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Alzheimer’s disease (AD) is a progressive neurodegenerative disease associated
with cognitive deficits and synaptic impairments. Amyloid-g (AB) plaque deposition,
dystrophic neurite accumulation and neurofibrillary tangles are pathological hallmarks
of AD. TMEMS9 has been implicated to play a role in AD pathogenesis; however,
the underlying mechanism remains unknown. Herein, we found that overexpression
of TMEM59 in the hippocampal region led to memory impairment in wild type
mice, suggesting its neurotoxic role. Interestingly, while TMEMS59 overexpression
had no effect on worsening synaptic defects and impaired memory in the 5xFAD
mouse model of AD, it significantly exacerbated AD-like pathologies by increasing
levels of detergent-insoluble A and AB plaques, as well as dystrophic neurites.
Importantly, haploinsufficiency of TMEMS59 reduced insoluble Ap levels, Ap plagues,
and neurite dystrophy, thereby rescuing synaptic plasticity and memory deficits in
5xFAD mice. Moreover, the level of TMEMS9 in the brain of 5xFAD mice increased
compared to wild type mice during aging, further corroborating its detrimental functions
during neurodegeneration. Together, these results demonstrate a novel function
of TMEM59 in AD pathogenesis and provide a potential therapeutic strategy by
downregulating TMEMS59.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder
characterized by abnormal accumulation and deposition of various amyloid-p (AP) peptides
derived from amyloid-f precursor protein (APP), formation of neurofibrillary tangles containing
hyperphosphorylated tau, synaptic dysfunction, neuroinflammation, neuronal death, and cognitive
decline (Crews and Masliah, 2010; Huang and Mucke, 2012; Guerreiro and Bras, 2015; Kocahan
and Dogan, 2017; DeTure and Dickson, 2019). So far no effective therapies are available to
cure this devastating disease (Yu et al., 2019). Since social and financial burdens for AD have
become enormous as our population ages, there is an urgent need to elucidate the detailed
molecular mechanisms underlying AD pathogenesis, so that new targets may be identified for
therapeutic development.

Transmembrane protein 59 (TMEM59) (also known as dendritic cell-derived factor 1,
DCF1) is a type I transmembrane glycoprotein ubiquitously expressed in various tissues.
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One study found that TMEM59 overexpression in cells induced
APP retention in the Golgi, thereby inhibiting APP cleavage
by a-and B-secretases at the plasma membrane and in the
endosomes, respectively, resulting in reduced AP production
(Ullrich et al., 2010). In addition, the TMEM59 gene promoter
region was found to be hypomethylated in postmortem frontal
cortex of late-onset AD patients compared to controls; and
methylation at this site was functionally associated with TMEM59
mRNA and protein levels (Bakulski et al., 2012). Microarray
data analysis also revealed that TMEM59 gene expression was
higher in AD patients than in controls (Guttula et al., 2012). Very
recently another study reported that overexpression of TMEM59
reduced the cleavage of APP C99 fragment by y-secretase and
promoted learning and memory in drosophila expressing APP
C99 (Li et al., 2020). All these studies suggest that TMEMS59 is
associated with AD. However, the exact role of TMEM59 in AD
has yet to be fully determined.

In the current study, we explored the effects of TMEM59
on AD-associated phenotypes in mice and found that TMEM59
overexpression impaired memory in wild type (WT) mice and
exacerbated AP and neurite pathologies in the 5xFAD mouse
model of AD (Oakley et al., 2006). Importantly, TMEM59
haploinsufficiency rescued memory and synaptic plasticity
deficits and reduced AP and neurite pathologies in 5xFAD mice.
Moreover, we observed that TMEM59 expression was increased
in the brain of 5xFAD mice.

