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Notch and Wnt signaling are highly conserved intercellular communication pathways
involved in developmental processes, such as hematopoiesis. Even though data from
literature support a role for these two pathways in both physiological hematopoiesis and
leukemia, there are still many controversies concerning the nature of their contribution.
Early studies, strengthened by findings from T-cell acute lymphoblastic leukemia (T-ALL),
have focused their investigation on the mutations in genes encoding for components
of the pathways, with limited results except for B-cell chronic lymphocytic leukemia
(CLL); in because in other leukemia the two pathways could be hyper-expressed
without genetic abnormalities. As normal and malignant hematopoiesis require close
and complex interactions between hematopoietic cells and specialized bone marrow
(BM) niche cells, recent studies have focused on the role of Notch and Wnt signaling
in the context of normal crosstalk between hematopoietic/leukemia cells and stromal
components. Amongst the latter, mesenchymal stromal/stem cells (MSCs) play a pivotal
role as multipotent non-hematopoietic cells capable of giving rise to most of the BM
niche stromal cells, including fibroblasts, adipocytes, and osteocytes. Indeed, MSCs
express and secrete a broad pattern of bioactive molecules, including Notch and Wnt
molecules, that support all the phases of the hematopoiesis, including self-renewal,
proliferation and differentiation. Herein, we provide an overview on recent advances
on the contribution of MSC-derived Notch and Wnt signaling to hematopoiesis and
leukemia development.

Keywords: Mesenchymal stromal cells, Notch, Wnt, leukemia, bone marrow niche

INTRODUCTION

Bone marrow microenvironment (BMME) supports normal and clonal hematopoiesis, but also
affects leukemia initiation, progression, and chemoresistance. Hematopoietic stem cells (HSCs)
reside in a specialized BMME, where HSCs are tightly regulated (Cordeiro-Spinetti et al., 2015),
functionally subdivided in two main compartments, i.e., the vascular niche that is close to
the marrow vasculature, and the endosteal niche that is close to endosteum; however, the
specific nature and functions of each niche still remain unclear (Morrison and Scadden, 2014;

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 January 2021 | Volume 8 | Article 599276

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2020.599276
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2020.599276
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2020.599276&domain=pdf&date_stamp=2021-01-08
https://www.frontiersin.org/articles/10.3389/fcell.2020.599276/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-599276 December 26, 2020 Time: 15:21 # 2

Takam Kamga et al. MSC, Notch/Wnt in Leukemia

Calvi, 2020). Within BM niches, HSCs interact with cellular
components, including endothelial cells (ECs), mesenchymal
stromal cells (MSCs), megakaryocytes (MKs), osteoblasts (OBs),
specialized macrophages, and nerve fibers (Calvi et al., 2003;
Wilson et al., 2007). The redundant and complex activity shared
by these cellular components has made difficult the assessment
of the precise role of each cell type. However, these cells
are dynamically involved in the regulation of hematopoiesis,
through soluble or membrane-bound molecules (receptors and
ligands) (Morrison and Scadden, 2014). MSCs include adult stem
cells with multilineage differentiation capacity, that give rise to
many other stromal cell types, including osteoblasts, adipocytes,
chondrocytes, and endothelial cells (Dominici et al., 2006). As
observed, both in vitro and in animal models, MSCs are capable
of reconstituting a functional hematopoietic microenvironment,
expressing/producing cytokines, and growth factors necessary
for the regulation of hematopoiesis (Muguruma et al., 2006;
Pontikoglou et al., 2011). Consequently, MSCs are largely used
in 2D and 3D in vitro or ex vivo co-culture systems as a
surrogate of the BMME, thus representing a suitable model
for evaluating the role of BMME on HSCs and leukemic cells
(Jakubikova et al., 2016). MSCs, by either producing cytokines
and chemokines or entering in direct contact with leukemia cells,
activate cell transduction signals that tightly regulate normal
and malignant hematopoietic cell survival, thus driving the
chemoresistance-promoting effect of the BMME (Jacamo et al.,
2014). Our and other groups have demonstrated that Notch
and Wnt signaling pathways represent a major crosstalk used
by MSCs to interact with BMME (Kamdje et al., 2011, 2012;
Zhang et al., 2013; Takam Kamga et al., 2016a). Indeed, these
two pathways are well documented for their pivotal functions
during normal and malignant hematopoiesis. Even though their
deep role is well known in some leukemia subtypes, such as
T-ALL, they can play opposite functions, being either oncogenic
or tumor suppressor. However, all studies eventually unravel a
conserved and supportive role for MSC-derived Notch and Wnt
pathways in leukemia.

