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Secretory pathway calcium ATPase 1 (SPCA1) is a calcium pump localized specifically

to the Golgi. Its effects on UVA-induced senescence have never been examined. In our

study, expression of SPCA1 was increased in UVA-irradiated human dermal fibroblasts

(HDFs) by activating mitogen-activated protein kinase (MAPK) and its downstream

transcription factor, c-jun. Dual-luciferase reporter and chromatin immunoprecipitation

assays revealed that c-jun regulated SPCA1 by binding to its promoter. Furthermore,

downregulating SPCA1 with siRNA transfection aggravated UVA-induced senescence

due to an elevation of intracellular calcium concentrations and a subsequent increase in

reactive oxygen species (ROS) and MAPK activity. In contrast, overexpression of SPCA1

reduced calcium overload, consequently lowering the ROS level and suppressing MAPK

activation. This alleviated the cellular senescence caused by UVA irradiation. These

results indicated that SPCA1 might exert a protective effect on UVA-induced senescence

in HDFs via forming a negative feedback loop. Specifically, activation of MAPK/c-jun

triggered by UVA transcriptionally upregulated SPCA1. In turn, the increased SPCA1

lowered the intracellular Ca2+ level, probably through pumping Ca2+ into the Golgi,

leading to a reduction of ROS, eventually decreasing MAPK activity and diminishing

UVA-induced senescence.

Keywords: SPCA1, UVA, intracellular calcium concentration, ROS, MAPK pathway, negative feedback

INTRODUCTION

Ultraviolet (UV) irradiation is the primary environmental cause of premature skin aging and cell
senescence (Bosch et al., 2015). UV radiation can be divided into three parts: UVA (320–400 nm),
UVB (280–320 nm), and UVC (200–280 nm). Among three types of UV irradiation, UVA is well-
known to be responsible for most of the chronic skin damage associated with cell senescence, due
to its abundance and deep penetration into the dermis (Krutmann, 2001). UVA radiation primarily
initiates photo-damage through the generation of reactive oxygen species (ROS) (Rinnerthaler
et al., 2015). ROS reduce the cellular antioxidant status resulting in oxidative stress, which is one of
the most crucial pathogenic factors for cellular senescence.
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ROS can directly attack cellular molecules causing telomere
shortening, mitochondrial damage, membrane degradation,
and oxidation of structural and enzymatic proteins (Yaar
and Gilchrest, 2007). More importantly, numerous signal
transduction pathways such as mitogen-activated protein kinase
(MAPK), nuclear factor-kappa beta/p65, janus kinase, signal
transduction and activation of transcription, and nuclear
factor erythroid 2-related factor 2 are activated by ROS.
Among these, MAPK and its downstream transcription factor,
activator protein-1 (AP-1), play crucial roles in cell senescence
(Fisher et al., 2002). MAPK pathway is well known to
be responsible for the activation of p53 and p16, which
are the main causes for cell senescence (Bulavin et al.,
1999; Singh et al., 2003). UVA also can upregulate matrix
metalloproteinase 1 (MMP1) via the MAPK/AP-1-signaling
cascade (Chaiprasongsuk et al., 2017). Moreover, Zheng et al.
(2013) reported that 10-hydroxy-2-decenoic acid reduced UVA-
induced activation of the c-Jun N-terminal kinase (JNK) and
inhibited the expression of MMP-1 and MMP-3, thereby
preventing skin photoaging.

SPCA1 is a Golgi-localized transmembrane protein, encoded
by the ATPase, Ca2+ transporting, type2C, member 1 (ATP2C1)
gene, that pumps Ca2+ as well as Mn2+ into the Golgi apparatus
in an ATP-dependent manner (Missiaen et al., 2007; Shull et al.,
2011; Praitis et al., 2013). Current studies of SPCA1 are mainly
focused on its association with Hailey-Hailey disease (Micaroni
et al., 2016; Nellen et al., 2017), secretory cargo sorting (von
Blume et al., 2011, 2012), neuron differentiation (Sepulveda et al.,
2008, 2009), secretory pathway mammary calcium transport
(Reinhardt and Lippolis, 2009), breast cancer (Grice et al., 2010),
and focal cerebral ischemia-reperfusion injury (Lehotsky et al.,
2009). However, the role of SPCA1 in aging and senescence has
never been explored.