MATERIALS AND METHODS

Animals

Tmem59 conditional knockout (Tmem59710%) mice were
generated using a traditional homozygous recombination
strategy with service provided by Cyagen Biosciences. Briefly,
a homology region covering mouse Tmem59 exon3 to exon6
was subcloned into the targeting vector. One Loxp site was
introduced into Tmem59 intron3, and another Loxp site together
with a modified Rox-flanked Neo cassette was introduced
into Tmem59 intron5 (Supplementary Figure 1A). After
linearization, the targeting vector was transfected into C57BL/6
background mouse embryonic stem cells. After G418 selection
and confirmation of successful homologous recombination of
the targeting vector, positive clones were injected into mouse
blastocysts, which were then implanted into pseudo-pregnant
females. Born chimeric mice (FO) were crossed with C57BL/6
mice to generate F1 mice carrying the recombined allele. The
Neo cassette flanked by modified Rox sites was self-deleted
during mouse production, with a confidential design by Cyagen
Biosciences. Tmem597/~ mice were generated by crossing
Tmem59M10¥f0* mice with Zp3-Cre mice (kindly provided by
Haibin Wang) (Cheng et al., 2018).

The PCR primers used for genotyping were as follows:

Tmem5910x/flox - forward-5-GAGTAGATGATGCTGACATA
GAC-3,

reverse-5'-CCTCTAAGGAGCTTTCTAAGTG-3;

Zp3-Cre, forward-5-CAGATGAGGTTTGAGGCCACAG-3/,

reverse-5'-TTCTTGCGAACCTCATCACTC-3;

Tmem59t/~, WT-forward-5-GAGTAGATGATGCTGACAT
AGAC-3,
KO-forward-5'-GTAAGAAACTAGAACTGGGCTTG
AGC-3/,

reverse-5-CCTCTAAGGAGCTTTCTAAGTG-3'.

5xFAD mice (Oakley et al, 2006) were crossed with
Tmem59%/~ mice to generate 5xFAD; Tmem59"/~ mice. All
mice were maintained and bred at Xiamen University Laboratory
Animal Center. Mouse experimental procedures were performed
in accordance with the National Institutes of Health Guide for the
Care and Use of Laboratory Animals and approved by the Animal
Ethics Committee of Xiamen University.

Stereotactic Injection of Lentivirus

For TMEM59 overexpression in the hippocampus, WT and
5XxFAD mice at 2 months of age were anesthetized, placed on a
stereotaxic frame, and injected bilaterally with Lentivirus-EGFP
control or Lentivirus-TMEM59-Flag (1 x 10° v.g./mL, OBiO
Technology) into the hippocampal region at the following
coordinates: anterior posterior, —2.0 mm; medial lateral,
+1.5 mm; and dorsal ventral, —2.0 mm using an automated
stereotaxic injection apparatus (RWD Life Science). Two pL
lentivirus was delivered at 0.20 wL/min to each lateral. After
each injection, the syringe was left for 10 min and then
withdrawn slowly.

Behavioral Tests

Mice at 6-7 months of age were subjected to behavioral tests
including open field, Y maze and Morris water maze. Habituation
was done in the testing room for more than 30 min at the
beginning of each test day. All tests were carried out by
researchers blinded to mouse genotype. Data were recorded
and analyzed using Smart 3.0 video tracking system (Panlab,
Harvard Apparatus).

For open field test (Tatem et al., 2014), each test mouse was
placed in the center of the square box [40 cm (L) x 40 cm
(W) x 40 cm (H)] and allowed to explore freely for
10 min. Time spent in the center and total distance of
movement were measured.

For Y maze test (Miedel et al., 2017; Lachance et al., 2019),
each test mouse was placed in the center of a “Y” shaped chamber
[30 cm (L) x 6 cm (W) x 15 cm (H)] and allowed to enter
into each arm freely for 5 min. The sequence of arm entries
and total numbers of arms entered by each mouse was recorded.
The percentage of alternation was calculated as the ratio of
consecutive specific arm entries to the total arm entries.

The Morris water maze test (Vorhees and Williams, 2006;
Bromley-Brits et al., 2011) was performed in a large circular
pool (120 cm in diameter) filled with opaque water, in which a
platform was hidden 1 cm below the water surface. Mice were
subjected to two training trials per day for six consecutive days;
and they were placed into the water facing the sidewalls of the
pool from different start positions across trials. The time spent to
reach and climb onto the platform (escape latency) was recorded.
If a mouse failed to find the platform within 60 s, it was guided
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to the platform and allowed to stay on the platform for 10 s. On
day 7, the platform was removed and a probe test for the mice
was performed for 60 s. The time spent in each quadrant and the
numbers of platform region crossings were recorded.

