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Colorectal cancer (CRC) is one of the most common malignant tumors. Selecting
effective treatment for CRC patients, especially in the early stages, remains a
challenge because of the lack of adequate biomarkers. Recent evidence suggests
that RNA-binding proteins (RBPs) play a vital role in development and progression
of carcinogenesis. However, their mechanisms in cancer progression are still limited.
The role of RBPs in CRC has been poorly understood. There were 1,542 reported
RBPs analyzed between CRC tissues and normal tissues using the Wilcoxon test to
identify differentially expressed RBPs (DE RBPs). Then, the potential functions and the
prognostic value of these DE RBPs were explored through systematic bioinformatics
analysis. There were 177 DE RBPs identified between CRC tissues and normal
tissues. A protein—protein interaction network was constructed based on DE RBPs,
and critical modules were screened. A regulatory network between prognostic DE
RBPs and differentially expressed transcription factors was constructed. Besides, a
risk signature was built based on prognostic DE RBPs, which is able to predict
overall survival of CRC patients with high accuracy. In conclusion, the results provided
a comprehensive understanding of the functions of RBPs in CRC, as well as an
RBP-related prognostic signature.

Keywords: colorectal cancer, RNA-binding protein, prognostic signature, overall survival, regulatory network

INTRODUCTION

Colorectal cancer (CRC) is one of the most common malignant tumors and the second cause
of tumor-related mortality worldwide (Arnold et al., 2017; Bray et al., 2018). By 2030, the global
burden of CRC is expected to increase by 60%, with 2.2 million new cases and 1.1 million deaths
(Douaiher et al., 2017). The 5-year survival for CRC patients with local tumor is 90.3% and is 70.4%

Abbreviations: AUC, area under the ROC curve; BP, biological processes; CCs, cellular compartments; CRC, colorectal
cancer; DE RBPs, differentially expressed RBPs; FC, fold change; GO, Gene Ontology; HR, hazard ratio; KEGG, Kyoto
Encyclopedia of Genes and Genomes; MFs, molecular functions; NSCLC, non-small cell lung cancer; OS, overall survival;
PPI, protein-protein interaction; RBPs, RNA-binding proteins; ROC, receiver operating characteristic; TCGA, The Cancer
Genome Atlas; TFs, transcription factors.
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for patients with locally advanced disease, which declines to
12.5% for patients with metastatic disease (DeSantis et al., 2014).
Surgery is the most common treatment for early CRC and
locally advanced CRC (Hudson et al., 2013; Angenete, 2019).
However, half of the patients will suffer a recurrence within
3 years after surgery (Aghili et al., 2010). Despite some advances
in the diagnosis and treatment of CRC over the past few decades,
the 5-year overall survival (OS) is only 50-65% (DeSantis et al.,
2014). Selecting effective treatment for CRC patients, especially
in the early stages, remains a challenge because of the lack of
adequate biomarkers. Therefore, further understanding of the
pathogenesis of CRC will help us to develop effective means for
diagnostic and treatment.