One characteristic of SPCA1 attracted our attention.
Specifically, SPCA1 expression correlates with oxidative stress
and ROS. Pavlikova et al. (2009) demonstrated that ischemic
preconditioning could partially suppress lipid and protein
oxidation and reverse the depression of SPCA1 induced by
ischemia/reperfusion injury in rat hippocampal membranes.
Additionally, in neuro-2a cells, SPCA1 knockdown increases the
H2O2-induced production of nitric oxide, 3-nitrotyrosine, and
lactate dehydrogenase in a concentration-dependent manner
(Fan et al., 2016b). Moreover, SPCA1 plays an important role
in cytosolic and intra-Golgi Ca2+ homeostasis by transporting
Ca2+ into the Golgi lumen (Missiaen et al., 2004; Micaroni et al.,
2010).

Expression and activity changes of SPCA1 are associated with
changes in the intracellular-free Ca2+ concentration ([Ca2+]i).
However, growing evidence indicates a mutual interplay between
[Ca2+]i and ROS. Abnormally high levels of [Ca2+]i induce
overproduction of free radicals that can result in oxidative stress.
In turn, inordinate accumulation of ROS can exacerbate calcium
overload, which further alters ROS production (Gorlach et al.,
2015). Because oxidative stress and ROS are the most crucial
factors of cell senescence, we speculate that SPCA1 might also
play an protected role in skin cell senescence by effecting [Ca2+]i
and ROS levels.

Therefore, we investigated the role of SPCA1 onUVA-induced
cellular senescence and its regulatory mechanism in HDFs.

MATERIALS AND METHODS

Isolation of Dermal Fibroblasts and Cell
Culture
Skin samples were collected from healthy male children at 6–12
years of age who were circumcised in the Department of Urology,
Xiangya Hospital, Central South University. Primary HDFs were
obtained by explantation from samples. The cells were grown
in complete Dulbecco’s modified Eagle’s medium (Gibco, Grand
Island, NY, USA) containing 10% fetal bovine serum (Gibco)
and antibiotics (penicillin, 100 U/ml; streptomycin, 100µg/ml)
at 37◦C in a humidified incubator with 5% CO2. Medium was
refreshed every 2–3 days, and fibroblasts were split 1:2–1:3 when
they reached 80–90% confluence. For all experiments, cells were
used at passages 4–6. Before harvesting primary HDFs, written
informed consent was obtained from legal guardians of donors
in accordance with a protocol approved by the Clinical Research
Ethics Committee at the Xiang Ya Hospital of Central South
University in Changsha, China.

UVA Irradiation
Irradiation was carried out using a UVA phototherapy
instrument (SS-03A, Sigma, Shanghai, China). After two washes
with phosphate-buffered saline (PBS), cells were incubated in
PBS under UVA irradiation. Cells were irradiated with a UVA
dose of 10 J/cm2/day for 3 days. The time interval of these three
UVA irradiations is 24 h. After each UVA exposure, cells were fed
fresh complete culture medium with or without 10µMSP600125
(#S1876; Beyotime) or 10µM SB203580 (#S1863; Beyotime) for
24 h before being collected for further analysis.

Western Blots
Proteins were extracted from cultured cells by homogenization
on ice in radio immunoprecipitation assay lysis buffer (Beyotime,
Haimen, China) containing Protease Inhibitor Cocktail (Sigma-
Aldrich, St. Louis, MO, USA). Supernatants were obtained
after centrifugation at 12,000 × g at 4◦C for 10min. Protein
concentrations were determined using a Pierce BCA Protein
Assay Kit (ThermoFisher Scientific, Waltham, MA, USA). The
remainder of the lysates was mixed with 5× sodium dodecyl
sulfate (SDS) loading buffer (Dingguo, Beijing, China) at a
ratio of 1:4. Protein samples were heated at 100◦C for 5min
and separated by SDS-polyacrylamide gel electrophoresis. The
separated proteins were then transferred to a polyvinylidene
difluoride membrane and blocked in 1× PBST containing 5%
(w/v) skim milk. The membrane blots were incubated overnight
at 4◦C with primary antibodies.