MSCs

Mesenchymal stem/stromal cells (MSCs) are multipotent non-
hematopoietic cells with multilineage differentiation capacity.
According to ISCT (International Society for Cellular and Gene
Therapy, MSCs could be defined according to three criteria;
(i) spindle shaped and plastic-adherent cells in standard tissue
culture plates; (ii) expression of mesenchymal markers (CD105+,
CD73+, CD90+) and lack of hematopoietic markers ( CD45-,
CD34, CD14- or CD11b-, CD79a or CD19, and HLA-DR),
and (iii) in vitro multipotent capability of differentiating into
osteocytes, adipocytes, and chondrocytes (Dominici et al., 2006).
There are several sources of MSCs including BM, cord blood,
adipose tissue, and others (Krampera et al., 2007; Di Trapani
et al., 2013; Petrenko et al., 2020). MSCs have become widely
studied over the past 30 years for their potential clinical
application in tissue engineering and regenerative medicine for
bone and cartilage reconstruction and wound healing. Actually,

in vitro and in vivo data support the evidence that one
of the most important biological properties of MSCs is the
immunoregulatory effect toward innate and adaptive immune
effectors cells, such as T-, B-, and NK-cells, monocytes and
dendritic cells in different inflammatory conditions, such as
graft-versus-host disease (GvHD) (Collo et al., 2020). Indeed,
migration, secretion, tissue regeneration, and immune regulatory
properties of MSCs are synergistic and frequently rely on
common signaling pathways, such as bone morphogenetic
proteins (BMP) (Kong et al., 2013), platelet-derived growth factor
(PDGF), Wnt, and Notch, especially inside BMME. Leukemia
cells can interfere with the modulation of these pathways to
improve biological function of MSCs toward a pro-leukemia
supportive effect (Wang et al., 2015, 2016).

NOTCH SIGNALING IN MSCs

Notch Signaling: Structure and
Activation
Notch signaling is a master and evolutionary pathway conserved
from flies to human (Ntziachristos et al., 2014). The term Notch is
related to the notched wing phenotype observed in flies carrying
notch gene haploinsufficiency, as Notch is involved in tissue
patterning (Morgan, 1917). Mammal Notch system involved
4 receptors of Lin/Notch family (Notch 1, Notch 2, Notch 3,
and Notch 4) and 5 ligands of the Delta/Serrate/lag-2 (DSL)
[Delta-like ligands (DLL-1, 3-4), Jagged1 and Jagged2] (Figure 1;
Gordon et al., 2008; Ables et al., 2011). Notch receptors are
single-pass transmembrane receptors, containing three domains:
an extracellular domain, a transmembrane domain and an
intracellular domain, the latter known as Notch intracellular
domain (NICD). The extracellular unit consists of an epidermal
growth factor (EGF)-like repeat domain, which participates
to the ligand binding. There are 36 EGF-repeats domains
in Notch1 and Notch 2, and 34 and 29 repeats for Notch3
and Notch 4, respectively. EGF-like repeats are followed by
a Lin12/Notch/repeats (LNR) structure acting as a negative
regulatory region (NNR), by preventing the ligand-independent
cleavage of the receptor. The NICD presents the RBP-J-associated
molecule (RAM) domain, six ankyrin repeats (ANK), nuclear
localization sequences (NLS), a transactivation domain (TAD)
required for activating transcription, and a proline-, glutamate-,
serine-, and threonine-rich (PEST) domain which regulates
NOTCH degradation. Initially, Notch receptors are transcribed
and translated as 210–300 kDa large precursor molecules.
A series of post-translational modifications are required for the
precursors to acquire their active form. The intact precursor
molecules are first glycosylated in the endoplasmic reticulum
(ER) by O-fucosyletransferase (Pofut-1 in mammals), which
adds fucose to serine or threonine sites on specific EGF-like
repeats. The glycosylated precursors are then cleaved in the
trans-Golgi network into two subunits by furin-like convertases
(S1-cleavage). This cleavage converts the precursor molecule into
the non-covalently linked Notch extracellular domain (NECD)
and transmembrane-Notch intracellular domain (TM–NICD)
complex. This is then further glycosylated by enzymes of the
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FIGURE 1 | Notch signaling, structure, and activation: Mammal Notch system involved 4 receptors (Notch 1, Notch 2, Notch 3, and Notch 4) and 5 ligands of the
Delta/Serrate/lag-2 (DSL) [Delta-like ligands (DLL-1, 3-4), Jagged1, and Jagged2]. Interaction between ligand and receptor expressed on adjacent cells induces two
proteolytic events S2 and S3, catalyzed by ADAM-like metalloprotease and gamma-secretase complex, respectively. These two proteolytic events lead to the release
of the intracellular active form of the receptor, i.e., NICD. NICD enters into the nucleus and forms a transactivation complex in association with partners, such as
Master-mind like-1 (MALM1), Recombining binding protein suppressor of hairless/Core Binding Factor-1, Suppressor of Hairless, Lag-2 (RBP-jk/CSL). This
transcription complex promotes the expression of genes of the helix basic family, including HES1, HEY1, and many other genes such as NF-κB, MYC and CCNDD.