Electrophysiology

LTP was recorded as previously described (Penn et al,
2017). Briefly, mice were anesthetized with isoflurane. After
decapitation, the brain was rapidly transferred into an ice-cold
solution (64 mM NaCl, 2.5 mM KCl, 10 mM glucose, 1.25 mM
NaH,POy4, 10 mM MgSQOy, 26 mM NaHCO3, 120 mM sucrose,
and 0.5 mM CaCl,). The acute hippocampal slices (400 pm
thick) were cut using a vibratome (VT1200S, Leica). Slices were
allowed to recover for 1 h at 32°C and incubated for at least 1h
at room temperature before recording in artificial cerebrospinal
fluid (aCSF: 126 mM NaCl, 3.5 mM KCl, 1.25 mM NaH,POy,,
1.3 mM MgSOy, 2.5 mM CaCl,, 26 mM NaHCO3, and 10 mM
glucose). All solutions were saturated with 95%0,/5%CO;
(volume/volume). fEPSPs were induced in the Schaffer collateral
pathway with a two-concentrical bipolar stimulating electrode
(FHC, Inc.). LTP was induced by two trains of stimuli at 100 Hz
for 1 s with 30 s interval. fEPSP response was recorded for 1 h
after tetanic stimulation. Data were acquired with Clampex 10.6
(Molecular Devices) and analyzed using Clampfit 10.6 software
(Molecular Devices).

Western Blotting

Mouse hippocampal and cortical tissues were homogenized
and lysed in RIPA lysis buffer (25 mM Tris-HCl [pH
7.6], 150 mM NaCl, 0.1% SDS, 1% sodium deoxycholate,
and 1% Non-idet P-40) supplemented with the Complete
Protease and Phosphatase Inhibitor Cocktail (Roche). Protein
concentrations were determined by a BCA Protein Assay
Kit (Thermo Fisher Scientific) following the manufacturer’s
instruction. 25 micrograms of total protein lysates were resolved
using SDS-polyacrylamide gel electrophoresis and transferred
to PVDF membranes. After blocking in 5% milk in 0.1%
PBS/Tween-20, membranes were immunoblotted with indicated
primary antibodies overnight at 4°C, and then incubated
with appropriate horseradish peroxidase (HRP)-conjugated
secondary antibodies for 1 h at room temperature. The
antibodies used were: anti-TMEM59 (ABclonal, WG-03224D,
1:4000), anti-APP (22C11, Millipore, MAB348, 1:1000), anti-APP
Carboxyl-terminus (369, 1:1000) (Xu et al, 1998), anti-Flag
(Proteintech, 20543-1-AP, 1:1000), anti-a-tubulin (Millipore,
MABT205, 1:5000), anti-B-actin (Cell Signaling Technology,
8457S, 1:2000), and HRP-conjugated secondary antibodies
(Thermo Fisher Scientific, 31460 or 31430, 1:5000). Protein band
intensity was quantified using the Image] software (National
Institutes of Health).

Immunostaining

Mice were anesthetized and intracardially perfused with ice-cold
PBS and 4% paraformaldehyde. Brains were harvested and
post-fixed for 2-4 h at 4°C. Brains were washed in PBS and
cryoprotected in 30% sucrose in PBS. Coronal sections (15 pm
thick) were collected with a freezing microtome (Leica). The

sections were washed in PBS and then blocked in blocking buffer
(5% BSA and 0.2% Triton X-100) for 1 h at room temperature,
and then subsequently incubated with primary antibodies against
human AP (6E10, BioLegend, 803014, 1:400) and LAMPI1
(Abcam, ab24170, 1:200) overnight at 4°C, and appropriate
fluorescence-conjugated secondary antibodies (Thermo Fisher
Scientific, A-11008, A-11005 or A-31577, 1:500) for 1 h at room
temperature in the dark. Confocal images were acquired using the
AI1R (Nikon) or FV1000MPE-B (Olympus) confocal microscope.
All images were processed with Image] to calculate the area of AB
plaques and dystrophic neurites.