It is widely believed that the development of cancer is partly
determined by abnormal transcription events and signaling
pathways. Emerging evidence shows that RNA-binding proteins
(RBPs) could regulate cell proliferation, differentiation, invasion,
metastasis, apoptosis, and angiogenesis and thus play a vital
role in the initiation and progression of cancer (Wurth,
2012). RBPs regulate a variety of RNA biogenesis, including
RNA splicing, polyadenylation, nucleocytoplasmic transport,
mRNA translation, and RNA degradation (Lu et al, 2006;
Saunus et al., 2008; Shen and Pili, 2008). So far, several RBPs
have been found to be involved in cancer progression. RBPs
regulate posttranscriptional genes at different levels of mRNA
metabolism, including alternative splicing, localization, stability
of mRNA, and so on. For example, Sam68, belonging to STAR
(signal transduction and activation of RNA) family of RBPs (Bielli
et al, 2011; Fu et al,, 2019), regulates alternative splicing of
cancer-related mRNA, such as CD44 (Matter et al., 2002), cyclin
D1 (Paronetto et al., 2010), and Bcl-x (Paronetto et al., 2007).
Cap-binding protein eIF4E (eukaryotic initiation factor 4E) is
a crucial regulator of translation initiation (Topisirovic et al.,
2011). eIF4E has been reported to be overexpressed in different
cancers (Hsieh and Ruggero, 2010). However, overexpression of
eIF4E does not lead to an overall increase of protein synthesis
but enhances the translation of several mRNAs encoding mainly
pro-oncogenic proteins (Silvera et al., 2010). mRNAs regulated by
eIF4E overexpression include those involving in cell cycle (cyclin
D1, CDK2, c-myc, Bcl-2, survivin) or angiogenesis (vascular
endothelial growth factor, fibroblast growth factor 2, platelet-
derived growth factor) or invasion (matrix metalloproteinase 9)
(Mamane et al., 2004; Hsieh and Ruggero, 2010; Silvera et al,,
2010). HuR is a member of the ELAV-like family of RBPs.
It contains three RNA-recognition motifs by which it binds
specific mRNAs to affect their stability and translation. HuR can
stabilize the mRNAs coding for cyclins involved in cell cycle
progression to promote the proliferation of cancer cells (Wang
et al,, 2000; Lal et al., 2004; Guo and Hartley, 2006). HuR also
stabilizes the mRNAs coding antiapoptotic proteins such as Bcl-
2, SIRT1, and p21 (Abdelmohsen et al., 2007; Ishimaru et al.,
2009; Cho et al., 2010). Overexpression of HuR has been observed
in multiple cancers, including CRC (Lopez, de Silanes et al.,
2003; Denkert et al., 2006). HuR has been reported to augment
the stability and translation of COX-2 mRNA in CRC (Dixon
et al.,, 2001; Subbaramaiah et al., 2003). Besides, several other
RBPs have been found to be abnormally expressed in CRC,

such as RBM3 (Sureban et al., 2008), CUGBP2 (Ramalingam
et al.,, 2008), Musashi-1 (Kudinov et al., 2017), and tristetraprolin
(Young et al., 2009). However, the RBPs and their mechanisms
in cancer progression remain to be explored. Benefiting from
high-throughput screening technology, more than 1,500 RBPs
have been identified (Gerstberger et al., 2014). A systematic
functional study of RBPs in CRC will not only contribute to our
deeper understanding of RBPs, but also provide new ideas for
the pathogenesis of CRC. Therefore, an integrated bioinformatics
analysis of RBPs in CRC was performed. Abnormally expressed
RBPs between CRC tissues and normal tissues from The Cancer
Genome Atlas (TCGA) dataset were identified, and then a
systematic functional analysis was performed on these RBPs. In
addition, a prognostic signature related to RBPs was constructed
to predict the survival of CRC patients.

MATERIALS AND METHODS

Data Collection and Identification of
Differentially Expressed RBPs

Colorectal cancer samples containing genetic information and
clinical information from TCGA-COAD were downloaded. RBP
lists were obtained as described (Gerstberger et al., 2014). After
data normalization, differentially expressed RBPs (DE RBPs)
between normal tissues and tumor tissues were identified through
the Wilcoxon test. RBPs with [log,FC (fold change) | >1 and
adjusted p < 0.05 were deemed DE RBPs.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Functional

Enrichment Analyses

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses for DE RBPs were
performed using an R package “clusterProfiler.” GO annotation
based on three categories, including biological processes (BPs),
cellular compartments (CCs), and molecular functions (MFs).
Terms in GO and KEGG with a false discovery rate <0.05
were considered significantly enriched and were visualized by R
package “ggplot2.”

Protein—-Protein Interaction Network

Construction and Module Screening

Protein-protein interaction (PPI) network of DE RBPs was
constructed using STRING database,' and an interaction with a
combined score >0.4 was considered as statistically significant.
Cytoscape, an open-source bioinformatics software platform, was
used to visualize molecular interaction networks. The plug-in
Molecular Complex Detection (MCODE) in Cytoscape software
was used to cluster a given network based on the topology to
find densely connected regions. The PPI networks were drawn
with Cytoscape, and the most significant modules in the PPI
networks were identified through MCODE with the default
criteria, including MCODE score >5, degree cutoff value = 2,

'https://string-db.org
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node score cutoff value = 0.2, maximum depth = 100, and
k-score = 2.

