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Mesenchymal stem/stromal cells (MSCs) are multipotent cells residing in the stromal
tissues of the body and capable of promoting tissue repair and attenuating
inflammatory processes through their immunomodulatory properties. Preclinical and
clinical observations revealed that not only direct intercellular communication mediates
MSC properties; in fact, a pivotal role is also played by the release of soluble
and bioactive factors, such as cytokines, growth factor and extracellular vesicles
(EVs). EVs are membrane-coated vesicles containing a large variety of bioactive
molecules, including lipids, proteins, and nucleic acids, such as RNA. EVs release
their contents into target cells, thus influencing cell fate through the control of
intracellular processes. In addition, MSC-derived EVs can mediate modulatory effects
toward different effector cells belonging to both innate and adaptive immunity. In this
review, we will discuss the literature data concerning MSC-derived EVs, including the
current standardized methods for their isolation and characterization, the mechanisms
supporting their immunoregulatory properties, and their potential clinical application as
alternative to MSC-based therapy for inflammatory reactions, such as graft-versus-host
disease (GvHD).

Keywords: extracellular vesicles, exosomes, microvesicles, mesenchymal stromal cells, immune effector cells,
immunomodulation

INTRODUCTION

Mesenchymal stromal cells (MSCs) are multipotent stem cells of mesodermal origin described
in bone marrow (BM) for the first time by Alexander Friedenstein in 1966 (Friedenstein et al.,
1966). Over the last decades, MSCs were also identified in a large number of tissues, including fat,
umbilical cord, amniotic fluid, placenta, skin, dental pulp, and many others (Riekstina et al., 2008;
Marquez-Curtis et al., 2015; Camilleri et al., 2016; Ventura Ferreira et al., 2018; Caseiro et al., 2019;
Fukutake et al., 2019). In 2006, the International Society for Cellular Therapy (ISCT) established
the minimal criteria to define human MSCs, i.e., (i) plastic-adherence when maintained in standard
culture conditions; (ii) surface expression of CD105, CD73 and CD90 antigens while lacking CD45,
CD34, CD14 or CD11b, CD79α or CD19, and HLA-DR molecules; (iii) in vitro differentiation
into three mesodermal lineages (osteoblasts, adipocytes, and chondrocytes) (Dominici et al., 2006).
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MSCs boosted a great interest in the field of regenerative
medicine and tissue engineering thanks to their ability to
promote tissue regeneration and to modulate immune response
(de Mayo et al., 2017; Petri et al., 2017; Pokrywczynska
et al., 2019). Indeed, MSCs possess broad immunomodulatory
properties affecting immune effector cells of both innate and
adaptive responses (Krampera, 2011). For example, MSCs are
capable of stimulating cytokine release and proliferation of innate
lymphoid cells (van Hoeven et al., 2018), affecting dendritic cell
(DC) maturation and activation (Zhang et al., 2004), suppressing
natural killer (NK) cell activity and proliferation (Spaggiari
et al., 2008), supporting the expansion of myeloid-derived
suppressor cells (MDSCs) (Yen et al., 2013), and regulating
B cell proliferation and activation (Fan et al., 2016) as well
as T cell activity, balance between T helper (Th)1 and Th2
lymphocytes and expansion of T regulatory (Treg) cells (Haddad
and Saldanha-Araujo, 2014; Gao et al., 2016). The ability of MSCs
to modulate the immune response is well documented by several
preclinical and clinical studies in a wide range of inflammatory
and autoimmune diseases, such as Crohn’s disease (Forbes, 2017),
rheumatoid arthritis (Ansboro et al., 2017), diabetes (Cho et al.,
2018), graft-versus-host disease (GvHD) (Le Blanc et al., 2008),
sepsis (Hall et al., 2013), cardiovascular diseases (Bagno et al.,
2018), allergic airway inflammation (Takeda et al., 2018), and
many others. Initially, the biological activity of MSC was ascribed
to their ability to home within the injury site; however, only
a small fraction of MSCs is capable of reaching the damaged
tissues after systemic administration (Kraitchman et al., 2005;
Yukawa et al., 2012; Scarfe et al., 2018), while the majority of them
are rapidly cleared through phenomena of efferocytosis, thus
polarizing macrophages toward an inhibitory phenotype (Galleu
et al., 2017). In addition, MSCs may act at paracrine level through
the release of bioactive factors, including transforming growth
factor β (TGF-β), hepatocyte growth factor, prostaglandin E2
(PGE2), interleukin (IL)-10 and IL-6, human leukocyte antigen
G (HLA-G), indoleamine-2,3-dioxygenase (IDO), nitric oxide
(NO), and other mediators (Sato et al., 2006; Ryan et al., 2007;
Németh et al., 2009; Bouffi et al., 2010; Du et al., 2016; Wang
et al., 2018; Liu et al., 2019; Lu et al., 2019; Pittenger et al.,
2019). In the last years, membrane-bound particles, known
as extracellular vesicles (EVs), have been recognized as an
important MSC paracrine factor in addition to soluble factors
(Chen et al., 2016; Bier et al., 2018). EVs represent a very
effective, physiological intercellular communication, even at low
molecule concentrations at which soluble factors could be rapidly
inactivated. Strong experimental evidence shows that MSC-EVs
are capable of recapitulating the immunomodulation of their
parental cells (Rani et al., 2015; Seo et al., 2019). Therefore, in
this review we will provide an overview of the literature data
supporting the MSC-EV-dependent communication between
MSCs and immune effector cells (IECs).