AB ELISA Assays

Hippocampal tissues of treated 5xFAD mice were sequentially
extracted with Tris-buffered saline (TBS), TBS containing
1% Triton X-100 (TBSX), and guanidine-HCl (GuHCI)
supplemented with the Complete Protease Inhibitor Cocktail
(Roche) as described previously (Youmans et al., 2011). AP40
and AP42 levels were measured using Human AB40 and Ap42
ELISA Kits (Thermo Fisher Scientific, KHB3481 for AB40 and
KHB3441 for Ap42), following the manufacturer’s instructions.

Oxygen Consumption Rate Measurement
Oxygen Consumption Rate (OCR) was studied using the
Seahorse XF Cell Mito Stress Test Kit (Agilent, Santa Clara,
CA, United States), with measurement on the Seahorse XFe 96
Extracellular Flux Analyzer (Agilent). Briefly, primary neurons
from mice at embryonic day 16.5 (E16.5) were isolated and
cultured for 7-10 days. 8-10 x 10* neurons per well were
plated on a Seahorse XF 96 cell culture microplate. After
baseline detection, 1 pM oligomycin, 1.5 uM FCCP, and 1 uM
rotenone-antimycin A were injected sequentially into the assay
micro-chambers. Data were analyzed using the Seahorse Wave
2.2.0 software package (Agilent).

Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8
software. Data in figures were presented as mean + SEM.
Comparison of the mean values for multiple groups was
performed using a one-way ANOVA or two-way ANOVA.
Comparison of two groups was performed using unpaired ¢-test
or Mann Whitney test. Exact sample sizes and statistical test
used for each comparison were provided in corresponding figure
legend. p < 0.05 was considered to be statistically significant.

RESULTS

TMEM59 Overexpression Causes

Memory Deficits in Mice

To ascertain whether TMEM59 dysregulation influences AD
pathology, we delivered lentivirus expressing either TMEM59
(Lenti-TMEMS59, tagged with Flag) or EGFP as a control
(Lenti-Control) into the mouse hippocampus bilaterally at
2 months of age (Figure 1A). Exogenous TMEMS59 expression
was confirmed in these mice at about 8 months of age,
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FIGURE 1 | Overexpression of TMEM59 causes memory deficits in mice. (A) The schematic diagram of lentivirus constructs expressing TMEM59 (Lenti-TMEM59,
L-59) or control (Lenti-Control, L-C) (upper panels), and their stereotactic injection into the hippocampal region (lower panel). (B) In Y maze tests, spontaneous
alternation percentage of WT; L-C (n = 17), WT; L-59 (n = 10), 5xFAD; L-C (n = 19), and 5xFAD; L-59 (n = 16) mice were calculated for comparison. One-way
ANOVA followed by Tukey’s post hoc test. (C~F) In Morris water maze tests, escape latencies during a 6-day training were recorded (C). Representative swimming
paths (D), time spent in the target quadrant (E) and numbers of platform region crossings (F) during the probe test were also recorded. Comparisons were carried
out for WT; L-C (n = 17), WT; L-59 (n = 10), 5xFAD; L-C (n = 19), and 5xFAD; L-59 (n = 16) mice. Two-way ANOVA followed by Tukey’s post hoc test for comparisons
in (C), and one-way ANOVA followed by Tukey’s post hoc test for comparisons in (E,F). (G) Time course of fEPSP slopes in the hippocampal CA1 region in acute
slices from WT; L-C, WT; L-59, 5xFAD; L-C, and 5xFAD; L-59 mice were recorded. (H) Quantifications and comparisons of average synaptic potentiation from the
last 10 min shown in (G). n = 6 slices for WT; L-C, n = 8 slices for WT; L-59, n = 6 slices for 5xFAD; L-C, and n = 7 slices for 5xFAD; L-59 from 4 to 5 mice per
group, Mann Whitney test. Data represent mean + SEM. *p < 0.05, **p < 0.01, ***p < 0.0001.

and had no significant effect on endogenous TMEMS59 levels
(Supplementary Figures 2A,B). At 6-7 months of age, we
found that overexpression of TMEMS59 in WT and 5xFAD mice
did not affect their total moving distance and time spent in
the center during open field tests, suggesting that TMEM59
overexpression has no effect on mouse locomotor activity and
anxiety (Supplementary Figures 2G,H). It has been reported

that 5xFAD mice display reduced anxiety only at 9-12 months
of age in open field tests (Jawhar et al., 2012). Here our results
also confirmed that 5xFAD mice had no anxiety change at
6-7 months of age.