Construction and Validation of a
Prognostic Signature Based on DE RBPs

The CRC patients were randomly divided into a training set
and a testing set. The training set was used to construct an
RBP-related prognostic signature, and the testing set was used
to validate its prognostic capability. To explore the putative DE
RBPs related to the prognosis of CRC patients, a univariate
Cox proportional hazards regression analysis was performed to
explore the putative DE RBPs related to OS of CRC patients.
The DE RBP with p < 0.05 was considered as a prognostic RBP.
Then prognostic RBPs were used to construct the risk model for
predicting the prognosis for CRC patients based on a multivariate
Cox proportional hazards regression analysis. In this risk model,
the risk score of each sample was calculated according to the
following formula: risk score = expression of RBP 1 x coefficient
1 + expression of RBP 2 x coefficient 2 + expression of RBP
n x coefficient n. The median risk score was used as the cutoff
value. Patients were then divided into high- and low-risk groups
according to the cutoff value. The Kaplan-Meier survival curves
were carried out using “survival” R package based on high-
and low-risk groups according to the risk model. To validate
the prognostic capability of the risk model, the time-dependent
receiver operating characteristic (ROC) analyses were performed
with “survivalROC” R package.

Association Between the Risk Signature
Related to RBPs and Clinicopathological
Factors

To assess whether the prognosis signature we constructed
is independent of other clinical factors, a univariate Cox
proportional hazards regression and a multivariate Cox
regression analysis were performed on the RBP-related signature
together with gender, age, and stage.

The Regulatory Network Between
Prognostic DE RBPs and DE
Transcription Factors

To explore the potential molecular mechanisms of prognostic
DE RBPs, the regulatory network between prognostic DE RBPs
and differentially expressed transcription factor (DE TFs) was
constructed. TFs are important molecules that directly regulate
gene expression. Hence, exploring DE TFs, which have the
potential ability in regulating the prognostic DE RBPs, would help
to understand the MFs of the prognostic DE RBPs. The Cristrome
Cancer database® is a valuable resource for experimental and
computational cancer biology research and contains a total of
318 TFs related to cancer (Mei et al., 2017). DE TFs between
CRC tissues and normal tissues were identified through the
Wilcoxon test. TFs with | logzFC | >1 and adjusted p < 0.05
were deemed DE TFs.

Zhttp://cistrome.org/

RESULTS

Identification of DE RBPs in CRC

Patients

The workflow of the study is illustrated in Supplementary
Figure 1. RNA sequencing data for CRC and corresponding
clinical information were downloaded from TCGA database.
There were 1,542 reported RBPs analyzed (Gerstberger et al,
2014). After data normalization, DE RBPs were detected between
47 normal tissues and 473 tumor tissues with an adjusted p < 0.05
and [log,FC| > 1 as the thresholds. A total of 177 DE RBPs were
obtained (Figure 1A and Supplementary Table 1), including
123 upregulated RBPs and 54 downregulated RBPs in tumor
tissues (Figure 1B).

Functional Enrichment Analysis of the

Differentially Expressed RBPs

To explore the potential functions of the DE RBPs, GO, and
KEGG enrichment analyses were performed. For BP enrichment,
DE RBPs were mostly enriched in ncRNA (non-coding RNAs)
metabolic process, RNA phosphodiester bond hydrolysis, and
ncRNA processing (Figure 2A). For CC enrichment, DE RBPs
were mainly involved in cytoplasmic ribonucleoprotein granule,
nucleolar part, and ribonucleoprotein granule (Figure 2A). For
MF enrichment, RBPs are mainly enriched in catalytic activity,
acting on RNA, ribonuclease activity, and nuclease activity
(Figure 2A). The top five most significant GO enrichment
terms are shown in Figure 2B. KEGG enrichment analysis
showed DE RBPs were mainly involved in mRNA surveillance
pathway, ribosome biogenesis in eukaryotes, and RNA transport
(Figures 2C,D).