CHARACTERIZATION OF EVs

EVs consist of a phospholipid bilayer envelope acting as
molecular shuttle for various molecules, such as proteins,

different types of nucleic acids, lipids and active metabolites
(Lai et al., 2016; Yuan et al., 2017; Yang et al., 2018;
Shojaati et al., 2019). Historically, EVs are classified into
three main groups according to their biogenesis and size:
(i) exosomes, (ii) microvesicles and (iii) apoptotic bodies.
Exosomes (diameter range 50–100 nm) represent the smallest
EV fraction deriving from the fusion of intracellular endosomes
with plasma membrane, followed by their release into the
extracellular space (Stephen et al., 2016). The production of
exosomes is generally constitutive, although it can increase upon
cell stimulation (Fierabracci et al., 2015). Microvesicles (MVs;
diameter range 100–1,000 nm) are generated by cytoplasmic
membrane budding in response to several stimuli resulting in
cytosolic Ca2+ increment and disassembly of the cytoskeleton
(Ratajczak et al., 2006). Apoptotic bodies (diameter range 1–
5 µm) are characterized by irregular shapes and heterogenous
sizes (Caruso and Poon, 2018). Apoptotic bodies are functionally
different, as they are released during apoptosis and contain
mainly cellular debris, such as micronuclei, chromatin remnants
and cytosol portions (Battistelli and Falcieri, 2020). As several
studies were performed with different separation approaches and
cellular sources of EVs, it is still not possible to propose a specific
classification of different EV subtypes as well as specific markers
and biogenesis processes (Gould and Raposo, 2013; Cocucci
and Meldolesi, 2015). Consequently, the Minimal Information
of Studies of Extracellular Vesicles 2018 (MISEV2018) suggests
to use the generic terms “small/medium/large EVs,” according
to their size or density, instead of the classical “exosomes,”
“microvesicles,” and “apoptotic bodies” terms (Théry et al.,
2018). According to MISEV2018, to confirm the nature of
EVs and the degree of purity of EV preparation, the scientific
community has encouraged to evaluate the presence of at least
one of transmembrane or GPI-anchored proteins associated to
plasma membrane and/or endosomes (for example tetraspanins,
integrins, and MHC class I) and cytosolic proteins recovered
in EVs (for example lipid or membrane protein-binding ability
like ESCRT-I/II/III and ALIX or promiscuous proteins like
HSP70 or cytoskeleton proteins like actin and tubulin) and
major components of non-EV co-isolated structures (for example
lipoproteins, protein/nucleic acid aggregates, and ribosomal
proteins) (Théry et al., 2018). Additionally, for studies focused
on one or more EV subtypes is recommended to assess the
presence of transmembrane, lipid-bound and soluble proteins
associated to other intracellular compartments than plasma
membrane/endosomes, including lamin A/C, cytochrome C,
calnexin, and ATG9A, whereas for the evaluation of EV
functional activities, the identification of functional soluble factor
in EVs like cytokines, growth factors, adhesion and extracellular
matrix proteins is required (Théry et al., 2018).

The communication system based on EVs is highly conserved
among the three different animal reigns, thus suggesting how
EVs are crucial for intercellular communication (Deatherage
and Cookson, 2012; Gill et al., 2019). EVs contribute to
cell-to-cell communication via direct contact with target cells
through a ligand–receptor interaction. In particular, EVs can
transfer information to target cells either without delivering
their content or acting like biological shuttles that release their
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cargo into acceptor cells. A classic example of EV contribution
to intercellular communication without deliver their content
resides in those vesicles that harbor MHC molecules on their
surface, thus activating T cell receptors on T cells (Raposo
et al., 1996; Martin et al., 2014). Concerning the delivery of EV
content, EVs can be taken up by target cells through several
mechanisms, including clathrin-mediated endocytosis, caveolin-
dependent endocytosis, macropinocytosis, phagocytosis, lipid
rafts, and cell surface membrane fusion (Feng et al., 2010;
Montecalvo et al., 2012; Svensson et al., 2013; Tian et al., 2014;
Costa Verdera et al., 2017; Rai and Johnson, 2019). Although
numerous receptors/ligands are implicated into EV uptake
including tetraspanins, integrins, immunoglobulins, lectins, and
proteoglycans (Morelli et al., 2004; Hao et al., 2007; Barrès et al.,
2010; Christianson et al., 2013), to date it is still debated whether
EV uptake is a cell-type specific process or not. Indeed, some
studies suggest that EVs from different sources can be taken up
by every cell type (Costa Verdera et al., 2017; Horibe et al., 2018),
whereas others report that only a particular combination of EV
and target cells (and thus the right association between receptors
and ligands) allow the EV uptake by acceptors cells (Fitzner et al.,
2011; Zech et al., 2012; Chivet et al., 2014; Di Trapani et al.,
2016). Finally, recent evidence suggested that nanotubes could
synergistically act with EVs in intercellular communication, as
microsized particles could be transferred into target cells via
nanotubes (Ware et al., 2015; Nawaz and Fatima, 2017).

As EVs reflect the characteristics of their cells of origin
both at molecular and functional level, EVs have emerged
as a novel potential therapeutic approach due to their ability
to influence various biological processes, including immune
response, cell proliferation, tissue regeneration, cell invasiveness,
tubule formation, angiogenesis, synapsis plasticity, and many
others (Zaborowski et al., 2015; Silva et al., 2017; Prada et al.,
2018; Lee et al., 2019; Mou et al., 2019).

MSC-EVs AND IMMUNOMODULATION

MSC-EVs play a pivotal role in mediating the paracrine effects of
MSCs on immune system. Generally, MSC-EVs may promote an
immunosuppressive response through the induction of immature
DCs, the polarization of macrophages toward M2-like phenotype,
the inhibition of immunoglobulin (Ig) release, the expansion of
Tregs and the secretion of anti-inflammatory cytokines (Budoni
et al., 2013; Burrello et al., 2016; Favaro et al., 2016; Balbi
et al., 2017; Du et al., 2018). However, MSC-EVs should be
considered in the whole contest of MSC secretome, because in
some experimental settings the immunomodulation mediated by
MSC-EVs can only poorly recapitulate the immune properties of
their parental cells (Conforti et al., 2014; Gouveia de Andrade
et al., 2015; Ma et al., 2019). In the next sections we will
try to give a comprehensive overview of the effects of MSC-
EVs on the innate (macrophages, DCs and NK cells) and
adaptive (B and T cells) immune system. As the studies here
reported employed different EV subtypes obtained from several
MSC sources (BM, umbilical cord, adipose tissue, fetal liver) of
different animal species (human, mouse and rat) with several

isolation methods, we will refer to them with the generic
term “MSC-EVs.” The immunomodulatory effects of MSC-
EVs on innate and adaptive immune system are summarized
in Figure 1.