The primary antibody for ATP2C1 was purchased from
Proteintech (Rosemont, IL, USA), and the primary antibody for
P16INK4A was purchased from Boster (Wuhan, China). Primary
antibodies for phospho-p38, p38, phospho-JNK, JNK, phospho-
ERK1/2, and ERK1/2 were purchased from Cell Signaling
Technology (Danvers, MA, USA). All antibodies were diluted in
1× PBST containing 5% BSA and 0.02% sodium azide and were
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then incubated overnight at 4◦C. This was followed by incubation
with horseradish peroxidase-conjugated secondary antibodies
(Sigma-Aldrich) for 1 h at room temperature. Each membrane
was washed in 1× PBST and developed using a ChemiDo MP
System (Bio-Rad, Hercules, CA, USA). The chemiluminescence
signal was detected using Image Lab software (Bio-Rad). Protein
levels were first normalized to β-actin (Bioworld Technology, St.
Louis Park, MN, USA) and then to experimental controls.

Quantitative Real-Time Polymerase Chain
Reaction
Cells were lysed in Trizol (Invitrogen, Carlsbad, CA, USA),
and the homogenate was separated into aqueous and organic
phases by adding bromochloropropane. Next, total RNA
was precipitated from the aqueous phase with isopropanol,
and finally washed with ethanol and solubilized in diethyl
pyrocarbonate. cDNA was synthesized by reverse transcription
from 3 µg of total RNA using the RevertAid First-Strand
cDNA Synthesis Kit (Fermentas, Burlington, ON, Canada).
The cDNA was diluted 10:1 and amplified using specific
primers for ATP2C1 or GAPDH (purchased from Sangon
Biotech, Shanghai, China). The following primer pairs
were used: 5′-GTA AAA TAC TGC AAC CTT TGG-3′

and 5′-GGT GTG AAA GAA GCT GTT ACA AC-3′ for
ATP2C1; 5′-CATTGACCTCAACTACATGGTTTAC-3′ and
5′-GTGATGGGATTTCCATTGATGAC-3′ for GAPDH. Signal
detection was performed in triplicate using CFX Manager
Software (Bio-Rad). The reaction was performed with initial
denaturation at 95◦C for 10min, followed by 40 PCR cycles
of 95◦C for 15 s and 60◦C for 60 s. Data were collected and
analyzed using the 211Ct method. Values of genes were first
normalized against GAPDH, and then compared with the
experimental controls.

Small Interfering RNA Transfection
HDFs were transfected with SPCA1 siRNA using Lipofectamine
2000 Transfection Reagent (Thermo Fisher Scientific). The
transfection mix (100 pmol RNA and 5 µl Lipofectamine 2000),
each diluted in 500 µl Opti-MEM per 60-mm dish was added
followed by a 20-min incubation at room temperature. The
medium was changed after 6 h. Subsequent operations were
done after 48-h incubation. siRNA against SPCA1 targeting the
sequence 5′-AAGGTTGCACGTTTTCAAAAA-3′ in the SPCA1
cDNA was purchased from GenePharma (Shanghai, China). The
level of knockdown of SPCA1 expression was determined by
Western blot.

Senescence-Associated β-Galactosidase
(SA-β-gal) Staining
The Senescence-Associated β-Galactosidase Staining Kit (Cell
Signaling Technology) was used according to the manufacturer’s
instructions. Stained cells were observed under an inverted
microscope for the development of blue color. The population
of SA-β-gal-positive cells was determined by counting 10
microscopic fields per dish randomly, and then computing an
average. The proportions of cells positive for SA-β-gal activity

are given as percentages of the total number of cells counted in
every dish.

3-(4,5-Dimethylthiazol-2-yl)-2,5-
Diphenyltetrazolium Bromide
Assay
SPCA1-siRNA, SPCA1-cDNA, and control (NS-siRNA, SPCA1-
vector)-transfected HDF cells were planted on 96-well plates at
an density of 4,000 cells per well in triplicate and exposed to
UVA or not. After additional incubation for 0, 24, 48, or 72 h,
20ml of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) stock solution (5 mg/ml MTT reagent diluted
in PBS; Sigma-Aldrich, USA) was added to each well. The plates
were further incubated for 4 h at 37◦C and 5% CO2 in the dark.
The supernatant was carefully removed without disturbing the
sediment, and 150 µl dimethyl sulfoxide (Sigma-Aldrich, USA)
was added to the wells to dissolve the purple formazan crystals.
The absorbance at 490 nm was obtained from a microplate
reader (BioRad).

