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Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia and is a major cause
of stroke and heart failure. We and others have found that gallic acid (GA) plays
a beneficial role in cardiac hypertrophic remodeling and hypertension. However, the
effect of GA on angiotensin II (Ang II)-induced AF and atrial remodeling as well as
the underlying mechanisms remain unknown. AF was induced in mice by Ang II
infusion (2000 ng/kg/min) for 3 weeks. Blood pressure was measured using the tail-
cuff method. Atrial volume was evaluated by echocardiography. Atrial remodeling was
studied using hematoxylin and eosin, Masson’s trichrome, and immunohistochemical
staining. Atrial oxidative stress was assessed by dihydroethidium staining. The gene
expression of fibrotic and inflammatory markers and protein levels of signaling
mediators were measured by quantitative real-time PCR and western blot analysis.
In mice, GA administration significantly attenuated Ang II-induced elevation of blood
pressure, AF incidence and duration, atrial dilation, fibrosis, inflammation, and oxidative
stress compared with the vehicle control. Furthermore, GA downregulated Ang II-
induced activity and expression of immunoproteasome subunits (β2i and β5i), which
reduced PTEN degradation and led to the inactivation of AKT1 and downstream
signaling mediators. Importantly, blocking PTEN activity by VO-Ohpic markedly reversed
the GA-mediated protective effects on Ang II-induced AF and atrial remodeling.
Therefore, our results provide novel evidence that GA exerts a cardioprotective role
by inhibiting immunoproteasome activity, which attenuates PTEN degradation and
activation of downstream signaling, and may represent a promising candidate for
treating hypertensive AF.
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INTRODUCTION

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia
and is associated with an increased risk of stroke, heart
failure, and all-cause mortality (Staerk et al., 2017). AF is
typically preceded by conduction abnormalities and structural
remodeling, which is characterized by increased atrial fibrosis and
dilation (Andrade et al., 2014). The renin–angiotensin system
(RAS) plays an important role in the development of AF. As
the main effector of the RAS, Ang II activates AKT1-mTOR,
TGF-β1-Smad2/3, NF-κB, and NADPH oxidase through Ang
II type 1 receptor (AT1R), which in turn promotes fibrosis,
inflammation, production of reactive oxygen species, and an
abnormal ion channel function in the atrium, thereby leading to
the occurrence of AF (Gao and Dudley, 2009; Hu et al., 2015).
Therefore, AT1R is the central mediator of atrial remodeling
and AF, and thus represents a key target for early treatment of
AF. Recent studies have demonstrated that phosphatase PTEN
(a phosphatase and TENsin homolog deleted from chromosome
10) exhibits negative regulation of AT1R-induced signaling
pathways and AF (Li et al., 2018, 2019). Importantly, we and
others have revealed that the activity of PTEN is restored by
natural compounds such as resveratrol and indole-3-carbinol
(Chen et al., 2019; Lee et al., 2019; Zou et al., 2019). Thus,
regulation of PTEN represents a promising strategy for treating
cardiovascular disease.

Gallic acid (GA) is a natural phenolic acid that is abundant
in several plants. Accumulating evidence has demonstrated
that GA plays a beneficial role in apoptosis, hypertension,
cardiac hypertrophy, and fibrosis (Ryu et al., 2016; Jin
et al., 2017, 2018a,b). GA improved isoproterenol-induced
cardiomyocyte hypertrophy and fibrosis by inhibiting the
JNK2-Smad3 signaling pathway (Ryu et al., 2016). Moreover,
GA also reduced cardiac oxidative stress and hypertension
by regulating GATA4-NOX signaling in spontaneously
hypertensive rats (Jin et al., 2017). Recently, we found that
administration of GA attenuated pressure overload-induced
cardiac hypertrophic remodeling and heart failure, which
are associated with the autophagy-dependent degradation of
hypertrophic mediators (EGFR, gp130, and calcineurin A)
and the suppression of downstream signaling cascades (Yan
et al., 2019). Moreover, GA ameliorated hypertension and
vascular remodeling in Ang II-treated mice by suppressing the
immunoproteasome-dependent degradation of endothelial nitric
oxide synthase (Yan et al., 2020). However, the cardioprotective
effect of GA against Ang II-induced AF and the underlying
mechanism remain unknown.