MSC-EVs and Innate Immune System
Macrophages
Macrophages are mononuclear phagocytes with important roles
in physiological conditions and in first-line immune response
(Zhang and Wang, 2014). Macrophages are extremely plastic
cells, with the capability of differentiating into two activated
subtypes, i.e., M1 and M2. M1 macrophages are classical activated
cells secreting large amount of pro-inflammatory factors, such as
TNF-α, IL-1β and reactive oxygen species. On the other hand, M2
macrophages are alternatively activated and anti-inflammatory
cells producing IL-10 and trophic factors (Shapouri-Moghaddam
et al., 2018). Recent data support a contribution of MSC-EVs in
modulating the M1/M2 balance, although the precise mechanism
remains unclear. For instance, MSC-EVs may hamper the
activation of pro-inflammatory M1 macrophages in favor of
pro-resolving M2 macrophages that parallel with VEGF-A, IFN-
γ, IL-12, and TNF-α reduction as well as IL-10 upregulation
(Balbi et al., 2017; Cosenza et al., 2017; Cao et al., 2019). The
modulation of several signaling pathways mediated by MSC-EVs
may be responsible for this effect. For instance, the inhibition of
JAK/STAT signaling was confirmed by many studies, resulting
in Arg1 increment and inflammation reduction (Zhao et al.,
2018; Cao et al., 2019). The activation of S1P/SK1/S1PR1
signaling by MSC-EVs promotes M2 differentiation through
the downregulation of NF-κB-p65 and TGF-β1 expression in
macrophages, thus restoring cardiac activity after myocardial
infarction (Deng et al., 2019). Furthermore, lipopolysaccharide
(LPS)-primed MSC-EVs support M2 macrophage polarization,
by interfering with LPS−dependent NF−κB signaling, and partly
activate the AKT1/AKT2 signaling pathway, by attenuating the
post-infarction inflammation and cardiomyocyte apoptosis (Xu
et al., 2019). An interesting mechanism by which MSC-EVs exert
their anti-inflammatory function is the M2 polarization through
MSC-EV-mediated mitochondrial transfer that is dependent on
macrophage oxidative phosphorylation (Morrison et al., 2017).
In parallel, in response to oxidative stress, MSCs outsource
mitochondria depolarized by MVs, thus enhancing macrophage
bioenergetics (Phinney et al., 2015) and therefore their pro-
inflammatory features (Tavakoli et al., 2013). Moreover, MSCs-
EVs may trigger the anti-inflammatory phenotype and pro-
resolving properties of mature, human regulatory macrophages,
a subclass of M2 macrophages characterized by modest IL-
22 and IL-23 production and PGE2 hyper-expression, thus
leading to reduction of Th17 response (Hyvärinen et al.,
2018). MSC-EVs can also reduce chemokine expression (CXCL1
and CCL5) that are necessary for inflammatory response by
macrophages (Zou et al., 2014; Willis et al., 2017). Interestingly,
MSC-EVs express CCR2 chemokine, bind and reduce the
concentration of the free pro-inflammatory CCL2 ligand,
and therefore prevent the activation and recruitment of M1
macrophages (Shen et al., 2016). MSC-EVs may also trigger the
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FIGURE 1 | Summary of the effects of MSC-EVs on immune effector cells. Green arrows: positive effect; red arrows: negative effect; black dashes: no effect.

anti-inflammatory phenotype in hepatic macrophages through
IGF-1 (Fiore et al., 2020).

Several miRNAs are involved into MSC-EV-mediated anti-
inflammatory effects on M1/M2 balance. For instance, miR-
223 overexpression in MSC-EVs may reprogram macrophages
from M1 to M2 phenotype by targeting Sema3A and STAT3
(Wang et al., 2015; He et al., 2019). Under hypoxic condition,
the enrichment of miR-223 determines the overexpression of
miR-146b, miR-126 and miR-199a, which in turn upregulate
the expression of Arg1 and Ym1 and promote the anti-
inflammatory M2 state (Lo Sicco et al., 2017). Other miRNAs
involved in M2 polarization are miR-155 and miR-21, whose
downregulation results in the increase of SOCS3 and M2
molecules (IL-10, CD206 and arginase) as well as M1 marker