[Ca2+]i Measurements
HDFs were loaded with 4µMFluo-4/AM (Dojindo Laboratories,
Kumamoto, Japan) for 60min at 37◦C in the dark and washed
thrice with PBS. Then, they were digested by trypsin, centrifuged
at 2,000 rpm for 5min, washed two times with PBS, and
incubated for another 30min. Fluorescence was measured using
a flow cytometer.

ROS Measurements
The intracellular ROS level was measured using a Reactive
Oxygen Test Kit (Beyotime). After three times UVA exposure,
HDFs were fed fresh complete culture medium for 24 h before
ROS measurements. HDFs were loaded with dichlorofluorescin
diacetate for 20min at 37◦C in the dark and washed thrice with
PBS. Fluorescence was measured using a Multiskan Spectrum
microplate reader (Thermo Fisher Scientific).

Plasmids
The SPCA1 promoter reporter [SPCA1-luc (luciferase)] was
prepared by inserting an approximately 1.0 kb upstream
sequence (based on the putative translation starting codon)
into the pGL3-basic vector. This fragment was generated by
PCR with 5′-CGGGGTACCAAGTGGTTCTGCAGTAT-3′ and
5′-CCCAAGCTTATATTAGCTAGCTGGTGACTT-3′ as the
primers (Sangon Biotech).The SPCA1 overexpression plasmid
was prepared by inserting a coding sequence into pcDNA3.1
(+). This fragment was generated by PCR with the following
primers: 5′-CCCAAGCTTATGAAGGTTGCACGTT-3′ and
5′-CGGGGTACCTCATACTTCAAGAAAAGATG-3′ (Sangon
Biotech). The pGL3-basic and PLR-TK vectors were purchased
from Promega. pcDNA3.1 (+) was purchased from Thermo
Fisher Scientific. p6600 MSCV-IP N-HA only JUN, pLX304-
FOS-V5 were purchased from addgene (Cambridge, MA, USA).
All constructs were subjected to sequence analysis.
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Dual-Luciferase Reporter Gene Assay
HEK293T cells were cultured in DMEM (Gibco) containing
10% fetal bovine serum (Gibco) to approximately 60%
confluence in a 96-well plate, then co-transfected with
different DNA mixes for 24–36 h. Firefly and Renilla luciferase
activities were measured using the Dual-Luciferase Reporter
Assay System (Promega). Renilla luciferase activity was
normalized to firefly luciferase activity. Two thousand base
pairs (bp) before transcription initiation sites within the
DNMT1 promoter were cloned and inserted into a pGL4
control vector (Promega). Additionally, mutant reporter
genes were created using the QuikChange Lightning Multi
Site-Directed Mutagenesis kit (Stratagene, La Jolla, CA,
USA). The primer used to clone the DNMT1 promoter was
following: 5′-GCCGGTACCAAGTGGTTCTGCAGTATACAG-
3′ and 5′-GCCCTCGAGTATTAGCTAGCTGGTGACTT-3′

(Sangon Biotech).

Chromatin Immunoprecipitation Assay
The chromatin immunoprecipitation (ChIP) assay was
performed according to the manufacturer’s manual using
an EZ ChIP kit purchased from Millipore (Temecula, CA, USA).
The immunoprecipitated complexes were incubated at 4◦C
overnight with the indicated antibodies. Bound DNA fragments
were analyzed by RT-PCR using the HotStart Taq enzyme
(Takara, Dalian, China). Primers were specific for the predicted
binding sites (Supplementary Table 2). GAPDH was used as the
negative control.

Nucleofector for Fibroblasts
Cultured primary HDFs (1× 106) were transfected with the 4D-
Nucleofector System (Lonza, Walkersville, MD, USA) according
to manufacturer’s instructions using the program U-023 preset
with 2 µg plasmid DNA or 2 µg pmax GFP vector.

Statistical Analyses
Data are shown as means ± SD of at least three independent
experiments. Statistical significance was assessed using Student’s
t-test or two-way ANOVA with SPSS 17.0 (IBM, Chicago, IL,
USA).We considered P < 0.05 to be statistically significant.