PPI Network Construction and Critical

Module Screening

To further explore the potential functions of DE RBPs, a PPI
network was constructed using STRING database and Cytoscape
software. The PPI network of DE RBPs was downloaded from
STRING database (Supplementary Figure 2A) and visualized
with Cytoscape (Supplementary Figure 2B). Then, the network
was further analyzed for critical modules by the plug-in MCODE
in Cytoscape (Figure 3A), and the top three significant modules
were obtained. Module 1 included 21 RBPs, all of which were
upregulated RBPs except for DQX1 (Figure 3B). Module 2
included 13 RBPs, all of which were upregulated RBPs except
for TDRD7 (Figure 3C). Module 3 included five downregulated
RBPs (Figure 3D).

Identification of Prognosis-Related DE

RBPs

To explore the putative DE RBPs related to prognosis for
CRC patients, a univariate Cox proportional hazards regression
analysis was performed to identify survival-related DE RBPs.
There were 13 DE RBPs significantly correlated with OS
(p < 0.05) (Table 1).
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FIGURE 1 | The expression of DE RBPs in CRC based on data from TCGA. (A) Heatmap analysis of the differentially expressed RBPs between normal tissues and
tumor tissues. Each column represents a tissue sample, and each row represents a differentially expressed RBP. Red indicates high expression, and green indicates
low expression. N, normal; T, tumor. (B) Volcano plot of differentially expressed RBPs. The horizontal line is for adj p = 0.05, and the vertical lines are for | logoFC| = 1.
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The Regulatory Network Between
Prognostic DE RBPs and DE TFs

Three hundred eighteen TFs related to cancer were obtained
from The Cristrome Cancer database (see text footnote 2).
Then, differentially expressed TFs between CRC tumor tissues
and normal tissues were analyzed. A total of 77 differentially
expressed TFs were obtained with a threshold that adjusted
p < 0.05 and | log;FC| > 1 (Supplementary Table 2). Then, a
regulatory network based on these 77 DE TFs and 13 prognostic
DE RBPs was constructed (Figure 3E). The coexpressed genes
were identified by calculating the Pearson correlation between DE
TFs and prognostic DE RBPs. The screening criteria were set as |
Pearson coefficient| > 0.4 and p < 0.001.

Construction of a Prognosis Signature

Based on RBPs

The 13 prognostic DE RBPs were applied to construct a
prognostic model based on multiple Cox regression analysis.
Cross-validation was performed to minimize overfitting. A risk-
score formula consisting of seven RBPs was obtained as follows:
risk score = (—2.01089 x TDRD®6) + (—1.06396 x TDRD7) +
(—0.83990 x PPARGCIA) + (—0.99781 x PABPC3) + (—1.3002
9 x LRRFIP2) + (—0.58829 x ZC3H12C) + (0.34108 x PNLD
C1). The forest plot for the seven-RBP signature was shown
in Supplementary Figure 3. The risk scores of patients in the
training set and the testing set were calculated with the above
formula. The median risk score of the training set was used for
the cutoff value, by which the training set and the testing set
were divided into high- and low-risk group. The heatmap showed
the expression profiles of the seven RBPs in the training group
(Figure 4A). The ranked risk scores of patients in the training set
are shown in Figure 4B. The survival status for each patient was
plotted, respectively (Figure 4C). The expression profiles of the

seven RBPs in the testing set are presented in Figure 4D. The
ranked risk scores of patients and the survival status for each
patient in the testing set were plotted, respectively (Figures 4E,F).
The results suggested that patients in the high-risk group showed
a higher mortality rate than those in low-risk group both in the
training set and the testing set.