reduction (CCR7, IL-1β, IL-6, and NO) (Henao Agudelo et al.,
2017). IL-1β-primed MSC-EVs express high levels of miR-146a
promoting M2 macrophage polarization more effectively than
IL-1β-primed MSC, thus increasing survival of septic mice
(Song et al., 2017). The comparative miRNA analysis of EVs
isolated from either IFN-γ-primed or resting MSCs revealed
that miR-150-5p, whose target genes is involved in acute-phase
response and signaling in macrophages, is downregulated in
IFN-γ-primed EVs. Nevertheless, no difference between primed
and resting EVs has been observed in promoting macrophage
differentiation toward M2 phenotype (Marinaro et al., 2019).
The enrichment of miR-let7 within MSC-EVs may favor M2
polarization and suppress macrophage infiltration through miR-
let7/HMGA2/NF-κB pathway and miR-let7/IGF2BP1/PTEN
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pathway, respectively (Li et al., 2019). Moreover, LPS-primed
MSC-EVs regulate the M1/M2 macrophage balance more
efficiently than resting EVs, thanks to the expression of miR-let-
7b, which inhibits TLR4/NF-κB/STAT3/AKT signaling pathway,
thus hampering inflammation and enhancing diabetic cutaneous
wounds healing (Ti et al., 2015). TLR/NF-κB signaling can be
targeted by other miRNAs too. In a model of burn-induced
inflammation, the administration of MSC-EVs overexpressing
miR-181c reduced the number of macrophages (and neutrophils)
potentially inhibiting TLR4 expression and its downstream target
proteins NF-κB/P65 and p-65, thus preventing inflammation (Li
et al., 2016). MSC-EV fraction is characterized by the enrichment
in miR-451a, miR-1202, miR-630, and miR-638 and the reduced
expression of miR-125b and miR-21. This miRNA profile may be
responsible for targeting MYD88-dependent inflammatory nodes
to suppress TLR/NF-κB signaling pathway and macrophage
activation (Phinney et al., 2015). Additionally, Zhang et al. found
in vitro that MSC-EVs induce monocytes to switch toward an
anti-inflammatory M2-phenotype via MYD88-dependent TLR
signaling pathway, resulting in a reduction of IL-1β, IL-6, IL-12,
and TNF-α levels and higher IL-10 concentration, thus polarizing
activated CD4+ T cells toward Treg subset (Zhang et al., 2013).

MSC-EVs also prevent M1-type macrophage infiltration in
injury sites by lowering MCP-1, CCL5, HMGB1, and MIP-1α

expression (Yu et al., 2016; Spinosa et al., 2018; Woo et al., 2020),
probably through miR-147 expression (Spinosa et al., 2018).
Interestingly, in a model of thioglycolate-induced peritonitis,
treatment with MSC-EVs reduced macrophage infiltration in the
peritoneal cavity by inducing a M2-like regulatory phenotype;
this effect was partially associated to the upregulation of CX3CR1
in F4/80+/Ly6C+/CCR2+ macrophage subset (Henao Agudelo
et al., 2017). Concerning the homing ability of MSC-EVs,
Lankford et al. demonstrated in a model of damaged spinal cord
that MSC-EVs can migrate only in the injury site and M2-type
macrophage are the primary target of EVs (Lankford et al., 2018).

Finally, MSC-EVs mediate miR-17 transfer from parental
cells to macrophages, thus suppressing NLRP3 inflammasome
activation, and consequently caspase-1, IL-1β, and IL-6, by
targeting TXNIP (Liu et al., 2018). The suppression of NLRP3,
caspase-1, IL-1β, and IL-6 was also reported by other authors
(Jiang et al., 2019). On the other hand, EVs isolated from
LPS-primed periodontal ligament stem cells (characterized by
MSC-like markers) may induce strong M1-type polarization in
association with pro-inflammatory molecules (TNF-α and IL-6);
this effect seems related to double-strand DNA on EV surface
(Kang et al., 2018).

Dendritic Cells
DCs are innate professional antigen-presenting cells (APCs)
acting as central regulators of the adaptive immune response.
DCs can be found in either resting or active state. Resting DCs are
immature APCs expressing low levels of costimulatory molecules
(CD38, CD40, CD80, CD83, and CD86) and immunostimulatory
cytokines conferring high capacity to capture antigens. DC
activation and maturation depend on different stimuli deriving
from bacteria, viruses and damaged tissue. Activated DCs are
potent T cell response inducers showing low antigen capture

activity and high expression of histocompatibility complex II
(MHC class II), costimulatory signals, C-C chemokine receptor
type 7 (CCR7) as well as immunostimulatory cytokines (Collin
et al., 2013; Patente et al., 2019). EVs secreted by different types
of MSCs exert immunosuppressive effects on DCs primarily by
inhibiting their activation, eventually leading to the lack of T
cell response triggering. For example, DCs from type 1-diabetic
(T1D) patients treated with heterologous MSC-EVs acquired
an immature phenotype, characterized by low expression of
activation markers and higher production of IL-6, IL-10, TGF-
β, and PGE2 (Favaro et al., 2016). Therefore, MSC-EV-treated
DCs inhibit the inflammatory T cell response by decreasing
Th17 subset and inducing Foxp3+ Tregs (Favaro et al., 2016).
Similarly, MSC-EV treatment leads to anergic, IL-10-expressing,
regulatory DCs that suppress Th1 and Th17 cell development,
but without inducing Tregs (Shigemoto-Kuroda et al., 2017).
Notably, MSC-EVs may enhance the release of TGF-β and IL-
10 from CD11c+ DCs, thus inhibiting lymphocyte proliferation,
without affecting the expression of MHC class II, CD86, CD83,
and CD40 (Shahir et al., 2020). Upregulation of miR-146
expression in DCs is a possible mechanism by which MSC-EVs
promote DC immature phenotype, leading to the downregulation
of FAS expression and IL-12 production (Wu et al., 2017).
Alternatively, EVs derived from renal, mesenchymal-like cancer
stem cells impair dendritic differentiation and T cell activation by
upregulating the expression of the anti-inflammatory molecule
HLA-G (Grange et al., 2015). MSC-EVs may also prevent
immature DCs from antigen uptake by blocking their maturation
(Reis et al., 2018). As a consequence, MSC-EVs lower CD38,
CD80, CD83, IL-6, and IL-12 expression, increase the production
of the anti-inflammatory cytokine TGF-β and reduce DC ability
to migrate toward CCL21, the CCR7-ligand, although DCs can
still trigger allogeneic T cell proliferation in vitro (Reis et al.,
2018). These MSC-EV-treated DCs resulted enriched of four
microRNAs (miR-21-5p, miR-142-3p, miR-223-3p, and miR-
126-3p) mediating well-known effects on DC maturation and
functions (Reis et al., 2018). On the other hand, higher expression
of costimulatory factors (CD40, CD80, and CD86), but not MHC
class II, can be observed on the surface of murine immature DCs
following MSC-EV treatment, thus suggesting that these EVs can
mediate the DC maturation required for the induction of effector
T-cell (Cho et al., 2019).