As expected, 6-7 month-old 5xFAD mice showed short-term
working memory deficits compared to WT mice in Y maze tests
(Figure 1B). Interestingly, overexpression of TMEM59 impaired
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short-term working memory in WT mice without further
deteriorating the deficits in 5XFAD mice (Figure 1B). In Morris
water maze tests, 5XFAD mice showed impaired spatial learning
and memory with decreased escape latency during the training
and reduced time spent in the target quadrant and numbers of
platform region crossings during the probe test compared to
WT controls (Figures 1C-F). While TMEMS59 overexpression
had no effect on altering these behaviors in 5xFAD mice, its
overexpression in WT mice significantly reduced time spent in
the target quadrant during the probe test (Figure 1E).

We next recorded LTP to test the effect of TMEMS59
overexpression on synaptic plasticity (Figure 1G). We found that
LTP was impaired in 5xFAD mice compared to WT controls.
Moreover, TMEM59 overexpression moderately reduced LTP
in WT mice without further compromising LTP deficits in
5xFAD mice (Figure 1H). Together, these results suggest that
overexpression of TMEMS59 leads to memory and synaptic
plasticity impairments.

TMEMS59 Overexpression Exacerbates
Ap Deposition and Neurite Dystrophy in
5xFAD Mice

We also studied the impact of TMEMS59 overexpression on
AP plaque formation in 5XFAD mice. Immunofluorescence
staining revealed that total AP plaque areas were dramatically
increased in TMEM59-overexpressing 5xFAD mice compared to
controls (Figures 2A,B). Total LAMP1-positive areas indicative

of dystrophic neurites, as well as LAMPI1-positive areas around
each AP plaque were also markedly increased upon TMEM59
overexpression (Figures 2A,C,D). To further determine the
effect of TMEM59 overexpression on Af, we carried out
ELISA to measure AP levels in TBS-soluble, TBSX-soluble,
and GuHCl-soluble extractions from mouse hippocampus, of
which the formal two represent soluble or newly generated
AP and the latter one represents detergent-insoluble deposited
AB (Youmans et al., 2011). TMEMS59 overexpression had no
effect on AP40 and AP42 levels in TBS- and TBSX-soluble
extractions (Figures 2E,F). However, AB40 and AB42 levels
in the GuHCl-soluble fractions were significantly higher
in TMEMS59-overexpressing 5XxFAD mice than in controls
(Figure 2G). These findings reveal that TMEMS59 upregulation
exacerbates AP plaque deposition and neurite dystrophy in
AD. One previous study showed that TMEMS59 overexpression
reduced APP glycosylation and AP generation (Ullrich et al.,
2010). However, here we found that TMEM59 overexpression
in the mouse hippocampus had no effect on levels of total APP,
glycosylated APP, and APP processed a- and p-carboxyl-terminal
fragment (CTF) (Supplementary Figures 2A,C-F).