Validation of the RBPs-Related Risk Signature

To investigate the prognostic value of the RBP-related risk
signature, Kaplan-Meier survival analysis was performed
between high- and low-risk groups in the training set and
the testing set. The high-risk group had a significantly poorer
OS than that of the low-risk group both in the training set
(Figure 5A) and the testing set (Figure 5E). In addition, the ROC
analysis was performed to evaluate the predictive efficiency of
the RBP-related prognostic signature. The areas under the ROC
curve (AUCs) for the risk signature on OS at 1, 3, and 5 years
were 0.712, 0.743, and 0.708 in the training set (Figures 5B-D).
The AUCs for the risk signature on OS at 1, 3, and 5 years
were 0.703, 0.700, and 0.735 in the testing set (Figures 5F-H).
The Kaplan-Meier analysis and the ROC analysis showed that
the risk signature could predict the survival status of patients
with high accuracy.

The RBP-Related Prognosis Signature Is
an Independent Prognostic Index

To assess whether the prognosis signature we constructed
is independent of other clinical factors, a univariate Cox
proportional hazards regression and a multivariate Cox
regression analysis were performed on the seven-gene signature
together with gender, age, stage. Univariate Cox analysis result
showed that RBP-related prognosis signature [hazard ratio
(HR) = 1.332, 95% confidence interval (CI) = 1.211-1.465,
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p < 0.001] was significantly correlated with the survival of
patients in the training set (Table 2). After multivariable
adjustment by other clinical factors, the prognosis signature
(HR = 1.252, 95% CI = 1.136-1.380, p < 0.001) was still
significantly associated with survival of patients (Table 2),
which suggested that the RBP-related prognosis signature is
an independent prognostic factor associated with survival of
patients with CRC.

Construction of a Nomogram Based on
the Prognostic Signature in the Training
Set

To provide a quantitative method to predict the survival
probability of CRC patients, a prognostic nomogram was
established based on the seven RBPs of the prognostic signature

using Cox proportional hazards regression analysis to predict 1-,
3-, and 5-year OS of CRC patients (Figure 6). To calculate the
probability of survival at a certain point in time, the patient’s
total score can be obtained by adding the scores corresponding
to the values of each predictive variable and then reading the
corresponding risk or probability of survival from the total score.

DISCUSSION

RNA-binding proteins play a vital role in the development
and progression of carcinogenesis with various mechanisms.
However, only a small number of RBPs have been studied in
depth to confirm their role in tumor progression. Until now,
there is no systematic study on RBPs in CRC. In the present study,
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we identified 177 DE RBPs between CRC tissues and normal
tissues from TCGA dataset. To explore the potential functions of
the DE RBPs, an integrated analysis was performed. We analyzed
signaling pathways these DE RBPs involved in, constructed PPI
network, and regulatory network between prognostic DE RBPs
and TFs, which would provide a comprehensive understanding
of the functions of RBPs in CRC. To further explore the clinical
significance, we constructed an RBP-related prognostic model

TABLE 1 | Univariate Cox proportional hazards regression analysis of DE RBPs.

DE RBP HR HR.95L HR.95H p-Value
TDRD6 0.146237 0.031935 0.669646 0.013267
POP1 0.547387 0.32844 0.912291 0.020767
TDRD7 0.369575 0.198223 0.689049 0.001738
LUZP4 9.613842 3.401484 2717225 1.96E-05
PPARGC1B 0.369954 0.164463 0.832203 0.016215
PPARGC1A 0.465469 0.28667 0.755786 0.001987
PABPC3 0.465077 0.247277 0.874714 0.017535
LRRFIP2 0.327354 0.128233 0.83567 0.019523
ZC3H12C 0.578625 0.367349 0.911415 0.01827
RBM47 0.549608 0.307602 0.982011 0.043253
CELF4 27.334 6.51501 114.6809 6.14E-06
PNLDC1 1.566855 1.103357 2.225058 0.012086
AFF3 4.557023 1.086579 19.11179 0.038127

Bold values significantly changed (p < 0.05).

to predict the OS of CRC patients. These results provide novel
biomarkers for prognosis of CRC patients.