In this study, we revealed that GA significantly reduced AF
incidence and duration as well as atrial structural remodeling
in Ang II-treated mice. Mechanistically, the protective effect
is associated with suppression of the activity and expression
of the immunoproteasome subunits β2i and β5i, which inhibit
PTEN degradation and AKT1 activation, resulting in the
downregulation of the TGF-β1-Smad2/3 and NF-κB signaling
pathways. Collectively, our results suggest that GA is a novel
regulator of the immunoproteasome and PTEN stabilization, and
may provide a potential treatment option for hypertensive AF.

MATERIALS AND METHODS

Animal Models and Experimental
Protocols
C57BL/6 mice (male, 8–10 weeks of age, n = 200) were used to
establish the model of AF by subcutaneous infusion of Ang II
(2000 ng/kg/min; Sigma-Aldrich, St. Louis, MO, United States)
or saline for 3 weeks as described previously (Li et al., 2018, 2019;
Zhang et al., 2020). The tail-cuff system (Softron BP98A; Softron
Tokyo, Japan) was used to assess the systolic blood pressure
(SBP) as previously described (Wang et al., 2016, 2018; Zhang
et al., 2020). All animal studies were approved by the Animal
Care and Use Committee of Dalian Medical University (No.
LCKY2016-31) and conformed to the Guide for the Care and Use
of Laboratory Animals published by the United States National
Institutes of Health (NIH Publication No. 85-23, revised 1996).

Dosage Information
Animals were orally gavaged with vehicle or GA (5 or 20 mg/kg
BW/day, Sigma-Aldrich, United Kingdom) 1 day before Ang
II infusion. The specific PTEN inhibitor VO-OHpic (Selleck,
Houston, TX, United States) was intraperitoneally administered
(10 mg/kg/day per mouse) in mice beginning 1 day before Ang II
infusion (Chen et al., 2019).

AF Induction
Mice were anesthetized with 2.5% tribromoethanol (0.02 mL/g;
Sigma-Aldrich, United Kingdom) by intraperitoneal injection.
A Millar 1.1 F octapolar EP catheter (Scisense, NY, United States)
was guided into the right atrium and ventricle. AF Inducibility
was gauged by applying a 5-s burst using the automated
stimulator as described previously (Li et al., 2018, 2019; Zhang
et al., 2020). The 1-lead body surface ECG and ≤4 intracardiac
bipolar electrograms were recorded by the 15 A computer-based
data acquisition system (GY6328B; HeNan HuaNan Medical
Science and Technology, Co., Ltd.). A series of bursts was
repeated three times after 5-min stabilization.

Echocardiography
Two-dimensional M-mode echocardiography was performed on
mice using a 30 MHz probe (Vevo 1100 system; VisualSonics,
Toronto, ON, Canada) as described previously (Wang et al., 2018;
Chen et al., 2019; Yan et al., 2019; Zhang et al., 2020). The left
atrium (LA) chamber dimensions were measured.

Histological Analysis
Atrial samples were fixed in 4% paraformaldehyde, embedded
in paraffin, and then sectioned (5 µm). The staining of
Hematoxylin and eosin (H&E) and Masson’s Trichrome were
performed on the atrial sections in accordance with the
standard procedure (Li et al., 2018, 2019; Zhang et al.,
2020). The immunohistochemistry staining was performed with
anti-α-smooth muscle actin (α-SMA) (1:200, Abcam, MA,
United States) and anti-Mac-2 (1:200, Abcam) as described
(Wang et al., 2018). Cryosections were stained with the
dihydroethidine (DHE, 1 µM in PBS) for 30 min at 37◦C.
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Fluorescence was detected using Nikon Labophot 2 microscope
(Nikon, Tokyo, Japan).

