino acid
residue to an integer (Zhang Y. et al, 2019). Specifically, in
the alphabet “AVLIFWMPGSTCYNQHKRDE-", each letter from
“A” to “-”7 is converted to the integers from 0 to 20 in turn.
For example, the sequence “VAMR” is encoded as “1,0,6,17.”
This encoding was used as the input of the first layer for both
LSTM and 1D-CNN.

Enhanced Amino Acid Composition

The enhanced amino acid composition (EAAC) encoding (Chen
et al., 2018b,c, 2020; Huang Y. et al., 2018) introduces a fixed-
length sliding window based on the encoding of amino acid
composition (AAC), which calculates the frequency of each type
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of amino acid in a protein or peptide sequence (Bhasin and
Raghava, 2004). EAAC is calculated by continuously sliding a
fixed-length sequence window (using the default value 5) from
the N-terminus to the C-terminus of each peptide. The related
formula is listed below:

N (t, win)

f (& win) = N (win)

,te{A,C,D,..., Y},

win € {windowl, window2, . .., wind0w35} (1)

where N(t, win) is the number of amino acid ¢ in the sliding
window win, and N(win) is the size of the sliding window win.

Binary Encoding

In the binary encoding (Chen et al., 2018c), each amino acid is
represented by a 21-dimensional binary vector that represents 20
amino acids and a complement “-.” The corresponding position
is set as 1 and the rest position is set as 0. For example, the
amino acid “A” is represented by “100000000000000000000,” “V”
is represented by “010000000000000000000,” and the symbol
“-” is represented by “000000000000000000001,” according to the

alphabet “AVLIFWMPGSTCYNQHKRDE-.”

AAindex Encoding

AAindex is a database of various indices representing

distinct ~ physicochemical ~and  biochemical  properties
of amino acids and pairs of amino acids.! In the 544
physicochemical properties, we retained 531 properties

after the removal of properties with “NA.” We calculated
the performance for each property using the RF classifier

Uhttp://www.genome.jp/aaindex/

based on the 10-fold cross-validation dataset of arabidopsis.
We selected the top 36 properties with AUC > 0.7
(Supplementary Table 3).

The Composition of k-Spaced Amino Acid Pairs

The composition of k-spaced amino acid pairs (CKSAAP)
encoding contains the frequency of the amino acid pair of which
both are separated by k-residues (k =0, 1, 2, 3, 4, 5. We used the
default value 5) (Chen et al., 2018c). This scheme represents the
short- or long-range interactions amongst the residues along the
sequence. The CKSAAP encoding with k = 0 is identical to the
di-peptide composition.

The Position-Specific Scoring Matrix

The PSSM encoding was derived from the previous publication
(Xie et al., 2018). In brief, we calculated the statistical significance
of the differences in the frequencies of symbol occurrence
between the positive and negative samples using a two-sample
t-test (Vacic et al., 2006). Accordingly, the PSSM of significant
P-values were constructed. By integrating the PSSM of P-values
with the frequency PSSM for positive and negative samples,
we generated the final encoding PSSM that represented the
conservation tendency of the positive or negative samples.

Architecture of the Machine-Learning
Models

The LSTM Model With the Word Embedding
Encoding (LSTMyg)

LSTM g contained five layers, listed as follows (Figure 2).

1. Input layer. Each peptide segment is converted into an
integer vector with the NUM encoding.

Output layer

FIGURE 2 | The LSTMy¢ architecture.

Input layer P \% | A L W S D
. v v y l y
Embeddin g Word Word Word Word Word Word Word Word
| aye r vector vector vector vector vector vector vector vector
l vy y A 4 \ 4 y y y
LSTM layer LSTM LSTM LSTM N LSTM LSTM N LSTM LSTM N LSTM
cell cell cell cell cell cell cell cell
Dense layer
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2. Word Embedding (WE) layer. Each integer of the vector
from the input layer is encoded into a four-dimension word
vector for humans and a five-dimensional word vector for
arabidopsis, respectively.

3. LSTM layer. Each of the word vectors is input sequentially
into the LSTM cell that contained 32 hidden neuron units.

4. Dense layer. It contains a single dense sublayer that has 16
neurons with the ReLU activation function for humans and
32 neurons for arabidopsis, separately.