Natural Killer Cells
NK cells are lymphoid cells with a central role in the innate
response to viral infections and cancer cells, but recent data
suggest that NK cells can also modulate the adaptive immune
response involving DCs and T cells, either directly or indirectly
(Moretta et al., 2008; Chiossone et al., 2018). Despite a deep
search in literature, only a few papers concerning the role
of MSC-EVs on NK cell modulation have been found. EVs
derived from MSCs. EVs prevent proliferation and IL-2-induced
activation of both CD56-dim and CD56-bright NK cells, and
suppressed their cytotoxic degranulation in vitro (Fan et al.,
2018). In a rat model of experimental autoimmune uveitis
(EAU), MSC-EV administration reduces CD161+ NK cell
migration toward eye lesions, thus ameliorating EAU symptoms
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(Bai et al., 2017). The protective and anti-inflammatory effects
exerted by MSC-EVs have been also observed in a rat model
of renal ischemic reperfusion injury (IRI) and in a renal
allografts MHC-disparate rat model, by decreasing both NK cells
infiltration and chemokines associated with NK cell recruitment
(TLR-2 and CX3CL1) (Koch et al., 2015; Zou et al., 2016). All
these immunosuppressive effects seem to be mediated by the
expression of TGF-β on the EV surface, which induces TGF-
β/Smad downstream pathway (Fan et al., 2018). Other molecules
contained in MSC-EVs and associated with anti-inflammatory
effects on NK cells are IL-10 and HLA-G (Kordelas et al.,
2014). Finally, TNF-α- and IFN-γ-primed MSC-EVs reduce
NK cell proliferation more effectively than resting MSC-EVs
(Di Trapani et al., 2016).

MSC-EVs and Adaptive Immune System
B Cells
B cells are lymphoid cells involved in the humoral adaptive
immunity through the secretion of antibodies and cytokines
(Matsushita, 2019). Among the peripheral blood mononuclear
cell (PBMC) subpopulations, B cells show the highest EV uptake
(Di Trapani et al., 2016). MSC-EVs may induce in B cells
the downregulation of 11 genes (including CCR3, CCR4, and
CCL22) and the upregulation of 39 genes (including SerpinB2,
PTGS2, and PGE2) involved in immune regulation (Khare et al.,
2018). MSC-mediated inhibition of B cell proliferation is more
evident following inflammatory priming (Di Trapani et al., 2016).
Inflammatory priming induces the increase of miR-155 and miR-
146 levels within MSC-EVs (Di Trapani et al., 2016). In particular,
MSC-EVs induce the downregulation of PI3K/AKT signaling
pathway components in B cells, inhibit B cell spreading, and
reduce B cell viability via miR-155-5p (Adamo et al., 2019).

Another effect of MSC-EVs on B cells is preventing Ig
secretion. MSC-EVs exert a dose-dependent inhibition of IgM,
IgG, and IgA production coupled with suppression of B cell
proliferation and maturation (Budoni et al., 2013). The reduction
of IgG production was also observed by other authors reporting
that both MSC-exosomes and microparticles may increase
CD19+IL-10+ Breg-like population and inhibit plasmablast
differentiation by transferring TGF-β, PEG2 and IL1RA (Cosenza
et al., 2018). Moreover, MSC-EVs reduce CD27+CD19+memory
B cell maturation (Balbi et al., 2017). On the other hand, MSC-
EVs may sustain, support and enhance the function of human
IgG-secreting cells (Nguyen et al., 2018). Notably, MSC-EVs was
not capable of significantly affect B cell activation in a strong
reactive renal allotransplantation animal model; by contrast,
MSC-EVs significantly increased the number of B cells infiltrating
the transplanted kidney grafts (Koch et al., 2015). The partial
immunomodulation of B cells by MSC soluble factors seems
to be preferentially induced by the soluble protein-enriched
fraction (PF) rather than by the entire EV-enriched fraction
(Carreras-Planella et al., 2019).

T Cells
T cells are highly specialized lymphocytes that regulate several
aspects of adaptive immunity, such as protection from pathogens,
immune surveillance against tumors and alloreaction against

non-self-tissues (Kumar et al., 2018). MSCs have a great
impact on T cell functions and therefore potentially on the
treatment of numerous T-cell mediated reactive conditions
(Duffy et al., 2011).

An efficient approach to suppress T cell-mediated immune
response is preventing T cell proliferation. Several studies
reported that MSC-EVs exert this effect both in vitro and
in vivo in several animal models, such as those reproducing
myocardium infarction, experimental allergic asthma and renal
IRI (Mokarizadeh et al., 2012; Kilpinen et al., 2013; Blazquez
et al., 2014; Romani et al., 2015; Teng et al., 2015; de Castro
et al., 2017; Monguió-Tortajada et al., 2017; Cosenza et al.,
2018; van den Akker et al., 2018; Ji et al., 2019). The inhibition
of T cell proliferation is associated with the reduction or
absence of pro-inflammatory cytokines, such as IL-2, IL-6, TNF-
α, and IFN-γ (Blazquez et al., 2014; Monguió-Tortajada et al.,
2017). Nevertheless, MSC-EVs were capable of increasing T cell
number in the graft of a rat renal transplant model for acute
rejection associated with the reduction of TNF-α expression
and no difference in IL-10 levels (Koch et al., 2015). The
inhibition of T cell proliferation by human MSCs is mostly
mediated by the upregulation of indoleamine 2,3-dioxygenase
(IDO) (Chinnadurai et al., 2015; Wen et al., 2016); however,
controversial results are found when T cells are treated with
MSC-EVs. Some groups reported no significant changes in IDO
expression (Del Fattore et al., 2015; Chen et al., 2016), whereas
many authors found high concentrations of IDO inside MSC-
EVs (Romani et al., 2015; Zhang et al., 2018b; Serejo et al.,
2019). Other groups reported that MSC-EVs have no effect on
T cell proliferation, but rather promote T cell apoptosis (Del
Fattore et al., 2015; Chen et al., 2016). Conversely, another
study reported that MSC-EVs do not alter T cell viability
(Monguió-Tortajada et al., 2017). These different findings suggest
that a thorough characterization of MSC-EV content and a
standardization of the experimental methods are necessary to
foresee the biological effects.