Proteasome Activity Assay
The activity of proteasome in the atria was gauged
by specific luminogenic peptide substrates, including
Z-nLPnLD-aminoluciferin, Z-LRR-aminoluciferin, and Suc-
LLVY-aminoluciferin for the caspase-like, trypsin-like, and
chymotrypsin-like activities according to the manufacturer’s
instructions (Li et al., 2018, 2019; Chen et al., 2019).

Quantitative Real-Time PCR Analysis
The quantitative real-time PCR (qPCR) was gauged by an
iCycler IQ system (Bio-Rad, CA, United States). Total RNA from
atrium tissues were isolated with TRIzol and reverse transcribed
as described (Wang et al., 2016). The cDNA was used for
PCR amplification with gene-specific primers (Sangon Biotech,
Shanghai, China), including α-SMA, collagen I, collagen III, IL-
1β, IL-6, TNF-α, MCP-1, NOX2, NOX4, β1, β2, β5, β1i, β2i,
and β5i (Supplementary Table 1). The transcript quantities were
normalized to the amount of endogenous control (GAPDH).

Western Blot Analysis
Total proteins were extracted from snap-frozen atrium samples
using RIPA buffer plus protease inhibitors (Solarbio Science
Technology Co., China). The protein lysates were separated
by electrophoresis in 8–12% SDS-PAGE gels, transferred to
polyvinylidene difluoride (PVDF) membranes. The membranes
were incubated with appropriate primary antibodies and then
with horseradish peroxidase-conjugated secondary antibodies.
The signal intensities of immunoblots were detected by the ECL
Plus chemiluminescent system (Bio-Rad, CA, United States) and
were analyzed with a Gel-pro 4.5 Analyzer (Media Cybernetics,
United States) (Chen et al., 2019).

Statistical Analysis
The normality test (Shapiro–Wilk) was utilized to verify
whether the data were normally distributed. The student t-test
was performed to evaluate the significant difference between
two groups in normal distribution. For the data that were
not normally distributed, the Mann–Whitney test was used.
For the other comparisons, the significance of the difference
between means of the groups was determined by one-way
ANOVA following Newman–Keuls multiple comparison test
from GraphPad Prism 5 (GraphPad Prism Software). The values
of P < 0.05 were considered statistically significant.

RESULTS

GA Inhibits Ang II-Induced AF in Mice
We first tested whether administration of GA could reduce AF.
GA treatment significantly improved the elevation of SBP in
Ang II-treated mice in a dose-dependent manner (Figure 1A).
Moreover, the incidence and duration of Ang II-induced AF
were significantly reduced in GA-treated mice compared with

the vehicle-treated mice (Figures 1B–D). Furthermore, Ang II
infusion resulted in a marked increase in LA dilation in mice,
which was attenuated after GA treatment (Figure 1E). There was
no significant difference in SBP, AF inducibility and duration,
or LA dilation between the two groups after saline infusion
(Figures 1A–E). Thus, these data suggest that GA administration
attenuates Ang II-induced AF.

GA Suppresses Ang II-Induced Atrial
Fibrosis
We next examined whether GA attenuates the formation of
atrial fibrosis. After 3 weeks of Ang II infusion, the atrial
fibrotic area, percentage of α-SMA+ myofibroblasts, and mRNA
expression of α-SMA, collagen I, and collagen III were increased
in mice, and these effects were significantly abrogated by GA
administration (Figures 2A–C). Moreover, Ang II infusion
markedly upregulated the key signaling mediators of atrial
fibrosis, including TGF-β1 and p-Smad2/3, while this effect was
diminished in GA-treated mice (Figure 2D). Accordingly, these
results indicate that GA treatment effectively improves adverse
atrial structural remodeling after Ang II infusion.

GA Attenuates Ang II-Induced Atrial
Inflammation and Oxidative Stress
The administration of GA dose-dependently inhibited Ang II-
induced infiltration of inflammatory cells (as indicated by Mac-
2-positive macrophages) and the mRNA expression levels of
IL-1β, IL-6, TNF-α, and MCP-1 compared with the vehicle
(Figures 3A,C). Furthermore, Ang II infusion increased atrial
superoxide formation (demonstrated by DHE staining) and the
gene expression of NOX2 and NOX4 (Figures 3B,D). These
effects were reduced in GA-treated mice (Figures 3B,D). We
next determined the effect of GA on NF-κB signaling and gap
junction gene expression. In agreement with our recent studies
(Li et al., 2018, 2019; Zhang et al., 2020), the protein expression
levels of p-p65 and connexin 43 (Cx43) were upregulated in
Ang II-treated atria, and this upregulation was reversed after GA
treatment (Figure 3E).