For GO enrichment analysis, the BP of DE RBPs is mainly
enriched in ncRNA metabolic process, RNA phosphodiester
bond hydrolysis, ncRNA processing, nucleic acid phosphodiester
bond hydrolysis, RNA localization, ribosome biogenesis, and so
on. MicroRNAs, long non-coding RNAs, and small interfering
RNA all belong to ncRNA. In recent years, it has become
increasingly apparent that ncRNAs play a vital role in human
cancer (Esquela-Kerscher and Slack, 2006; Hammond, 2007;
Croce, 2009; Gibb et al., 2011). The hyperactivation of ribosome
biogenesis, which can be caused by oncogenes or the loss of
tumor suppressor genes, plays a vital role in cancer initiation
and progression (Orsolic et al, 2016; Truitt and Ruggero,
2017). The upregulation of ribosome biogenesis during G1/S
arrest can promote epithelial-to-mesenchymal transition, which
is associated with tumor development and metastasis (Prakash
et al., 2019). Drugs inhibiting ribosome biogenesis may offer
an effective treatment for cancer (Bruno et al., 2017). For
KEGG pathway enrichment, DE RBPs are mainly involved in
mRNA surveillance pathway, ribosome biogenesis in eukaryotes,
RNA transport, and RNA degradation. The mRNA surveillance
pathway is a quality control mechanism that detects and
degrades abnormal mRNAs (Moore, 2005). Non-sense-mediated
mRNA decay (NMD) is one of the most common mRNA
surveillance, which is involved in the detection and decay of
mRNAs containing premature termination codons (Hentze and
Kulozik, 1999). Inhibition of the oncogenic activity of NMD,
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TABLE 2 | Univariate and multivariate Cox proportional hazards regression
analysis of the RBP-related signature and clinical factors with overall survival in
the training set.

Variables Univariate analysis Multivariate analysis

HR 95% CI p-Value HR 95% CI p-Value
Gender 1.315 0.701-2.466  0.394 1.050 0.537-2.053  0.887
Age 1.034 1.006-1.063 0.016 1.038 1.010-1.067  0.007
Stage 2422 1.656-3.541 <0.001 2486 1.659-3.723 <0.001
Risk score  1.332 1.211-1.465 <0.001 1.252 1.136-1.380 <0.001

Bold values significantly changed (p < 0.05).

producing several encoded mutant proteins with deleterious
activity, may be an effective strategy for the personalized
treatment of microsatellite instability CRC (Bokhari et al,
2018). Tumor suppressor genes are prone to NMD-induced
nonsense mutations, which were reported in a series of tumors,
including stomach cancer, ovarian cancer, ovarian cancer, breast
cancer, and kidney cancer (Popp and Maquat, 2018). RBPs
are crucial components in RNA metabolism, resulting in
highly organized subcellular localization, mRNA translation, and
RNA degradation and then exert regulatory effects on cancer
progression (Saunus et al., 2008; Shen and Pili, 2008). These
results suggest that DE RBPs may be involved in CRC progression
by regulating multiple BPs, such as NRA metabolism, RNA
processing, ribosome biogenesis, and mRNA surveillance.

To further explore the potential functions of DE RBP in
CRC, PPI network was constructed, and the critical module
was screened. Some RBPs among the critical module have been