5. Output layer. This layer has only one neuron activated
by sigmoid function, outputting the probability of the
CSO modification.

The 1D-CNN Model With the Word Embedding
Encoding

The 1D-CNN model with the word embedding encoding
(ID-CNNwg)  contains  five layers  (Supplementary
Figure 1), where the first two layers and last one layer
were as same as LSTMyg. The third layer was a 1D
convolution layer with 22/20 filters for humans/arabidopsis
and kernel size as nine. The fourth layer had a single
dense sublayer with 16 neurons. The optimal hyper-
parameter  values obtained wusing the Bayesian
optimization algorithm.

were

The 2D-CNN Model With the PSSM Feature

We took advantage of the 2D structure of an input image
of CNN architecture and conveniently made similar 2D
inputs of PSSM matrixes with the sizes of 20 x 20 s.
The purpose of using the 2D-CNN model is to catch the
hidden figures inside PSSM profiles. Next, PSSM profiles were
connected to the 2D CNN design from the input layer through
several hidden layers to the output layer. Supplementary
Figure 2 demonstrated the procedure of inputting a PSSM
profile into the CNN model, then passing through a series
of convolutional, non-linearity, pooling and fully connected
layers and finally outputting the result. This model contained
four hidden layers including one 2D convolutional layer, one
pooling layer, one flattening layer, and one fully connected
layer. Specifically, the first layer contained a PSSM profile
on which we applied 2D convolutional operations with some
existing parameters including 5 x 5 kernel size, 15 filters and
1 x 1 stride.

The RF Algorithms With Different Features

The RF algorithm integrates multiple decision trees and
chooses the classification with the most votes from the
trees. Each tree depends on the values of a random vector
sampled independently with the same distribution for all
trees in the forest. In this study, we constructed the RF
models with six different features, including binary encoding,
EAAC encoding, AAindex encoding, CKSAAP encoding,
PSSM encoding, and WE. The number of decision trees
was selected as 580 via the grid search method. These
classifiers were developed based on the Python module
“sklearn.”

The SVM Algorithms With Different Features

We applied the Python-based machine learning package “scikit-
learn” to implement the SVM algorithm and adopted the “RBF”
kernel function to build the SVM models. The above encoding
schemes for RF were applied to the SVM model. In particular, we
normalized the feature values that do not range between 0 and 1
(such as PSSM) before inputting the SVM model.

Model Training Strategy

Optimization Methods for Hyper-Parameters

The hyper-parameters of an ML classifier affect prediction
performance. Although a lot of combinations of hyper-
parameters need to be tested, there are no formal rules to
find optimal hyper-parameters. Here we applied two search
approaches [grid search and Bayesian optimization (BO)] to
automatical adjustment and evaluation of hyper-parameters
(Figure 3). Grid search is a brute-force method to find
the optimal hyper-parameters by training models using each
possible combination of hyper-parameters and retaining the
hyper-parameters corresponding to the model with the best
performance. This method applies to a limited number of
hyper-parameters due to the exponential increase in time
spent with the number of hyper-parameters. In this study,
it was used for the RF-based and SVM-based models.
The related grid search spaces (Supplementary Table 3)
were searched using the GridSearchCV function of the
sklearn library in Python. On the contrary, BO provides a
principled technique based on Bayes theorem to direct a
search of a global optimization problem, which is effective to
tune the hyper-parameters of DL models. The BO strategy

Initialize the optimal hyper-parameters

Set hyper- (Re) select Construct a model S e Sit better thar Update the
. L Evaluate predictive L. S
parameters [—» hyper- > usingthe training > the existing optimal hyper-
perpormance
set parameters data model? parameters

No

Is the iteration

FIGURE 3 | Hyper-parameter optimization procedure for machine-learning classifiers.

limit reached?
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was executed using the fmin function of the hyperopt
library in Python. The BO related hyper-parameter space
contained 10 parameters, including window size, kernel size,
and dropout rate (Supplementary Table 3). The optimal hyper-
parameter combination results for the DL models were listed in
Supplementary Table 4.