GA Inhibits Immunoproteasome Activity
and PTEN Degradation
Recent studies have demonstrated that PTEN and its downstream
signaling are involved in Ang II-induced AF (Li et al.,
2018, 2019), therefore next we investigated the effect of
GA on proteasome-mediated PTEN degradation in the atria.
The administration of GA significantly and dose-dependently
suppressed Ang II-induced trypsin-like and chymotrypsin-
like activities (Figure 4A). Because constitutively expressed β-
subunits (β1, β2, and β5) and immunosubunits (β1i, β2i, and
β5i) have proteasome activity, RT-PCR and western blotting
analysis were utilized to evaluate subunit expression. Ang II
infusion increased the mRNA expression levels of β2i and β5i
compared with saline control (Figure 4B). Furthermore, GA
treatment dose-dependently reduced the gene expression of the
immunosubunits β2i and β5i but not β1i and constitutively
expressed β-subunits (β1, β2, and β5) in the atria after Ang II
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FIGURE 1 | Administration of GA attenuates Ang II-induced AF and atrial dilation. Mice were infused with Ang II (2000 ng kg-1 min-1) for 21 days. (A) Systolic blood
pressure (SBP) was measured by the non-invasive tail-cuff method in vehicle or GA-treated mice before and after Ang II infusion. (B) Representative atrial
electrogram recordings. Burst pacing is highlighted by solid underlines, while dashed underlines indicate AF. (C) Percentage of mice in which AF was successfully
achieved in each group (n = 8). (D) AF duration in mice with AF induction. (E) M-mode echocardiography of left atrium (LA) chamber (left), and quantification of LA
diameter (right, n = 8). *P < 0.05 versus saline, #P < 0.05 versus Ang II.

infusion (Figure 4B). In addition, the Ang II-induced increase in
protein expression levels of β2i and β5i was also downregulated
in GA-treated atria tissues (Figure 4C). In line with our
previous findings (Li et al., 2018, 2019), Ang II infusion for
3 weeks increased PTEN degradation and p-AKT1 protein

expression, and these effects were dose-dependently reversed
by the administration of GA (Figure 4C). Taken together,
these results demonstrate that GA treatment reduces PTEN
degradation likely via suppressing the expression and activity of
immunoproteasome subunits in Ang II-treated atria.
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FIGURE 2 | GA inhibits Ang II-induced atrial remodeling. (A) Representative images of Masson trichrome staining for atrial fibrosis (left). Quantification of fibrotic area
(right, n = 6). Scale bar: 100 µm. (B) Representative images of immunohistochemical staining of LA sections to detect myofibroblast activation (left). Quantification of
α-SMA+ areas (right, n = 6). Scale bar: 100 µm. (C) qPCR analyses of the mRNA expression levels of α-SMA, collagen I, and collagen III (n = 6). (D) Immunoblotting
analysis of the protein levels of TGF-β1, p-Smad2/3, and Smad2/3 in the atria (left), and quantification of each protein band (right, n = 4). GAPDH as an internal
control. *P < 0.05 versus saline, #P < 0.05 versus Ang II.