Both CD4+ and CD8+ T cell activation was suppressed by
MSC-EVs. At molecular level, the suppression of T cell activation
is independent from the antigen presentation due the lack of
MHC class I and II as well as other costimulatory molecules
on MSC-EV surface (Blazquez et al., 2014; Farinazzo et al.,
2018; Dabrowska et al., 2019; Shao et al., 2020). In particular,
MSCs constitutively lacking β2-microglobulin, a component of
HLA-I involved in CD8+ T cell-mediated immune rejection,
and the corresponding EVs reduce more efficiently both fibrosis
and inflammation in a myocardial infarction animal model
compared to the wild-type forms (Shao et al., 2020). The authors
reported a greater accumulation of miR-24 in EVs from MSCs
constitutively lacking β2-microglobulin, which in turn reduces
the expression of the apoptotic protein Bim (Shao et al., 2020).
Additionally, MSC-EVs can block CD4+ and CD8+ T cell
differentiation toward effector and memory cells, through a
mechanism mediated by TGF-β signaling, respectively (Blazquez
et al., 2014; Álvarez et al., 2018).

Modulation of Treg/Th17 and Th1/Th2 balance has been used
to explain the regulatory properties of MSC-EVs on T cells.
MSC-EVs may promote induction and expansion of Tregsin
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association with high levels of IL-10 (Mokarizadeh et al., 2012;
Kilpinen et al., 2013; Favaro et al., 2014; Del Fattore et al.,
2015; Romani et al., 2015; Chen et al., 2016; Nojehdehi et al.,
2018; Zhang et al., 2018b; Guo et al., 2019; Ji et al., 2019; Ma
et al., 2019), particularly CTLA-4+, CD4+CD25+Foxp3+ and
Tr1 Treg subpopulations (Chen et al., 2016; Cosenza et al., 2018).
Other groups reported no significant changes in Treg number,
regardless the higher IL-10 levels after MSC-EV treatment, thus
questioning the involvement of Tregs in the upregulation of
IL-10 expression by MSC-EVs (Hai et al., 2018). However, the
promoting effects of MSC-EVs on Tregs could be partially
mediated by their content in TGF-β signaling components
(Song et al., 2020). Another possible molecular mechanism is
the transfer of miR-1470 from MSC-EVs to CD4+ T cells,
thus upregulating P27KIP1 expression through c-Jun targeting
(Zhuansun et al., 2019). Other miRNAs have been described
in this phenomenon, such as miR155-5p, miR-let7b, and miR-
let7d. The overexpression in MSC-EVs of miR-155, which targets
Sirtuin-1, increases IL-10 and Foxp3 expression in T cells, thus
preventing the production of IL-17 and RORC (Zheng et al.,
2019). On the other hand, the increase of miR-let7b and miR-
let7d may suppress cell proliferation and promote Treg functions,
avoiding immune rejection (Wen et al., 2016). Moreover, MSC-
EV-mediated proliferation and function of CD4+CD25+Foxp3+
Tregs could involve APC-, but not CD4+ T cell-dependent
pathways (Du et al., 2018). Regardless the mechanism mainly
involved, other in vivo models, such as experimental type-1
autoimmune diabetes in T1D mice, clearly showed that the
induction of Tregs by MSC-EVs can ameliorate histological signs,
thus favoring the regeneration of tissues, i.e., pancreatic islets
(Nojehdehi et al., 2018).

Concerning other T-cell subsets, there are only a few works so
far. For instance, MSC-EVs may prevent Th17 cell development
and IL-17 production (Favaro et al., 2014; Chen et al., 2016; Bai
et al., 2017; Shigemoto-Kuroda et al., 2017; Hai et al., 2018; Ji
et al., 2019; Ma et al., 2019). MSC-EVs may also inhibit Th17
cell differentiation in ulcerative colitis rat models by increasing
histone H3K27me3 methylation and inhibiting its demethylation,
thus suggesting that H3K27me3 may be an important target in
inflammatory diseases (Chen et al., 2020). Moreover, MSC-EVs
can directly prevent Th1 development by promoting Th1 shift
toward Th2 cells (Chen et al., 2016; Bai et al., 2017; Shigemoto-
Kuroda et al., 2017; Guo et al., 2019) as well as inhibit T
follicular helper cells (Hai et al., 2018). Nevertheless, MSC-EVs
can also promote autoreactive, IFN-γ-secreting memory Th1
cells by functioning in NOD mice as self-antigen carrier and
trigger for autoimmunity (Rahman et al., 2014). In addition, the
effect of MSC-EVs on natural killer-T (NK-T) cells has been
recently described in a rat model of hepatocellular carcinoma;
following EV administration, higher percentages of circulating
and intratumoral NK-T cells as well as tumors of smaller size
and less aggressive were observed as compared to untreated rats
(Ko et al., 2015).