RESULTS

UVA Irradiation Increases the Expression
of SPCA1 by Activating the MAPK Pathway
Primary HDFs were irradiated with 10 J/cm2 UVA/day for 3 days.
Both the mRNA and protein levels of SPCA1 were remarkably
increased in HDFs after UVA irradiation (Figures 1A,B). Then,
we investigated the possible signaling pathway regulating SPCA1
expression. UVA irradiation enhanced phosphorylation of P38
and JNK, while inhibitors of MAPK (SB203580 and SP600125)
suppressed this phosphorylation, as well as the SPCA1 expression
induced by UVA irradiation (Figures 1C,D). These results
indicate that UVA irradiation increases the expression of SPCA1
by activating the MAPK pathway.

MAPK Transcriptionally Regulates SPCA1
via Activating c-Jun
AP-1 is a classical transcription factor activated by MAPK.
Phosphorylation of c-jun was increased after UVA irradiation,
which could be blocked by MAPK inhibitors (Figures 2A,B).
We predicted three high score binding sites of c-jun on the
SPCA1 promoter through JASPAR bioinformatics software. Basic
information about these three binding sites is presented in the
Supporting Information (Supplementary Table 1). We cloned
the promoter of SPCA1 (−2,000 to 0 bp) and generated a SPCA1
promoter luciferase reporter and cotransfected to HEK293T cell
with p6600 MSCV-IP N-HA only JUN or pLX304-FOS-V5 (c-
jun and c-fos expression plasmid). The dual-luciferase reporter
assay revealed that c-jun markedly enhanced activity of SPCA1
promoter luciferase reporter, but c-fos (another component of
AP-1) had no effect on SPCA1 promoter activity (Figure 2C).
Furthermore, ChIP assay was applied to determine whether c-
jun was bound to these sequences directly. The primers for
amplifying these predicted binding sites in ChIP assays is
shown in Supplementary Table 2. The results showed that the
sequences at the predicted binding sites 2 and 3 were amplified to
a greater extent following immunoprecipitation with an anti-c-
jun antibody than with the non-specific IgG control (Figure 2D).
These data suggest that AP-1 might bind directly to the predicted
binding sites 2 and/or 3 of the SPCA1 promoter and regulates its
transcription level. This indicated that c-jun might bind to the
predicted sequence.

SPCA1 siRNA Exacerbates UVA-Induced
Senescence and Phosphorylation of MAPK
To identify the role of SPCA1 in UVA-induced senescence in
HDFs, SPCA1 siRNA was transfected to decrease its expression.
SA-β-gal activity, and the expression of p16 (hallmark of cellular
senescence), were measured to evaluate cellular senescence.
Downregulation of SPCA1 exacerbated the increase of SA-
β-gal-positive cells and the expression of p16 induced by
UVA irradiation (Figures 3A,C,D); 24, 48, and 72 h after
UVA radiation, SPCA1 and NS siRNA-transfected HDFs both
decreased in cell viability, but the cell viability dropped severely in
SPCA1 siRNA-transfected groups (Figure 3B). Downregulation
of SPCA1 also promoted the phosphorylation of MAPK
caused by UVA (Figure 3E). Thus, we demonstrated that
downregulating SPCA1 exacerbates UVA-induced senescence
and MAPK activation.

SPCA1 cDNA Attenuates UVA-Induced
Senescence and Phosphorylation of MAPK
SPCA1 cDNA was nucleofected into HDFs to further investigate
the role of SPCA1 in UVA-induced senescence. Upregulation
of SPCA1 partially reversed the increased number of SA-β-gal-
positive cells (Figures 4C,D), and p16 expression (Figure 4A),
as well as phosphorylation of MAPK caused by UVA irradiation
(Figure 4E). Simultaneously, the UVA-induced reduction of cell
viability was partially reversed by SPCA1 cDNA (Figure 4B).
These results indicate that overexpression of SPCA1 attenuates
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FIGURE 1 | UVA irradiation increases the expression of SPCA1 by activating the MAPK pathway. (A) SPCA1 mRNA expression in control and UVA-irradiated HDFs,

as determined by real-time PCR. Each sample was analyzed in triplicate. Data are shown as the mean of three independent experiments. *P < 0.05 vs. control. (B) (a)

SPCA1 protein expression in control and UVA-irradiated HDFs, as determined by Western blot analysis. Images are representative of three independent experiments.