Blockage of PTEN Activity Reduces the
GA-Mediated Protective Effect on Ang
II-Induced AF
To identify the role of PTEN in Ang II-induced atrial remodeling
and AF after GA treatment, mice were treated with the PTEN
specific inhibitor VO-OHpic with or without administration of
GA. Three weeks after Ang II infusion, mice treated with GA
exhibited a significant reduction of SBP, AF inducibility and
duration, and LA dilation compared with the vehicle-treated
mice (Figures 5A–E); these effects were abolished by VO-OHpic

treatment (Figures 5A–E). Furthermore, the GA-mediated
decrease in atrial fibrotic area, number of α-SMA-positive
myofibroblasts, Mac-2+ macrophage infiltration, superoxide
production, and mRNA expression levels of α-SMA, collagen I,
and collagen III were reversed by VO-OHpic in GA-treated mice
(Figures 6A–D and Supplementary Figure 1). Accordingly, GA-
induced reduction of PTEN degradation and protein expression
of p-AKT1, TGF-β1, and p-p65 in Ang II-treated mice were
blocked after VO-OHpic treatment (Figure 6E). Collectively,
these results suggest that GA inhibits Ang II-induced atrial
remodeling and AF via reducing PTEN degradation.
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FIGURE 3 | GA reduces atrial inflammation and oxidative stress in mice after Ang II infusion. (A) Representative H&E staining (top) and Mac-2 immunohistochemistry
(bottom) in the atria. Quantification of Mac-2–positive cells (right, n = 6). Scale bar: 100 µm. (B) DHE staining of atrial superoxide production (left), and quantification
of DHE intensity (right, n = 6). Scale bar: 100 µm. (C) qPCR analyses of the mRNA expression levels of IL-1β, IL-6, TNF-α, and MCP-1 (n = 6). (D) qPCR analyses of
the mRNA expression of NOX2 and NOX4. (E) Immunoblotting analysis of the protein expression levels of p-p65, p65, and Cx43 in the atria (left), and quantification
of each protein band (right, n = 4). GAPDH as an internal control. *P < 0.05 versus saline, #P < 0.05 versus Ang II.

DISCUSSION

Here, we revealed for the first time that the administration
of GA inhibits Ang II-induced AF incidence and atrial
dilation. Specifically, GA blocks the activity and expression
of the immunoproteasome catalytic subunit β2i and β5i,

which reduces PTEN degradation and AKT activation.
This leads to the suppression of downstream signaling
mediators (TGF-β1-Smad2/3, NF-κB, and Cx43), which
improves atrial fibrosis, inflammation, and oxidative stress
(Figure 7). Therefore, our results provide new evidence that GA
serves as an effective inhibitor of the immunoproteasome
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FIGURE 4 | GA reduces the activity and expression of immunoproteasome subunits β2i and β5i and PTEN degradation in the atria after Ang II infusion. (A) The
proteasome activities in the atria after Ang II infusion in the presence or absence of GA treatment (n = 4). (B) qPCR analyses of the mRNA expression levels of β1,
β2, β5, β1i, β2i, and β5i (n = 4). (C) Representative immunoblotting analyses of the protein expression levels of β2i, β5i, PTEN, p-AKT1, and AKT1 (left), and
quantification of the relative protein levels (right, n = 4). GAPDH as an internal control. *P < 0.05 versus saline, #P < 0.05 versus Ang II.

and is a promising agent for treating AF and atrial
structural remodeling.

Atrial structural remodeling is the hallmark of the
development and progression of AF, which subsequently causes
LA enlargement and conduction abnormalities (Andrade et al.,
2014). This process consists of several mechanisms, including
atrial fibrosis, inflammation, and oxidative stress (Dzeshka
et al., 2015). Ang II has been demonstrated to significantly
increase SBP, left ventricular hypertrophy, and dysfunction,
which are established clinical risk factors for AF (Purohit et al.,
2013; Jansen et al., 2018). Current therapeutic agents for AF,
which include oral anticoagulation, angiotensin-converting
enzyme inhibitors, and antiarrhythmic drugs, focus on the
common symptoms and complications. However, adverse events
with these agents may increase mortality (Kirchhof, 2017).
Therefore, new options targeting atrial structural remodeling,
atrial dilation, and AF are urgently needed. GA is a natural
polyphenol compound that exerts a key role in protecting against
cardiac hypertrophy, hypertension, and fibrosis in several animal
models (Jin et al., 2017, 2018b). Recently, we demonstrated
that GA administration improved pressure overload-induced
myocardial hypertrophic remodeling (including hypertrophy,
fibrosis, inflammation, and oxidative stress) (Yan et al., 2019)
and Ang II-induced hypertension and vascular dysfunction (Yan
et al., 2020), suggesting that GA may exert a protective effect
on AF. In agreement with this, we demonstrated that GA not

only markedly reduced the elevation blood pressure but also
attenuated atrial fibrosis, inflammation, and ROS production in
Ang II-treated mice (Figures 2, 3), which are involved in the
pathogenesis of AF. Thus, our results indicate that GA markedly
reduced AF development at least in part through blocking Ang
II/hypertension-induced atrial remodeling.