Strategy of Avoiding Overfitting

1The parameters in the DL models were trained and optimized
based on binary cross-entropy loss function using the Adam
algorithm. The maximum of the training cycles was set through
the optimized number of epochs to ensure that the loss
function value converged. In each epoch, the training dataset
was separated with the batch size as 512 and iterated. To
avoid overfitting, the early-stopping strategy was applied, where
the training process was stopped early when the training loss
did not go down within 50 consecutive iterations. The model
with the smallest training loss was saved as the best model.
Moreover, the dropout rate of the neuron units was set,
which was obtained through the hyper-parameter optimization.
Supplementary Figures 3, 4 showed the training and validation
accuracy and loss curves of the LSTMyg models for different
species.

Performance Assessment of the
Predictors

Several measures were used to evaluate the prediction
performance, including accuracy (ACC), specificity (SP),
sensitivity (SN), Matthew’s correlation coefficient (MCC). They

are defined as follows:

TP + TN
ACC =
TP + FP + TN 4+ FN
TN
P=——
TN + FP
TP
N=_——
TP + FN

(TP x TN) — (EN x FP)

MCC =
(TP £ FN) x (TN + FP) x (TP + FP) x (IN + FN)

where TP, TN, FP, and FN represent true positives, true negatives,
false positives, and false negatives, respectively. Additionally,
because the number of positive and negative samples was
unbalanced and the above measures were calculated based
on the threshold value, a measure that was independent of
the threshold value and unaffected by the sample ratio was
needed. Therefore, the receiver operating characteristic (ROC)
curve and AUC were employed to comprehensively evaluate
classification performance. Specifically, due to the low false-
positive rate of a predictor is significant in practical application,
the area under the ROC curve with <10% false-positive rate
(AUCO01) was considered.

Statistical Methods

The paired students t-test
significant difference between

test the
of the

was used to
the mean values
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FIGURE 4 | The flowchart of the prediction model construction.
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two paired populations. The adjusted P-value with the
Benjamini-Hochberg (BH) method was adopted for
multiple comparisons.

The Flowchart of the Prediction Model

Construction

The flowchart of the prediction model construction contained
three steps (Figure 4). This first step was data collection and
preprocessing, in which the sample data were separated
into the cross-validation dataset and the independent
test dataset for model construction and evaluation. The
second step was classifier construction, which involved data
decoding, model training, and hyper-parameter adjustment
for resulting in a robust predictive model. The third
step was the development of the final model as an online
prediction tool.

RESULTS AND DISCUSSION

LSTMye Classifier Performed Favorably

to Other Classifiers

Many computational approaches for predicting PTM sites are
generally based on traditional ML algorithms (e.g., RF and
SVM) combined with various features encoded from peptide
sequences. In this study, we constructed both RF-based and
SVM-based predictors with different encoding schemes for
the CSO site prediction. The encoding schemes include six
features [i.e., binary, AAindex, WE, KSAAP, PSSM, and EAAC].
Moreover, deep learning algorithms have recently been applied
to the field of PTM site prediction and demonstrated their
superior performances (Wang et al., 2017; Chen et al., 2018b).
Accordingly, we developed three different DL classifiers, named
1D-CNN g, 2D-CNNpsspr, and LSTM g,

TABLE 1 | Performances of various classifiers for different species in terms of 10-fold cross-validation.