(b) Bar graphs show quantitative analysis of scanning densitometric values of SPCA1 as ratios to β-actin, which was used as a loading control. Data are representative

of three independent experiments. *P < 0.05 vs. control. (C,D) Effects of SB203580 and SP600125 (inhibiter of p38 and JNK) on UVA-induced SPCA1 protein

expression and phosphorylation of p38 and JNK as determined by Western blot analysis. Control and UVA-irradiated HDFs were treated with or without 10µM

SB203580 and SP600125, respectively. Images are representative of three independent experiments. (b,c) Bar graphs show quantitative analysis of scanning

densitometric values of SPCA1 as ratios to β-actin and phospho-JNK, p38 proteins as ratios to their total JNK, and p38, respectively. Data are representative of three

independent experiments. *P < 0.05 vs. control; #P < 0.05 vs. UVA.

UVA-induced senescence and phosphorylation of MAPK
in HDFs.

SPCA1 Affects UVA-Induced ROS and
MAPK Activation via Regulating [Ca2+]i
To investigate the possible mechanism of the effects of
SPCA1 on UVA-induced senescence, we evaluated the levels
of [Ca2+]i and ROS. Downregulating SPCA1 further elevated
the increase of calcium, ROS, and MAPK activity induced by
UVA. Moreover, compared with HDFs transfected with NC
siRNA, UVA-irradiated HDFs transfected with SPCA1 siRNA
have no difference in ROS level and phosphorylation of MAPK
at the presence of BAPTA (Figures 5A–C). On the contrary,
the elevations of intracellular calcium, ROS, and MAPK activity
initiated by UVA were partially reversed by SPCA1 cDNA

transfection (Figures 5D,E). Thus, our results demonstrate that
SPCA1 influence UVA-induced ROS and MAPK activation by
regulating [Ca2+]i.

DISCUSSION

In this study, we found that UVA irradiation promoted the
expression of SPCA1 through activation of MAPK and its
downstream transcription factor, c-jun, which directly binds
to the SPCA1 promoter. Increased SPCA1 suppressed UVA-
induced MAPK activity by lowering the [Ca2+]i and ROS levels,
thereby alleviating cellular senescence caused by UVA. Thus, a
novel negative feedback loop to maintain homeostasis in HDFs
under UVA irradiation was discovered. This is the initial research
concerning a role for SPCA1 and its regulatory mechanism in
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FIGURE 2 | MAPK transcriptionally regulates SPCA1 via activating c-jun. (A,B) Western blot images and quantitative analysis show effects of SB203580 and

SP600125 on UVA-induced phosphorylation of c-jun. Images are representative of three independent experiments. *P < 0.05 vs. control; #P < 0.05 vs. SB203580 +

UVA or SP600125 + UVA. The treatment of SB203580 and SP600125 is described above. (C) Luciferase reporter assay data, showing the activity of SPCA1

promoter. Cells were transfected with the following plasmids: c-jun, c-jun-cDNA-expressing vector; c-fos, c-fos-cDNA-expressing vector; ATP2C1, reporter plasmid

containing SPCA1 promoter. Experiments were performed in triplicate. *P < 0.05 vs. pGL3-ATP2C1 promoter. (D) Chromatin immunoprecipitation data from HDFs

incubated with either anti-SPCA1 antibody or non-specific control IgG, showing the amplification of each of the four predicted c-jun-binding sites within the SPCA1

promoter (termed SPCA1 b1, b2, and b3). Experiments were performed in triplicate.*P < 0.05 vs. IgG; nsP < 0.05 vs. IgG.

cellular senescence, suggesting that SPCA1 is involved in self-
defense in UVA-induced senescence.

Oxidative stress and ROS are decisive factors of UVA-
induced senescence and MAPK activation. Several reports in
different areas congruously found that SPCA1 was associated
with oxidative stress and ROS due to its capability of regulating
[Ca2+]i; some refer to this as “Golgi stress” (Okunade et al., 2007;
Shull et al., 2011). Keratinocytes derived from Hailey–Hailey
disease patients, which lack one functional copy of the ATP2C1
gene, underwent oxidative stress, while ATP2C1 inactivation

increased oxidative stress in cultured human keratinocytes (Cialfi
et al., 2010, 2016). In addition, there is a correlation between
SPCA1 and oxidative stress in ischemia/reperfusion and ischemic
preconditioning of brain cells (Pavlikova et al., 2009). Similarly,
our findings suggested that SPCA1 played a very important
role in UVA-induced senescence by altering oxidative stress.
Silencing SPCA1 exacerbated the increased [Ca2+]i induced
by UVA irradiation, leading to higher ROS levels and MAPK
activity and eventually aggravating cellar senescence in HDFs.
In contrast, overexpression of SPCA1 yielded the opposite
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FIGURE 3 | SPCA1 siRNA exacerbates UVA-induced senescence and phosphorylation of MAPK. (A) Western blot images and quantitative analysis show SPCA1 and

p16 protein expression in control and UVA-irradiated HDFs, with or without SPCA1 siRNA transfection. *P < 0.05 vs. NC-siRNA; #P < 0.05 vs. NC-siRNA + UVA.