Proteasomal degradation is the vital pathway for intracellular
protein turnover in most mammalian cells and organs, including
the heart (Lyon et al., 2013). After stimulation by inflammatory
cytokines, H2O2, and heat shock, the immunoproteasome is
induced and exhibits immune and non-immune functions, such
as antigen presentation, inflammation, oxidative stress, and cell
signaling (Angeles et al., 2012). Increasing evidence demonstrates
that adverse stimuli including pressure overload, isoproterenol,
deoxycortone acetate/salt, and Ang II increase the catalytic
activity and expression of the immunoproteasome, leading to
cardiac hypertrophy and AF (Depre et al., 2006; Drews et al.,
2010; Li et al., 2015; Yan et al., 2017). In contrast, the proteasome
inhibitor bortezomib effectively ameliorates Ang II-induced
myocardial hypertrophy and contractile function (Li et al., 2015).
Moreover, we recently found that the activity and expression of
β2i and β5i are upregulated in the atria of Ang II-treated mice and
the serum of patients with AF (Li et al., 2018, 2019). Knockout
of β2i or β5i attenuates Ang II-induced atrial remodeling and
development of AF (Li et al., 2018, 2019). Interestingly, several
natural products, including quercetin and resveratrol, have
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FIGURE 5 | Blocking of PTEN activity suppresses the GA-mediated beneficial effect on Ang II-induced AF. (A) SBP was measured by the non-invasive tail-cuff
method in the vehicle or GA-treated mice before and after Ang II infusion with or without VO-OHpic treatment. (B) Representative atrial electrogram recordings. Burst
pacing is highlighted by solid underlines, while dashed underlines indicate AF. (C) Percentage of mice in which AF was successfully achieved in each group (n = 8).
(D) AF duration in mice with AF induction. (E) M-mode echocardiography of LA chamber (left), and quantification of LA diameter (right, n = 8). *P < 0.05 versus Ang
II, #P < 0.05 versus Ang II + GA.

been shown to inhibit proteasome activity, thereby ameliorating
atherosclerosis and cardiac hypertrophy (Pashevin et al., 2011;
Chen et al., 2019). In the present study, we have provided
novel evidence that GA administration significantly suppresses
the activity and expression of the immunoproteasome catalytic
subunits β2i and β5i in the atria of Ang II-treated mice.

Accumulating evidence suggests that PTEN plays a critical
role in cardiovascular disease by inhibiting AKT-dependent
pathways (GSK3, FOXO, and mTOR) and PINK1-AMPK

signaling cascades (Crackower et al., 2002; Song et al., 2012;
Xu et al., 2014; Roe et al., 2015). The cardiomyocyte-specific
dysfunction of PTEN in mice results in myocardial hypertrophy
and contractility defects, which are accompanied by inhibition
of autophagy (Crackower et al., 2002; Xu et al., 2014; Roe
et al., 2015). However, these effects could be reversed by
rapamycin-induced suppression of mTOR and metformin-
dependent activation of AMPK (Xu et al., 2014; Roe et al.,
2015). Of note, our recent studies have demonstrated that
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FIGURE 6 | PTEN inhibition blocks the GA-mediated protective effect on atrial remodeling and downstream signaling pathways. (A) Representative images of
Masson trichrome staining for atrial fibrosis (left). Quantification of fibrotic area (right, n = 6). Scale bar: 100 µm. (B) Representative images of immunohistochemical
staining of LA sections to detect myofibroblast activation (left). Quantification of α-SMA+ areas (right, n = 6). Scale bar: 100 µm. (C) Representative Mac-2

(Continued)
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FIGURE 6 | Continued

immunohistochemistry (left) in the atria. Scale bar: 100 µm. Quantification of Mac-2–positive cells (right, n = 6). (D) DHE staining of atrial superoxide production (left),
and quantification of DHE intensity (right, n = 6). Scale bar: 100 µm. (E) Representative immunoblotting analyses of the protein expression levels of PTEN, p-AKT1,
AKT1, TGF-β1, p-p65, and p65 (left), and quantification of the relative protein levels (right, n = 4). GAPDH as an internal control. *P < 0.05 versus Ang II, #P < 0.05
versus Ang II + GA.