Fringe family and addressed at cell membrane, where it is then
non-covalently associated as a single heterodimer, i.e., the Cterm
corresponding to the PEST domain and the Nterm corresponding
to the extracellular region. Interaction between ligand and
receptor expressed on adjacent cells induces two proteolytic
events S2 and S3, catalyzed by ADAM-like metalloprotease and
gamma-secretase complex, respectively. These two proteolytic
events lead to the release of the intracellular active form
of the receptor, i.e., NICD (van Tetering and Vooijs, 2011).
NICD enters into the nucleus and forms a transactivation
complex in association with partners, such as Master-mind
like-1 (MALM1), Recombining binding protein suppressor of
hairless/Core Binding Factor-1, Suppressor of Hairless, Lag-
2 (RBP-jk/CSL). This transcription complex promotes the
expression of genes of the helix basic family, including Hes1,
Hey1, and many other genes, such as NF-κB, Myc, and
cyclin D, thus controlling cell proliferation, apoptosis, adhesion,
invasion, and migration during development, organ patterning
and developmental diseases (Figure 1; Gordon et al., 2008).

Notch Signaling in MSCs
As stemness signaling mediators, Notch components are
expected to be present in MSCs (Moriyama et al., 2018).
A comprehensive review of the literature reveals the presence
of the transcript of all the four Notch receptors and ligands
in MSCs (Zhang et al., 2019). Protein analysis through western

immunobloting and flow cytometry supports the membrane
expression of the four receptors. Western blot analysis showed
that the proteins can be expressed as full length (220–280 kDa)
transmembrane domains (90–110 kDa) (Takam Kamga et al.,
2016a). Concerning ligands, most studies addressed the presence
of Jagged1, while the expression of the other ligands are study-
dependent. In general, DLL1, DLL-4, and Jagged 2 in less extend
are reported, while a few studies support the expression of DLL-
3. We observed that the expression of Notch ligands become
readily detectable after 3 days of MSC culture (Kamdje et al.,
2011), supporting the critical contribution of the physiologic
state of MSCs when they are analyzed for Notch. In addition,
MSCs in culture lose their stem cell-like properties after several
subsequent passages; as Notch expression is negatively related
to MSC senescence, cell passage should be considered when
analyzing Notch expression (Mutyaba et al., 2014). Overall,
MSCs express both Notch receptors and ligands, supporting the
autocrine activation of Notch signaling. Nevertheless, mRNAs
but not the related proteins of Notch target genes of the helix
basic family, including Hes1, Hey, and He5 are represented in
MSCs (Song et al., 2015). This observation is strengthened by
the absence of cleaved form of Notch receptors in MSCs from
healthy donors. Accordingly, MSC viability and differentiation
are not affected by Notch pharmacological inhibitors, except
for higher dose. It is unclear why the pathway is not active,
regardless the presence of receptors, and ligands, but it is possibly
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due to postrancriptional repression mechanisms. Lessons from
developmental biology may shed some light. During tissue
development, Notch signaling on adjacent cells is involved in
a phenomenon of trans/cis-activation/inhibition called lateral
inhibition/activation. This model supports the idea that during
tissue specification, the activation/inhibition of the signaling
occurs among adjacent cells with opposite fate, while the
involvement of the pathway is poor among similar cells (Sato
and Yasugi, 2020). Notch signaling is activated either as paracrine
signal to mediate communication between two different cell
types or as molecular event involving stem cells differentiation.
The first involvement will be discussed in another section.
Concerning Notch involvement in stem cell differentiation,
osteoblast switch is the paradigm. Cao et al. observed that the
Notch inhibitor DAPT or a specific Notch1 antagonist may
reduce alkaline phosphatase (ALP) activity in MSCs undergoing
BMP9-dependent osteoblast induction, thus leading to reduced
osteogenic differentiation in vitro and in vivo. On the other hand,
MSC treatment with DLL-1 enhances ALP, osteopontin (OPN)
and osteocalcin (OCN) expression (Cao et al., 2017). Using
lentiviral tools, Semenova et al. (2020) proposed that Notch-
promoting osteogenesis is dose-dependent, because the pathway
activation is required for the formation of osteoblasts, but higher
activity of Notch leads to apoptosis. The involvement of Notch
for osteoblast differentiation has been confirmed by many other
studies. Cao et al. (2017) has stressed the specific involvement
of Notch1 and DLL-1, but other receptors or ligands could
participate to Notch activation during osteogenesis. Song et al.
(2015) observed that adipocyte differentiation is associated with
reduced expression of Notch signaling components, suggesting
that Notch involvement during MSC differentiation is lineage-
dependent, i.e., down-regulated for adipogenic differentiation
and activated for osteogenic differentiation. This could be related
to the tight crosstalk between Notch and BMP/Smad/runx2
signaling. Similarly, the involvement of Notch signaling in other
MSC properties are mainly related to the crosstalk with specific
signals. For example, through the stabilization of hypoxia-
inducible factor 1 alpha (HIF-1α), hypoxia improves several MSC
functions, including cell adhesion, migration, and proliferation.
Ciria et al. (2017) observed that hypoxia upregulates the
expression and activation of Notch signaling, while the absence
of Notch signaling impairs HIF1α-induced MSC adhesion,
migration, and proliferation. Lessons from hypoxia models have
been very useful to understand that Notch can modulate almost
all the MSC functions. Considering that Notch signaling is
required for all these hypoxia-mediated events, we can therefore
propose a model where the pathway itself is a pivotal signal
required for all MSC features.