reported to be involved in cancer progression. RRS1, a nuclear
protein involved in ribosome biogenesis, has been reported
to regulate cancer progression in hepatocellular carcinomas
(HCCs) and breast cancer. RRS1 plays a critical role in cell
proliferation, colony formation, cell apoptosis, and cell cycle
distribution in human HCC cells (Wang et al, 2017). In
breast cancer, both the copy number and the mRNA expression
of RRSI increased in cancer tissues compared with normal
tissues, and RRS1 overexpression was significantly correlated
with lymph node metastasis and poor survival (Song et al,
2018). RRP12 was crucial for the survival of osteosarcoma
cell line U20S during cytotoxic stress via the repression
of p53 stability, suggesting that target RRP12 may enhance
the chemotherapeutic effect in cancers (Choi et al, 2016).
Although some of the RBPs among the crucial modules have
been linked to cancer development or resistance to cytotoxic
stress, their mRNA targets and mechanism of action are still
unclear. In-depth functional research on the RBPs among
the critical modules will provide a new way to explore the
pathogenesis of CRC, as well as the drug-sensitive targets for
CRC treatment. Genes associated with prognosis usually get
more attention. In the present study, 13 prognostic DE RBPs
were identified by univariate Cox proportional hazards regression
analysis (Table 1). Some of the identified prognostic DE RBPs
have been reported associated with tumor progression, such
as RBM47, LUZP4, AFF3, PPARGC1A, PPARGCI1B, PABPC3,
and PNLDC1. RBM47 has been identified as a suppressor of
breast cancer progression and metastasis, and patients with a
low level of RBM47 tended to have a poor clinical outcome
(Vanharanta et al, 2014), which suppresses the metastasis
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FIGURE 6 | Prognostic nomogram based on the RBP-related signature for prediction of 1-, 3-, and 5-year survival rates.
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of breast cancer by stabilizing transcripts of Dickkopf Wnt
signaling pathway inhibitor (Vanharanta et al., 2014). Reduced
levels of RBM47 have also been observed in non-small cell
lung cancer (NSCLC) patients, which correspond to a poorer
prognosis and more advanced disease (Shen et al., 2020). RBM47
disrupted NSCLC progression through stabilizing AXIN1 mRNA
and consequently suppressing Wnt/B-catenin signaling (Shen
et al., 2020). Other mechanisms of RBM47-mediated tumor
inhibition in lung cancer have also been reported, RBM47 plays
a tumor-suppressive role in lung cancer through inhibiting
Nrf2 activity (Sakurai et al., 2016). Downregulation of RBM47
in CRC may promote epithelial-mesenchymal transition and
metastasis (Rokavec et al., 2017). RBM47 positively regulates
the expression of p53 at the transcriptional level and controls
the expression of p21 indirectly through regulation of the
p53 promoter activity (Radine et al., 2020). Our analysis also
showed RBM47 was downregulated in CRC tissues (log,FC = -
1.59, adjusted p = 3.92 x 10~2!; Supplementary Table 1),
and low level of RBM47 corresponding to a worse prognosis
(HR = 0.549608, p = 0.043253; Table 1). LUZP4, also called
CT-8 or HOM-TES-85, is an mRNA export adaptor required
for melanoma proliferation (Viphakone et al., 2015). LUZP4
is upregulated in a range of cancers, including lung cancer,
ovarian cancer, and glioma (Tireci et al, 2002). Consistent
with these results, the expression of LUZP4 in CRC was also
significantly higher than that in normal tissues (log,FC = 3.28,
adjusted p = 5.60 x 10~ 13; Supplementary Table 1). Univariate
Cox proportional hazards regression analysis suggested an
increased risk for CRC patients while the LUZP4 level was
high (HR = 9.613842, p = 0.001738; Table 1). AFF3 is a new
target of Wnt/B-catenin pathway involved in adrenocortical
cancer, acting on transcription and RNA splicing (Lefévre et al,,
2015). Overexpression of AFF3 in breast cancer was associated
with tamoxifen resistance and worse OS (Shi et al., 2018).
However, downregulation of AFF3 was observed in CRC tissues
(log,FC = —2.92, adjusted p = 2.54 x 10~2%; Supplementary
Table 1). AFF3 may have different roles in cancers. PPARGC1A
is upregulated and facilitates lung cancer metastasis (Li et al,
2017). Genetic variants in PPARGC1A and PPARGC1B have been
reported in breast tumors and were associated with familial breast
cancer susceptibility (Wirtenberger et al.,, 2006). PABPC3 has
been reported to be a breast cancer candidate gene that may
be associated with breast cancer (Kim et al., 2017). PNLDC1
mRNA was altered in several tumor types by analyzing more
than 6,000 adult and pediatric tumors (Saghafinia et al., 2018).
Although these prognostic DE RBPs were documented to be
involved in tumor development, the functions and mechanisms
of the remaining DE RBPs other than RBM47 have not been fully
elucidated. Some identified prognostic DE RBPs have not been
associated with cancers, such as CELF4, POP1, TDRD6, TDRD7,
LRRFIP2, and ZC3H12C. Even so, LRRFIP2 was identified as
a component of the Wnt signaling pathway that mediates or
modulates Wnt signaling through interactions with Dvl (Liu
et al., 2005). LRRFIP2 may be involved in cancer progression
through regulating Wnt signaling pathway.