Classifier! ACC? Sn? Sp? McCC2? AUC? AUC012
Arabidopsis thaliana

RFainary 0.743 £+ 0.006 0.449 £+ 0.040 0.798 + 0.001 0.210 £ 0.032 0.696 + 0.021 0.014 + 0.002
RFeaac 0.773 + 0.007 0.628 £+ 0.043 0.799 £ 0.001 0.351 £ 0.033 0.803 £ 0.019 0.024 £+ 0.004
RFwe 0.748 + 0.007 0.474 £0.048 0.799 £+ 0.001 0.230 £+ 0.038 0.728 £+ 0.020 0.014 + 0.002
RFaanpex 0.744 + 0.008 0.443 £ 0.053 0.800 £ 0.001 0.206 £ 0.043 0.710 £ 0.025 0.014 + 0.004
RFcksaap 0.749 £ 0.012 0.477 £0.078 0.800 =+ 0.001 0.234 + 0.062 0.728 £+ 0.032 0.013 4+ 0.003
RFpssu 0.740 + 0.006 0.419 £ 0.039 0.800 £ 0.000 0.188 £+ 0.032 0.670 £ 0.028 0.015 +£ 0.004
RFescta 0.760 + 0.006 0.544 £+ 0.040 0.800 £ 0.001 0.287 £+ 0.031 0.770 £ 0.016 0.020 + 0.005
SVMgnary 0.748 + 0.009 0.479 £+ 0.055 0.798 £+ 0.003 0.234 £+ 0.043 0.719 £ 0.025 0.017 4+ 0.002
SVMeaac 0.746 + 0.009 0.458 + 0.060 0.799 + 0.001 0.218 + 0.048 0.704 + 0.026 0.015 + 0.004
SVMaanDex 0.750 4 0.008 0.486 + 0.054 0.800 & 0.000 0.241 4 0.042 0.724 4+ 0.023 0.016 & 0.004
SVMcksaap 0.739 £+ 0.007 0.421 £ 0.047 0.798 £+ 0.003 0.187 £+ 0.037 0.692 + 0.030 0.013 £ 0.003
SVMpssum 0.726 + 0.008 0.330 + 0.054 0.800 + 0.001 0.113 + 0.046 0.590 + 0.025 0.009 + 0.003
2D-CNNpssy 0.766 + 0.010 0.585 + 0.064 0.800 £ 0.000 0.319 £ 0.050 0.781 £ 0.030 0.023 + 0.004
1D-CNNpe 0.783 £ 0.006 0.696 + 0.041 0.799 £ 0.001 0.401 £ 0.030 0.838 £ 0.019 0.029 + 0.005
LSTMye 0.786 + 0.007 0.717 = 0.044 0.799 + 0.001 0.417 + 0.032 0.852 + 0.018 0.030 + 0.006
Homo sapiens

RFainary 0.749 + 0.004 0.466 + 0.027 0.800 £ 0.000 0.225 £ 0.021 0.720 £ 0.013 0.016 4+ 0.002
RFeanc 0.766 + 0.006 0.578 £+ 0.039 0.800 £ 0.000 0.312 £ 0.030 0.790 £ 0.018 0.020 £ 0.002
RFwe 0.751 + 0.004 0.480 £+ 0.024 0.800 £ 0.000 0.236 £+ 0.019 0.732 £ 0.015 0.018 4+ 0.001
RFaanpex 0.750 4+ 0.004 0.474 £+ 0.025 0.800 £ 0.000 0.231 £ 0.020 0.734 £ 0.017 0.018 4+ 0.003
RFcksaap 0.753 4+ 0.003 0.493 £ 0.018 0.800 £ 0.000 0.246 £ 0.014 0.729 £ 0.016 0.016 4+ 0.002
RFpssv 0.748 + 0.004 0.462 + 0.026 0.800 £ 0.000 0.222 £+ 0.021 0.707 £ 0.016 0.016 4+ 0.001
RFe+sta 0.761 + 0.005 0.551 £ 0.033 0.800 £ 0.000 0.291 £ 0.026 0.774 £ 0.012 0.021 4+ 0.002
SVMginary 0.750 4+ 0.005 0.474 £+ 0.030 0.800 =+ 0.000 0.231 £ 0.024 0.720 £ 0.013 0.017 4+ 0.002
SVMgaac 0.742 + 0.007 0.421 £ 0.049 0.800 £ 0.000 0.188 £+ 0.039 0.680 + 0.021 0.013 £ 0.002
SVMaanpEX 0.753 £+ 0.006 0.498 + 0.041 0.800 £ 0.000 0.250 £ 0.032 0.737 £+ 0.021 0.017 4+ 0.001
SVMcksaap 0.737 + 0.005 0.388 + 0.031 0.800 £ 0.000 0.162 £ 0.025 0.664 + 0.012 0.012 4+ 0.002
SVMpssiy 0.725 + 0.005 0.316 £ 0.033 0.800 £ 0.000 0.101 £ 0.028 0.578 £ 0.025 0.011 £ 0.002
2D-CNNpssy 0.766 + 0.004 0.581 £+ 0.029 0.800 £ 0.000 0.314 £+ 0.022 0.777 £ 0.011 0.022 + 0.003
1D-CNNyyge 0.778 4+ 0.006 0.659 + 0.036 0.800 £ 0.000 0.373 £ 0.027 0.819 £ 0.012 0.024 4+ 0.003
LSTMye 0.777 + 0.006 0.651 + 0.038 0.800 + 0.000 0.367 + 0.028 0.822 + 0.011 0.024 + 0.003