FIGURE 7 | A schematic model of the GA-mediated cardioprotection in Ang II-induced AF. GA inactivates immunoproteasome-dependent degradation of PTEN,
leading to the downregulation of AKT1, TGF-β1-Smad2/3, NF-κB p65, and Cx43 signaling mediators. Therefore, GA ameliorates atrial remodeling and AF induced
by Ang II infusion.

PTEN plays a role in Ang II-induced AF and atrial structural
remodeling by ameliorating AKT1 and downstream signaling
mediators (TGF-β1-Smad2/3, NF-κB, and Cx43) (Li et al., 2018,
2019). Thus, the regulation of PTEN activity and/or protein
expression is considered as a promising therapeutic strategy
for heart disease. PTEN activity is indeed modulated by post-
translational modifications, especially ubiquitination-mediated
proteasomal degradation (Lee et al., 2018). We and others
demonstrated that proteasomal dysfunction induced by knockout
of the immunoproteasome subunits β1i, β2i, or β5i in mice
attenuated PTEN degradation, leading to the downregulation
of AKT-associated signaling pathways in ischemic hearts and
AF (Cai et al., 2008; Li et al., 2018, 2019). Interestingly, several
natural compounds have been identified as potent inhibitors of
PTEN degradation. Indole-3-carbinol, derived from cruciferous
vegetables, directly blocks E3 ubiquitin ligase WWP1 and
subsequently suppresses the K27-linked ubiquitination of PTEN
(Lee et al., 2019). Moreover, we recently showed that resveratrol
represents a novel inhibitor of the immunoproteasome and
restores PTEN stability in pressure overload-induced cardiac
hypertrophy and fibrosis (Chen et al., 2019; Zou et al., 2019).
In the present study, we extended our previous findings and
demonstrated that administration of GA markedly decreased
PTEN degradation and activation of AKT1, leading to inhibition

of AF and atrial remodeling in Ang II-treated mice. These
effects were reversed by the specific PTEN inhibitor VO-OHpic.
Collectively, our novel findings suggest that PTEN plays a role in
the GA-mediated cardioprotective effects on Ang II-treated atria.

Several studies have explored the bioavailability of GA in
humans (Manach et al., 2005). After the oral administration of
pure tablets or black tea (each containing 50 mg GA), GA was
rapidly absorbed and the plasma concentrations of GA reached
1.83 µmol/L (Shahrzad et al., 2001). Interestingly, our recent
study revealed that the dosage of GA used in mice (5 or 20 mg/kg
BW) was equivalent to 0.41 or 1.63 mg kg/BW in humans
(Yan et al., 2019), which is consistent with the results of others.
Moreover, we found that primary cardiomyocytes treated with
GA (1–200 µmol) showed no significant toxic effect (Yan et al.,
2019). Thus, GA may serve as a safe and effective natural product
for the prevention and treatment of cardiovascular diseases.
Further investigations are needed to verify the bioavailability of
different forms of GA in foods.

CONCLUSION

In summary, in this study we demonstrated for the first
time that GA administration significantly attenuated Ang
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II-induced AF and atrial structural remodeling in
mice. Moreover, GA suppressed the activity and
expression of the immunoproteasome subunits β2i
and β5i, which ameliorated PTEN degradation leading
to inactivation of AKT1 and downstream signaling
pathways (TGF-β1-Smad2/3, NF-κB, and Cx43). Thus,
these findings identify GA as a novel inhibitor of the
immunoproteasome and suggest a potential approach to AF
prevention and treatment.
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