Different mechanisms and factors have been described in
the immunomodulatory effect of MSC-EVs toward T-cells.
The broad and pleiomorphic activity of MSC-EVs reflects
their influence on different signaling pathways of T-cells and

microenvironmental cells, such as JAK/STAT or NF-kB (Guo
et al., 2019). For instance, MSC-EVs can inhibit T-cell infiltration
in the injury site of several diseases as well as the production
of several chemokines, such as CCL2, CCL5, CCL21, CXCL1,
MIP-1α, MIP-3α, and integrin-dependent chemokines) (Cruz
et al., 2015; Bai et al., 2017; Shigemoto-Kuroda et al., 2017;
Farinazzo et al., 2018; Hai et al., 2018; Dabrowska et al., 2019) and
inflammatory molecules, such as IL-1α, IL-1β, IL-2, IL-5, IL-12,
and IL-17 (Favaro et al., 2014; Chen et al., 2016; de Castro et al.,
2017; Shigemoto-Kuroda et al., 2017; Hai et al., 2018; Nojehdehi
et al., 2018; Dabrowska et al., 2019; Guo et al., 2019; Ji et al.,
2019; Ma et al., 2019). By contrast, anti-inflammatory molecules
can be induced by MSC-EVs, such as IL-10, TGF-β, and PGE2
(Mokarizadeh et al., 2012; Favaro et al., 2014; Del Fattore et al.,
2015; Chen et al., 2016; Nojehdehi et al., 2018; Guo et al., 2019;
Ji et al., 2019; Ma et al., 2019). Other factors, such as IL-4, IL-6,
IFN-γ, and TNF-α, seem to be variably modulated by MSC-EV
(Rahman et al., 2014; de Castro et al., 2017; Shigemoto-Kuroda
et al., 2017; Hai et al., 2018; Nojehdehi et al., 2018).

Inflammatory priming may enhance the immunomodulatory
properties of MSC-EVs. For instance, inflammatory IL-
1β-priming MSC upregulates PD-L1 and TGF-β expression
in EVs, leading to a Treg increment in a mouse model of
autoimmune encephalomyelitis (Mokarizadeh et al., 2012).
A greater accumulation of TGF-β was also reported in
IFN-γ-primed MSC-EVs, which also showed low levels of
Galectin-1 and IDO, compared to resting MSC-EVs, leading to
a suppression of Treg expansion (Serejo et al., 2019). Compared
to resting MSC-EVs, TNF-α, and IFN-γ-primed MSC-EVs
reduced more the TNF-α and IFN-γ secretion from splenocyte
previously activated with lipopolysaccharides and concanavalin
A to preferentially stimulate either myeloid cells or T cells,
respectively (Harting et al., 2018). According to the authors, the
best efficiency of inflammatory priming was probably due to the
higher concentration of COX2 and PGE2 in primed MSC-EVs
(Harting et al., 2018). Intriguingly, EVs from MSCs pretreated
with a combination of anti- and pro-inflammatory cytokines
(TGF-β and IFN-γ, respectively) promote Treg expansion more
efficiently than MSC-EVs pretreated with TGF-β or IFN-γ only
and display higher levels of IDO, IL-10, and IFN-γ (Zhang et al.,
2018b). Nevertheless, the promoting effect of inflammatory
priming was not confirmed by other authors (Kilpinen et al.,
2013; Cosenza et al., 2018), who either found a major effect of
resting MSC-EVs, or a negligible effect on T cell proliferation of
both resting and primed (TNF-α and IFN-γ) MSC-EVs (Kilpinen
et al., 2013; Di Trapani et al., 2016; Cosenza et al., 2018).

Altogether, these data give an idea about the complexity
of the interactions and effects that can be mediated by MSC-
EVs in physiological and reactive conditions, depending on
microenvironmental factors, activating stimuli, effector cell
subsets and cellular cross-talk. This scenery becomes even more
complex when MSC-EVs are administered as cell-free therapeutic
approaches in autoimmune or inflammatory conditions.

MSC-EV-Based Immunotherapy
MSC systemic administration, which must follow Good
Manufacturing Practice (GMP) rules, is not associated to
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a significant evidence of cell engraftment even in presence
of clinical benefit, due to the entrapment of MSCs in the
microvasculature of filter organs, such as lungs (Moll et al., 2016;
Salvadori et al., 2019). Other biology aspects can interfere with
therapeutic efficacy of MSCs. For instance, the quality and the
integrity of MSC preparations depends on the isolation, culture,
and cryopreservation methods (Moll et al., 2016; Dufrane, 2017;
Mastrolia et al., 2019). Although autologous MSCs would be
the best choice for MSC therapy, they showed some limitations:
patients’ age as well as their genetic traits and medical conditions
could reduce the proliferation rate and therapeutic features of
MSCs (Pachón-Peña et al., 2016; Dufrane, 2017). Limitations
have been also observed in allogeneic MSC transplantation.
Indeed, despite MSC have been always considered characterized
by a low immunogenic potential, recent studies demonstrated
that MSCs may elicit anti-donor immune response (Ankrum
et al., 2014; Lohan et al., 2017). Therefore, in order to switch
toward a cell-free approach, many groups began to study the
immunomodulatory effects of MSC-EVs administered in vivo.
One of the first clinical setting in which employing MSC-
EVs was acute GvHD, the main complication of allogeneic
hematopoietic stem cell transplantation (HSCT) (Ferrara et al.,
2009; Szyska and Na, 2016; Zeiser and Blazar, 2017). Acute GvHD
(aGvHD) occurs within 40 days after HSCT transplantation,
as a consequence of interactions between mature donor T cells
and host and donor APCs, mounting a strong immune response
that eventually lead to host tissue damage (Tyndall and Dazzi,
2008; Zeiser and Blazar, 2017). On the other hand, chronic
GvHD (cGvHD) can arise de novo or from aGvHD and is a
more complex disease involving not only mature donor T cells,
but also auto/alloreactive B cells escaping negative selection
(Toubai et al., 2008; Zeiser and Blazar, 2017; Hill et al., 2018).
Despite several prophylactic and therapeutic strategies have been
developed, the mortality rate of refractory aGvHD is still 70–80%,
mostly due to severe secondary infectious complications (Jamil
and Mineishi, 2015; Hamilton, 2018).