"The RF classifiers with the different features were named as RFgnary, RFwe, etc. The 1D CNN and LSTM classifiers with the word embedding approach were named
as 1D-CNNye and LSTMyye, respectively.2ACC, Sn, Sp, MCC, AUC, and AUCO1 were described in section “Materials and Methods.” In the 10-fold cross-validation, 10
models were constructed using the 10 different validation datasets. Finally, the average performance and standard deviation of the 10 models were calculated for the
cross-validation dataset. The models with the best performances were highlighted in bold.
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We first took the Arabidopsis data to construct and compare
different models (Huang et al.,, 2019). The Arabidopsis cross-
validation dataset contained 8000 samples (1254 positives and
6746 negatives) and the independent test set covered 801
samples (126 positives and 675 negatives) (Figure 1). We
compared the performances of these algorithms in terms of
several measures (e.g., ACC, MCC, AUC, and AUCO1) for both
the 10-fold cross-validation (Table 1) and the independent test

TABLE 2 | The k-fold cross-validation results of existed tools.

Tools* Fold Accuracy Sensitivity Specificity AUC
MDD-SOH 5 0.68 0.7 0.7

SOHSite 5 0.71 0.72 0.72

SOHPRED 5 0.727 £ 0.005 0.742 + 0.001 0.801 & 0.001
iSulf-Cys 10 0.656 £ 0.007 0.673 £ 0.007 0.639 + 0.001 0.716 £ 0.009
SulCysSite 10 0.745 + 0.006 0.744 £+ 0.002 0.806 + 0.002
Sulf_FSVM 10 0.711 £ 0.002 0.733 & 0.004 0.708 £ 0.002 0.788 =+ 0.002
LSTMwe 10 0.739 £ 0.006 0.694 + 0.042 0.744 +0.008 0.800 + 0.011
RFeaac 10 0.733 £ 0.006 0.607 + 0.021 0.750 + 0.007 0.753 £ 0.006
RFeLs+A 10 0.743 £0.009 0.728 + 0.027 0.745 4+ 0.009 0.807 + 0.010
*The cross-validation dataset was derived from Yang’s publication

(Yang et al., 2014).

(Supplementary Table 5). In the traditional ML models, RFg4ac
showed superior performance than other RF-based and SVM-
based models. The previous studies of CSO site prediction
showed that the models with the combination of different
encoding methods compared favorably to their counterparts with
a single encoding approach (Bui et al., 2016b; Xu et al., 2016).
Accordingly, we constructed such models and the RF model
with the combination of EAAC, CKSAAP, and AAindex, dubbed
RFE+cta, had the best performance. To our surprise, RFgicia
had inferior performance compared to RFgpsac (Table 1 and
Supplementary Table 5).

All the models constructed above were based on the
imbalanced dataset. To evaluate the effect of the imbalanced
dataset on potential overfitting of the classifiers, we reconstructed
RFEaac based on the balanced positive and negative samples.
Specifically, because the number of negative samples was around
five times larger than that of the positive samples, we randomly
separated the negative samples into five parts and created five
subsets of training data with a 1:1 positive-to-negative ratio.
Subsequently, five RFga4c models (sub-classifiers) were trained
and the average output score from the five sub-classifiers was
taken as the final prediction score. Supplementary Figure 5
showed the performances of the two RFg44c models based on the
balanced and imbalanced dataset, respectively, in terms of the 10-
fold cross-validation and the independent test dataset. Because of
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the slightly better performance of the RFg44c model constructed
using an imbalanced training dataset, we selected the imbalanced
dataset for the construction of the models.