TMEMS59 Haploinsufficiency Reverses
Memory and Synaptic Plasticity Deficits

in 5XxFAD Mice
To further evaluate the involvement of TMEM59 in AD, we
first generated Tmem59 conditional knockout (Tmem59ﬂ°x/ ﬂox)

A 6E10 LAMP1 Merge  Zoomin B (% B
~5 * X6 o 2000
Q S - * =
4 < Q ° &
=z g4 s . 2 E1500
= w3l 9 |© 2 o |o 2%
3 ‘NG s % 21000
32 92 a3
Q ! —
» ol E .y 8 500
© : < = =
= 0-——r— <01 < o
) I N
NN Vo
[T o ¥ > Q N
5 & &0 & & ¢
G GF e F
E @ 5xFAD;L-C F @ 5xFAD;L-C G ® 5xFAD;L-C
12- © 5xFAD;L-59 0.8 o 5xFAD;L-59 2500— o 5xFAD;L-59
ns ns -
—_— [coR
a- o <z . & <= 20001 * °
<s - o ° 35 0.6 o< o
35 ne 5% ns H $0 1500 4
55 . 55 0.4 0° 20
] H o P o
£§>O_4_ 00 (>D<§ OF 1000
m 2 2 0.2 Io
Pe f pe aE 5004
0.0 T T 0.0 T T 0 T T
AB40 AB42 AB40 AB42 AB40 AB42
FIGURE 2 | Overexpression of TMEM59 exacerbates AB plague deposition and neurite dystrophy in 5XFAD mice. (A) Z-stack confocal images of Ag plaques (in red)
and dystrophic neurites (indicated by LAMP1, in green) in the coronal sections from 6 to 7 month-old 5xFAD; L-C and 5xFAD; L-59 mice. Original magnifications are
20x, scale bar, 100 wm. Zoom-in images are on the right, scale bar, 30 um. (B,C) Quantifications and comparisons of the total area of A plaques (B) and
LAMP1-positive dystrophic neurites (C) shown in (A). n = 4 mice per group. (D) Quantifications and comparisons of the area of Ag-associated LAMP1-positive
dystrophic neurites per plaque shown in (A). 48 plagques from four 5xFAD; L-C mice and 47 plaques from four 5xFAD; L-59 mice were studied for analysis. (E-G)
The levels of AB40 and AB42 in the hippocampus of TBS-extractions (E), TBSX-extractions (F), and GuHCl-extractions (G) from 8 month-old 5xFAD; L-C and
5XFAD; L-59 mice were measured by ELISA and compared. n = 6 mice per group. Data represent mean + SEM. *o < 0.05, ns: not significant. Unpaired ¢-test.
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mice. By crossing them with Zp3-Cre mice, we obtained Tmem59
knockout (Tmem59~/~) mice (Supplementary Figures 1A-C).
Crossing heterozygous Tmem59 knockout (Tmem59%/~)
mice with 5xFAD mice resulted in the generation of WT,
Tmem591/~ (59%/7), 5xFAD, and 5xFAD; Tmem591/~ (5xFAD;
591/=) mice (Figure 3A). As expected, 6-7 month-old 59+/—
and 5xFAD; 59%/~ mice showed reduced TMEMS59 protein
levels in the hippocampus compared to respective controls
(Supplementary Figures 3A-B). The time spent in the center

and total moving distance in open field tests of 597/~ and
5xFAD; 597/~ mice were comparable to respective controls
(Supplementary Figures 3G,H), suggesting that TMEM59
haploinsufficiency did not affect mouse locomotor activity and
anxiety at this age. However, TMEMS59 haploinsufficiency had a
moderate effect on rescuing short-term working memory deficits
in 5XFAD mice in Y maze tests (Figure 3B). In Morris water maze
tests, TMEM59 haploinsufficiency in 5xFAD mice significantly
increased their time spent in the target quadrant and numbers
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of platform crossings during the probe test (Figures 3C-F).
Moreover, TMEM59 haploinsufficiency rescued impaired LTP
in 5xFAD mice (Figures 3G,H). Together, these results suggest
that TMEM59 haploinsufficiency can ameliorate memory and
synaptic plasticity deficits in 5XFAD mice.