MSCs initially represented an interesting candidate for cellular
therapy to improve HSCT engraftment, prevent graft failure and
treat refractory aGvHD. Despite several preclinical and clinical
studies showing clinical and survival improvement in MSC-
treated patients compared to controls, a significant number of
clinical trials failed, especially in adults, probably due to the lack
of appropriate knowledge of the mechanisms of action when
MSCs are administered in vivo (Elgaz et al., 2019; Cheung et al.,
2020). For this reason, several groups started to investigate the
effectiveness of MSC-EVs in aGvHD in vivo models and patients.
MSC-EVs may prevent aGvHD onset, attenuate symptoms,
and prolong animal survival through several mechanisms. For
instance, MSC-EVs is capable of reducing CD8+ T cell number,
leading to the increase of CD4+/CD8+ T cell ratio; in addition,
they block CD4+ T cell migration and activation inside target
organs, promote Treg expansion, downregulate IL-2, CCR6,
TNF-α, and IFN-γ expression while increasing IL-10, reduce
Th17 cell recruitment while lowering RORγτ, STAT3, IL-17,
IL-21, IL-22 expression (Wang et al., 2016; Fujii et al., 2018;
Lai et al., 2018; Zhang et al., 2018a; Dal Collo et al., 2020).
Other potential MSC-EV immunomodulatory mechanisms on

T cells involve miR-223 and the adenosine metabolism. miR-
223, which is highly expressed in EVs from umbilical cord, is
capable of inhibiting allogenic T cell migration and extravasation
by targeting ICAM-1, thus leading to a reduction of pro-
inflammatory factors and GvHD symptoms (Liu et al., 2020).
Regarding adenosine metabolism, it has been observed in a
humanized GvHD mouse model that MSC-EVs can transfer
CD73 to CD39 enzyme on the surface of tissue-infiltrating
Th1 cells, thus inducing a significant production of adenosine
that eventually reduces CD39 expression, enhances apoptosis of
adenosine A2A receptor-expressing Th1 cells, and downregulates
IFN-γ and TNF-α expression, without inducing Tregs (Amarnath
et al., 2015). The involvement of adenosine metabolism in T
cell modulation was also confirmed by other groups (Kerkelä
et al., 2016; Crain et al., 2018). Interestingly, the anti-GvHD
function is restricted to MSC-EVs, as human dermal fibroblast-
derived EVs are devoid of these effects (Fujii et al., 2018).
MSC-EV treatment was also tested in a therapy-refractory GvHD
patient, who showed GvHD clinical symptoms improvement and
remained stable for several months (Kordelas et al., 2014): MSC-
EV preparations contained high concentrations of IL-10, TGF-β,
and HLA-G that paralleled with the decrease in the number of
both PBMCs releasing IL-1β, TNF-α, and IFN-γ and stimulated
NK cells releasing TNFα- or IFN-γ (Kordelas et al., 2014).

Unfortunately, not all EV preparations from MSCs are
functionally equivalent (Madel et al., 2019). Therefore, it is
necessary to characterize the functional activity of MSC-EV
preparations and to identify predictive tests that may foresee
the clinical benefit. Kordelas et al. (2019) proposed an in vitro
assay to monitor the impact of different EV preparations from
human donor bone marrow MSCs (BM-MSCs)-MSCs on T cell
differentiation and corresponding cytokine production. Recently,
a functional in vitro assay was suggested to assess the MSC-EV
therapeutic dose (EV-TD) in vivo in a mouse model of aGvHD;
EV-TD, associated with the improvement of mouse overall
survival, corresponded to 10-fold the EV immunomodulatory
functional unit (EV-IFU), i.e. the lowest concentration in vitro
of resting MSC-EV-pool leading to at least threefold increase of
Tregs compared to control (Dal Collo et al., 2020). Nevertheless,
all these assays need to be validated in a large cohort of
patients before being accepted as predictive methods of MSC-EV
therapeutic efficacy.

Other clinical studies employing MSC-EVs as treatment
of many diseases with inflammatory phenomena are reported
on clinicaltrials.gov. According to our search, using the terms
“mesenchymal extracellular vesicles” and “stromal extracellular
vesicles,” only three clinical studies have been registered
concerning bronchopulmonary dysplasia (NCT03857841)1,
osteoarthritis (NCT04223622)2, and dystrophic epidermolysis
bullosa (NCT04173650)3. In particular, NCT03857841 study
will employ UNEX-42, a preparation of EVs secreted from
human BM-MSCs suspended in phosphate-buffered saline;
NCT04223622 study will use the entire secretome or EVs derived

1https://clinicaltrials.gov/ct2/show/NCT03857841
2https://clinicaltrials.gov/ct2/show/study/NCT04223622
3https://clinicaltrials.gov/ct2/show/study/NCT04173650
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from adipogenic MSCs; and NCT04173650 study will employ
AGLE-102, an allogeneic derived EV product derived from
normal donor MSCs. However, all studies are currently ongoing
and no clear-cut results have been reported so far.

CONCLUSION

Immunomodulatory capacity of MSCs is associated, at least
in part, with the release of EVs. The ability of MSC-EVs
to affect immune response, promoting immunotolerance in
tissue microenvironment, opens new cues on intercellular
communication through soluble factors and makes MSC-EVs a
new promising therapeutic strategy for the treatment of many
inflammatory disorders. Compared to cell therapy, EV treatment
offers a number of advantages in terms of higher distribution in
target organs, lower immunogenicity and tumorigenicity as well
as easier handling and preparation procedures. Unfortunately,
MSC-EVs can have variable biological effects on the same
effector cell type depending on different factors, such as
the quality of primary cells, MSC source, culture conditions,

preconditioning with inflammatory cytokines, cryopreservation
methods, purification and quantification protocols, etc. (Théry
et al., 2018). These premises, together with the lack of
standardized approaches, specific dosing and defined quality
controls for clinical use, require further investigations before
transferring EV-based treatments from bench to bedside.
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