In our previous studies, DL models showed superior
performance than traditional ML models (Chen et al., 2018b;
Zhao et al., 2020). It is still true for the CSO site prediction.
LSTM g had the best performance among these constructed
models in terms of ACC, Sn, MCC, and AUC values for both
10-fold cross-validation and independent test. For instance,
its AUC value is 0.852 for the cross-validation and its values
of ACC, Sn, Sp, and MCC were 0.786, 0.717, 0.799, and
0.417, respectively (Table 1 and Figures 5A,C). As prediction
performance at a low false-positive rate is highly useful in
practice, we estimated these predictors using AUCO01, where the
specificity was determined to be >90%. LSTMyf again showed
the largest AUCO1 values for both 10-fold cross-validation and
the independent test (Figures 5B,D). As the encoding approach
has a great impact on the traditional ML models (Chen et al.,
2018b; Huang Y. et al., 2018; Zhao et al.,, 2020) and the WE
approach integrated with LSTM had the best performance in this
study, we attempted to investigate whether the integration of WE
and RF had a good performance. Accordingly, we extracted WE
layer vector as feature encoding from LSTMyf and trained the
RF model, dubbed RF . Interestingly, RFyg did not show good
performance compared to RFgaac, 1D-CNNywg, or LSTMyg. It
suggests that the WE encoding approach may be improper for the
construction of traditional ML algorithms.

We further constructed the models for the human organism.
The Humans cross-validation dataset contained 16,249 samples
(2507 positives and 13,742 negatives) and the independent test
set covered 1625 samples (251 positives and 1374 negatives)
(Figure 1B). Similarly, LSTMwg had the best performance
(Table 1, Supplementary Table 5, and Supplementary Figure 6).

For instance, its values of AUC, ACC, Sn, Sp, MCC, and
AUCO01 for the 10-fold cross-validation were 0.822, 0.777,
0.651, 0.800, 0.367, and 0.024, respectively. We evaluated
the robustness of LSTMyg by comparing their performances
between the cross-validation and independent tests for individual
organisms. As their performances were not statistically different
for each organism (P = 0.18/0.085 for the arabidopsis/humans,
respectively), we concluded that the constructed models were
robust and neither over-fitting nor under-fitting.

LSTMye Performed Better Than

Reported Classifiers

Six approaches for the prediction of human CSO sites were
based on 1105 identified human CSO sites (Yang et al,
2014), including MDD-SOH, SOHSite, SOHPRED, iSulf-Cys,
SulCysSite, and Sulf FSVM. We compare these models and
our models (i.e., RFgaac, RFp1ct+a, and LSTMyyg) to evaluate
their prediction performances. Accordingly, we constructed our
models using the same dataset derived from the original study
(Yang et al., 2014). SulCysSite, LSTMwg, and RFgicia had
the best and similar performances (Table 2). The observation
that the model with the combined features (i.e., RFgic14) had
better accuracy than the counterpart with a single feature (i.e.,

TABLE 3 | Evaluation of species-specific and general LSTMz models using the
independent test sets from different species.

Independent test sets LSTMye model (AUC value)

Arabidopsis-specific Human-specific General
A. thaliana 0.876 0.799 0.863
H. sapiens 0.766 0.839 0.834
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RFEaac) is consistent with the previous studies (Bui et al,
2016b; Xu et al., 2016) but conflicted with our observation
above that RFpqac compared favorably to RFgicya. This
contradiction derived from the different amounts of the training
datasets, where the dataset here was smaller than the datasets
described above, indicating that the amount of training data
affected the performance of the models. Indeed, based on the
small human dataset (1105 positives), RFgycya had a better
performance than RFgqac, whereas the performance of RFgaac
was better than that of RFg ci4 with a large amount of the
training set (arabidopsis: 1380 positives; human 2758 positives)
(Supplementary Figure 7). In all comparisons, LSTM g showed
the best performance (Supplementary Figure). Additionally,
as iSulf-Cys (Xu et al, 2016) is the only accessible model
to date, we compared it and LSTMwyg using the human
independent dataset of this study. The AUC value (0.839) of
LSTM g is significantly larger than that (0.666) of iSulf-Cys
(Supplementary Figure 8). In summary, LSTM g performed
better than reported classifiers.