The functions of some identified prognostic DE RBPs
have not been reported. We constructed a regulatory network

based on differentially expressed TFs and prognostic DE
RBPs by calculating the Pearson correlation, which would
contribute to a systematic understanding of prognostic DE
RBPs in CRC. As shown in Figure 3E, three RBPs (TDRD?7,
ZC3H12C, and RBM47) may be regulated by KLF4. KLF4 is
an evolutionally conserved zinc finger-containing transcription
factor that regulates diverse cellular processes such as cell
growth, proliferation, and differentiation (Bieker, 2001; Ghaleb
et al, 2005). KLF4 displays a tumor-suppressive function,
which is downregulated in CRC (Shie et al., 2000b). KLF4
overexpression in CRC cell line reduced transformation,
migration, invasion, and tumorigenicity (Dang et al, 2003).
Constitutive expression of KLF4 led to the inhibition of
DNA synthesis and regulates the cell cycle by blocking
G1/S progression (Chen et al, 2001). KLF4 suppresses
CRC proliferation through upregulating p21WAFL/CiP1 and
downregulating cyclin D1 (Shie et al., 2000a). In the present
study, KLF4 expression is downregulated in CRC tissues
(logsFC = —2.52, adjusted p = 2.13 x 10~ 22; Supplementary
Table 2), which is consistent with previous report. The results
suggest that KLF4 may exert a suppression effect through
other mechanisms, such as regulating TDRD7, ZC3HI12C,
and RBM47. We also demonstrated that KAT2B, a histone
acetyltransferase to promote transcriptional activation (Ogryzko
et al,, 1996), may regulate three RBPs (TDRD6, ZC3H12C, and
RBM47). Moreover, KAT2B acetylates non-histone proteins
(Choudhary et al,, 2009; Downey and Baetz, 2016), which
has been reported to be a critical regulator of p53-dependent
p21 expression in response to multiple p53-activating stresses
(Love et al., 2012). KAT2B also plays a role in the development
and progression of cancer (Bondy-Chorney et al, 2019).
Thus, KAT2B may be involved in CRC progression through
regulating TDRD6, ZC3H12C, and RBM47. Although the
functions of TDRD6, TDRD7, and POP1 are not clear, the
regulatory network will guide further study of the functions
of these RBPs. TDRD6 may be regulated by NR3C1, OGT,
MAEF, CBFB, POLR3G, and KATZB (Figure 3E). TDRD7 may
be regulated by KLF4 and CHD7 (Figure 3E). POP1 may
be regulated by CHD7, E2F1, MYC, BRCAIl, and PRKDC
(Figure 3E). Besides, multiple Cox regression analysis was
performed to construct a risk signature for predicting survival
of CRC patients, including TDRD6, TDRD7, PPARGCIA,
PABPC6, LRRFIP2, ZC3H12C, and PNLDCI. Kaplan-
Meier survival analysis and ROC analysis were performed
in the training set and testing set to evaluate the predictive
efficiency of the RBP-related prognostic signature. Results
showed that the signature can predict the survival status of
patients in TCGA dataset with high accuracy. Subsequently,
a nomogram was built based on the RBP-related prognostic
signature to predict 1-, 3-, and 5-year OS more intuitively. In
summary, we investigated the expression, prognostic values,
and potential functions of DE RBPs through comprehensive
bioinformatics analysis. Thirteen prognostic RBPs were
identified. An RBP-related prognostic model was developed that
could act as an independent prognostic signature for CRC. These
findings would provide new therapeutic targets and prognostic
markers for CRC.
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