Data are representative of three independent experiments. (B) Cell vitality determined by MTT analysis under indicated conditions. *P < 0.05 vs. NC-siRNA; **P <

0.05 vs. NC-siRNA + UVA. (C,D) Senescence-associated β-galactosidase (SA-β-gal) activity of cells under the indicated conditions. Representative images are

shown (scale bar = 200µm). The percentages of SA-β-gal-positive cells under each condition are presented as the mean ± standard deviation of three independent

experiments. *P < 0.05 vs. NC-siRNA; **P < 0.05 vs. NC-siRNA + UVA. (E) Western blot images and quantitative analysis show phosphorylation of p38 and JNK in

control and UVA-irradiated HDFs, with or without SPCA1 siRNA transfection. *P < 0.05 vs. NC-siRNA; #P < 0.05 vs. NC-siRNA + UVA. Data are representative of

three independent experiments.

result and exhibited a protective effect on senescence. The
effects of SPCA1 siRNA on ROS and MAPK activity could be
abolished by a calcium chelator, BAPTA. This indicates that
[Ca2+]i acted as a mediator between SPCA1 and oxidative stress.
Nevertheless, the specific underlying mechanism involved in
regulating ROS by [Ca2+]i in this situation requires further
study. It has been shown that intracellular calcium could
cause mitochondria Ca2+ overload (Li et al., 2013), induce
a three-dimensional conformation change of the respiratory
chain complexes (Brookes et al., 2004), increase metabolic rate
(Brookes et al., 2004), activate cytoplasmic NADPH oxidases
(NOXes) (Crosas-Molist and Fabregat, 2015; Gorlach et al.,

2015), and all eventually increase ROS production. Some of the
processes mentioned above may be involved in our case.

Because SPCA1 has a protective role in UVA-induced cellular
senescence, we examined its upstream regulatory mechanism.
Loss of one functional copy of the ATP2C1 gene causes low
expression of SPCA1 and Hailey–Hailey disease, a human
autosomal dominant skin disorder characterized by suprabasal
acantholysis of keratinocytes (Hu et al., 2000; Sudbrak et al.,
2000). Short wave increased expression of SPCA1 in middle
cerebral artery occlusion (Fan et al., 2016a), ischemia/reperfusion
depressed SPCA1 expression, and ischemic preconditioning
could partially reverse this kind of depression in hippocampal
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FIGURE 4 | SPCA1 cDNA attenuates UVA-induced senescence and phosphorylation of MAPK. (A) Western blot images and quantitative analysis show SPCA1 and

p16 protein expression in control and UVA-irradiated HDFs, with or withoutSPCA1 cDNA transfection, *P < 0.05 vs. SPCA1-vector; #P < 0.05 vs.

SPCA1-vector+UVA. Data are representative of three independent experiments. (B) Cell vitality determined by MTT analysis under indicated conditions. *P < 0.05,

SPCA1-vector + UVA vs. SPCA1-vector; **P < 0.05, SPCA1-cDNA+UVA vs. SPCA1-vector+UVA. (C,D) Senescence-associated β-galactosidase (SA-β-gal) activity

of cells under the indicated conditions. Representative images are shown (scale bar = 200µm). The percentages of SA-β-gal-positive cells under each condition are

presented as the mean ± standard deviation of three independent experiments. *P < 0.05 vs. SPCA1-vector; **P < 0.05 vs. SPCA1-vector+UVA. (E) Western blot

images and quantitative analysis show phosphorylation of p38 and JNK in control and UVA-irradiated HDFs, with or without SPCA1 cDNA transfection. *P < 0.05 vs.