Conservation of the CSO Modification
and the Development of General
LSTMpe Models

Cysteine S-sulphenylation has been identified across various
organisms, ranging from yeasts to worms and from plants to
humans (Men and Wang, 2007; Hourihan et al, 2016). To
understand its conservation, we compared the characteristics
of CSO-containing peptides in human and arabidopsis
species, respectively, using the two-sample-logo approach

(Vacic et al., 2006). Figure 6 showed that both species shared
the enriched basic amino acids R and K and the depleted
polar neutral amino acid C. Nevertheless, the amino acid H
was enriched for A. thaliana whereas the hydrophobic amino
acid L was depleted for H. sapiens. As the characteristics of
CSO-containing peptides were similar between both species,
we hypothesized the generalization ability of our developed
models. To test this hypothesis, we used the human LSTM g
model to predict the arabidopsis independent test dataset and
employed the Arabidopsis LSTM g model to predict the human
independent test dataset. The AUC values were 0.799 and 0.766,
respectively, significantly larger than the random prediction
(i.e., AUC = 0.5; Table 3). Nevertheless, the cross-species
prediction had relatively low performance compared to the self-
species prediction (AUC = 0.876/0.839 for arabidopsis/human,
respectively). As the CSO sites were systematically analyzed in
a few species, we developed a general CSO prediction model
according to its conservation to boost the investigation for
other species. Accordingly, we mixed the training datasets of
H. Sapiens and A. thaliana and constructed the general LSTM g
model and validated it using the independent datasets from both
organisms. The performance of the general LSTMyy model
was slightly lower than that of the self-species prediction, which
may be caused by the interference of the CSO characteristics of
other species (Table 3). Overall, the conservation of the CSO
modification leads to the effective prediction of the general
LSTM g classifier.

To further understand the performance of the general
LSTM g classifier, we visualized the sample distribution, based
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on the human independent dataset, from the outputs of the
input layer, WE layer, LSTM layer, and dense layer of the
general model using the t-SNE algorithm (van der Maaten and
Hinton, 2008; Figure 7). After the input layer (Figure 7A), the
positive and negative samples were mixed, as the training goes
on (Figures 7B,C), positive and negative samples were gradually
separated. After the LSTM layer, they were separated (Figure 7D).
This comparison indicates that the LSTM layer is a powerful
method to detect the distinctive features of the positives and
negatives. A similar observation is made for the arabidopsis
independent test dataset (Supplementary Figure 9).

Construction of the Online CSO
Predictor

We developed an easy-to-use online tool for the prediction
of the CSO sites, dubbed DeepCSO. DeepCSO contains three
LSTM e models: the general model and two species-specific
models (i.e., H. sapiens and A. thaliana). The users could select
the general model or species-specific model at the input interface
and input the query protein sequences directly or upload the
sequence file. After the job submission, the prediction will start
and the prediction process may take several minutes. Finally,
the prediction results are output in tabular form with five
columns: sequence header, position, sequence, prediction score,
and prediction results at the specificity levels of 80, 85, and
90%, respectively.

Several Cysteine modification types have been reported in
the human organism, such as carbonylation (Wang et al., 2014;
Chen et al,, 2017, 2018a; Zhang S. et al., 2019), oxidation (Gupta
et al.,, 2017; Akter et al., 2018), succination (Adam et al., 2017),
and sulfenylation. Some Cysteine sites can be modified with
multiple modification types, which cause PTM cross-regulation.
To examine potential PTM cross-regulation at the proteome
scale, we downloaded the latest human protein sequences from
the Swiss-Prot database (version: 2020_05) and applied the
human DeepCSO predictor to predict the potential CSO sites
with the annotation of the reported Cysteine modifications
(Supplementary Table 6). This resource will assist in the
investigation of the Cystine co-regulation in the community.

CONCLUSION

The current prediction tools for CSO sites are based on
traditional ML methodology that requires experts to pre-define
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