TMEMS59 Haploinsufficiency Reduces
AB Plaque Deposition and Neurite

Dystrophy in 5xFAD Mice

We next studied the impact of TMEMS59 haploinsufficiency
on AP plaques in 5XxFAD mice and found that AB plaque
areas were reduced in 5xFAD; 597/~ mice compared to
5xFAD mice (Figures 4A,B). Total dystrophic neurites and
dystrophic neurites surrounding individual A plaque, indicated
by LAMPI-positive staining, were also decreased in 5xFAD;
591/~ mice compared to controls (Figures 4A,C,D). We
further measured AP levels by ELISA in sequential hippocampal
extractions. Although not altered in TBS- and TBSX-soluble
fractions, AB40 and AP42 levels were significantly decreased in
GuHCl-soluble extractions in 5xFAD; 59%/~ mice compared to
controls (Figures 4E-G). These results suggest that TMEMS59
haploinsufficiency reduces AB plaque deposition and dystrophic
neurite accumulation in 5XxFAD mice. We also explored
APP glycosylation and processing in mice with TMEM59
haploinsufficiency. The results showed that glycosylated
APP levels were slightly increased in 5xFAD; 597/~ mice

compared to controls, whereas total APP and APP a-/B-CTF
levels were not altered with TMEM59 haploinsufficiency
(Supplementary Figures 3A,C-F).

TMEMS59 Protein Levels Are Elevated in
the Brain of 5xFAD Mice During Aging

Some previous studies reported that TMEMS59 expression
was increased in the brain of AD patients compared to
controls (Bakulski et al., 2012; Guttula et al., 2012). Herein,
we also observed that TMEMS59 protein levels were elevated
in 6-7 month-old 5xFAD mice compared to WT controls
(Supplementary Figures 3A,B). To further determine the
change of TMEM59 in AD, we studied TMEMS59 levels
in 5xFAD mice at different ages. We found that although
hippocampal TMEM59 protein levels were comparable
between 5xXxFAD mice and their littermate WT controls
at 1.5 months of age, hippocampal TMEMS59 levels were
significantly elevated in 5xFAD mice compared to WT controls
at 4 and 8 months of age (Figures 5A,B). Similarly, although
TMEMS59 protein levels in the cortex of 5xFAD mice were not
altered at 1.5 and 4 months of age, they were significantly
elevated at 8 months of age compared to WT controls
(Figures 5A,C). These results indicate a correlation between
TMEMS59 elevation and AD and aging, and further support a
detrimental role of TMEM59 elevation in synaptic functions and
learning and memory.
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DISCUSSION

TMEMS59 has been implicated to play a role in AD (Ullrich et al,,
2010; Bakulski et al., 2012; Guttula et al., 2012). However, whether
TMEM59 indeed modulates the pathology of AD, especially in
animal models resembling AD phenotypes has yet to ascertained.
In the present study, we observed that TMEMS59 protein levels
were significantly elevated in 5XxFAD mice during aging; and
this is consistent with the previous reports of high TMEMS59
expression levels and low DNA methylation in the TMEM59
promoter region in AD patients compared to controls (Bakulski
et al., 2012; Guttula et al,, 2012), strengthening the correlation
between TMEMS59 and AD.

Cognitive impairment is regarded as a typical feature of
AD in clinical diagnosis (McKhann et al., 2011). Herein,
we found that lentivirus-mediated TMEMS59 overexpression
in the hippocampal region was sufficient to cause memory
deficits and had a trend to impair synaptic plasticity in WT
mice, implying that increased TMEMS59 expression contributes
to AD progression. However, TMEM59 overexpression did
not exacerbate learning and memory and synaptic plasticity
deficits in 5xFAD mice. One possible explanation is that
the impacts of TMEMS59 overexpression on cognitive and
synaptic function impairments are mild and may not be
able to further worsen the quickly degenerated phenotypes
in 5xFAD mice. It is well-known that 5xFAD mice develop
AD-like phenotypes very fast and such an aggressive phenotype
in some ways is unphysiological to the human disease.
Further study using models with relatively slow disease
progression such as APP/PS1 and Tg2576 mice may be able
to fully ascertain the contribution of TMEMS59 elevation
to AD progression.