SPCA1-vector; #P < 0.05 vs. SPCA1-vector + UVA. Data are representative of three independent experiments.

cells (Lehotsky et al., 2009). Serotonin deficiency decreased
the expression of SPCA1 mRNA in mammary epithelial cells
(Laporta et al., 2014). However, these reports only provided
the expression changes of SPCA1 in certain conditions, without
exploring the underlying mechanism. Aside from these findings,
little is known about the regulatory mechanism of SPCA1,
especially in skin.

In our study, we not only discovered a new condition that
modified SPCA1 expression:UVA irradiation but also revealed

a new regulatory mechanism of SPCA1. Specifically, UVA-
activated MAPK and its downstream transcription factor c-jun,
which, in turn, directly bound to the SPCA1 promoter and
up-regulated its expression.

MAPK activation plays a crucial role in UVA-induced
senescence. For example, MAPK increases MMP1, MMP3, and
MMP9 through activating AP-1, leading to collagen degradation
(Wang et al., 2005; Kim et al., 2013). Alternately, MAPK can
directly phosphorylate p16 and p53 and initiate senescence of
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FIGURE 5 | SPCA1 affects UVA-induced ROS and MAPK activation via regulating [Ca2+]i. (A) [Ca2+]i levels determined by Fluo-4/AM fluorescence under indicated

conditions. Bapta (1mM) abolish the effect of SPCA1 siRNA on [Ca2+]i levels in UVA-irradiated HDF. *P < 0.05 vs. NC-siRNA; **P < 0.05 vs. NC-siRNA + UVA; nsP <

0.05. (B) ROS levels determined by dichlorofluorescin diacetate fluorescence under indicated conditions. Bapta (1mM) abolish the effect of SPCA1 siRNA on ROS

levels in UVA-irradiated HDF. *P < 0.05 vs. NC-siRNA; **P < 0.05 vs. NC-siRNA + UVA; nsP < 0.05. (C) Western blot images and quantitative analysis show Bapta

(1mM) abolish the effect of SPCA1 siRNA on phosphorylation of p38 and JNK in UVA-irradiated HDF. nsP < 0.05. Data are representative of three independent

experiments. (D,E) [Ca2+]i and ROS level in control and UVA-irradiated HDFs, with or without SPCA1 cDNA transfection. *P < 0.05 vs. SPCA1-vector; **P < 0.05 vs.

SPCA1-vector + UVA.

skin cells, especially dermal fibroblasts (Bulavin et al., 1999; Singh
et al., 2003). In our previous studies, we demonstrated that the
MAPK pathway was involved in UVA-induced senescence and
apoptosis (Xie et al., 2013; Wang et al., 2015). In agreement

with this finding, our present research also showed the activation
of MAPK and c-jun, under UVA irradiation. Furthermore, we
identified SPCA1 as a new target gene regulated by MAPK, in
UVA-induced senescence in HDFs by using MAPK inhibitors.
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MAPK activates c-jun by phosphorylation, and the latter
binds to specific sequences called the tetradeconylphorbol-13-
acetate response elements (TREs) in the promoters of AP-1-
inducible genes, contributing to transcriptional activation or
repression of target genes (Angel and Karin, 1991; Whitmarsh
and Davis, 1996). We also found that UVA phosphorylated c-
jun via activation of MAPK by using selective inhibitors. Using
bioinformatic software (JASPAR), we predicted three TREs on
the promoter of SPCA1. Dual-luciferase reporter and ChIP assays
located the precise functional domain on the SPCA1 promoter
that bound c-jun. To our knowledge, this regulatory mechanism
of SPCA1 has not been reported previously and might provide a
new direction for research concerning the regulation of SPCA1
in different circumstances.

Negative feedback is a core mechanism to maintain
homeostasis and cope with stress in the human body. Examples
of this are numerous, from the baroreflex in blood pressure
to the regulation of hormone secretion. Overall, our research
suggests that SPCA1 might exert a protective effect on UVA-
induced senescence in HDFs through negative feedback of
MAPK. Activation of MAPK/c-jun triggered by UVA could
transcriptionally upregulate SPCA1. In turn, increased SPCA1
brings down the [Ca2+]i, probably through pumping Ca2+

into the Golgi apparatus. This reduces ROS levels, eventually
decreasing MAPK activity and easing UVA-induced senescence.
Therefore, this negative feedback loop could partially break the
signaling cascade of MAPK, alleviate damage caused by UVA,
maintain cellular homeostasis, and prevent cells from senescence.
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