AB is considered to be a prime culprit for AD pathogenesis and
derived from APP through sequential cleavages by B-secretase
and y-secretase (Hardy, 2006; Zhang et al., 2011; Haass
et al, 2012; Long and Holtzman, 2019). AP40 and AP42
are two major neurotoxic species among various AP species,

with AB42 being more prone to aggregate into oligomers,
fibrils and amyloid plaques in AD patients (Jarrett et al., 1993;
Iwatsubo et al, 1994; Tu et al, 2014; Long and Holtzman,
2019). Interestingly, we found that TMEMS59 overexpression
exacerbated Af deposition in the brain of 5XFAD mice. We also
studied AB40 and AP42 levels in 5xFAD mouse hippocampal
fractions after sequential extraction by TBS, TBSX, and GuHCI,
of which the formal two represent soluble or newly generated
AP and the latter one represents detergent-insoluble deposited
AB (Youmans et al, 2011; Zhong et al., 2019). Consistently,
both AB40 and AP42 levels in GuHCl-soluble fractions were
increased upon TMEM59 overexpression. However, TMEM59
overexpression had no effect on AB40 and AP42 levels in
TBS- and TBSX-soluble fractions, implying that TMEMS59
overexpression may not affect AP generation. This finding
is in contrast to previous studies showing that TMEMS59
overexpression could inhibit APP glycosylation and cell surface
expression, as well as the cleavage of APP to generate AP
in HEK293 cells (Ullrich et al., 2010), and that TMEMS59
overexpression could reduce the y-cleavage of APP C99 fragment
and promote learning and memory in C99 transgenic drosophila
(Li et al., 2020). Although our finding that APP glycosylation
was increased in 5xFAD mice with TMEMS59 haploinsufficiency
is consistent with the observation that TMEMS59 overexpression
inhibited APP glycosylation (Ullrich et al., 2010), TMEMS59
haploinsufficency had no effect on levels of total APP, APP
a-/B-CTE, and soluble AP in vivo. One possibility for this
discrepancy is that TMEM59 may have different effects on
APP/AB metabolism in immortalized non-neuronal cell lines
and animal models.

The formation of dystrophic neurites is also one pathological
trait in AD (Holcomb et al., 1998; Guo et al, 2020). Many
previous studies have demonstrated that LAMP1, a lysosomal
marker for endo-lysosomal and autophagic vesicles, is enriched
in dystrophic neurites and accumulates around Af plaques in AD
mouse models (Condello et al., 2011; Gowrishankar et al., 2015;
Yuan et al.,, 2016) as well as in AD patients (Terry et al., 1964;
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Barrachina et al., 2006; Hassiotis et al., 2018). Therefore, LAMP1
staining has been used as a marker for dystrophic neurites.
Herein, we also found that TMEMS59 overexpression resulted
in increased staining of LAMP1, emphasizing the pathologic
contribution of TMEMS59 elevation on neurite dystrophy in AD.

One research group reported that complete knockout and
nervous system-specific knockout of Tmem59 resulted in
memory impairments in mice (Liu et al., 2018; Wang et al,,
2019). In contrast, we found that TMEMS59 haploinsufficiency
had no effect on learning and memory and synaptic plasticity
in WT mice. Importantly, TMEMS59 haploinsufficiency
reverses memory and synaptic plasticity deficits in 5xFAD
mice. Consistently, TMEM59 haploinsufficiency reduces Af
deposition, detergent-insoluble but GuHCl-soluble AB42 levels,
as well as dystrophic neurites in the brain of 5xFAD mice.
Therefore, downregulation of TMEM59 can provide protection
in AD. We recently demonstrated TMEM59 deficiency in
microglia resulted in elevated phagocytosis and mitochondrial
respiration (Liu et al., 2020). Herein, we also found the basal
respiratory capacity of mitochondria was enhanced in primary
neurons derived from TMEM59 knockout mice when compared
to controls (Supplementary Figures 4A,B). Therefore, one
potential mechanism for TMEMS59 haploinsufficiency to exert
protection in AD is that TMEM59 haploinsufficiency increases
microglial phagocytosis of A and promotes cellular health.

In summary, our study demonstrates that an elevation of
TMEMS59 can exacerbate the pathological progress during aging,
whereas downregulation of TMEM59 can ameliorate cognitive
and synaptic deficits and pathologies in AD model mice. These
findings strongly support the notion that TMEMS59 plays an
important role in AD pathogenesis and may provide a potential
strategy for AD treatment.
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