WNT SIGNALING IN MSCS

Wnt Signaling Structure and Activation
Wnt signaling is also an ancient and evolutionarily preserved
pathway. Wnt proteins are secreted glycoprotein ligands that
bind Frizzled transmembrane receptors located at cell membrane
level. There are more than 19 Wnt proteins and 12 Frizzled

receptors. There are two types of Wnt signaling pathway, the
canonical Wnt/β-catenin cascade, and the non-canonical or
β-catenin-independent signaling cascade (Kusserow et al., 2005).
Initially, the ligands were classified as canonical (Wnt-1, −2,
−3, −8a, −8b, −10a, and −10b) or non-canonical (Wnt-4,
−5a, −5b, −6, 7a, −7b, and −11), according to the kind of
signal activated upon their binding to the receptors (Siar et al.,
2012). Some ligands indeed are more related to the type of
activation (canonical or not), while some others can trigger
Wnt signaling in a β-catenin-dependent or independent manner,
according to the pathophysiological context. Wnt5a, for example,
was early classified as non-canonical signal, but it can both
activate and repress Wnt/β-catenin signaling during embryonic
development and cancer development (Sato et al., 2010; van
Amerongen et al., 2012). Studies on Wnt5a highlighted two
important key points: i. the two cascades are not activated
together, and ii. the co-receptors involved are different, i.e.,
ROR1/2 for the non-canonical signaling and the low-density
lipoprotein receptor-related protein family (LRP5/6) for the
β-catenin-related signal (Sato et al., 2010; van Amerongen
et al., 2012). Indeed, Frizzled receptors are coupled to co-
receptors, such as LRP5/6, ROR2, NRH1, Ryk, and PTK7.
LRP5/6 is involved in the canonical signaling, where β-catenin
is sequestrated by a destruction complex made of the Axin
scaffold protein associated with APC (adenomatous polyposis
coli), GSK-3β (glycogen synthase kinase 3β), and CK1 (casein
kinase). CK1 and GSK-3β sequentially phosphorylate β-catenin
at serines 45, 33, 37 or threonine 41 (Yost et al., 1996; Amit et al.,
2002). This cascade of phosphorylation triggers ubiquitylation of
β-catenin by βTrCP (an E3 ligase) and its subsequent proteasomal
degradation. When the ligand binds to the frizzled receptors,
its coreceptors LRP5/6 recruits the Disheveled (Dvl) protein,
which in turn binds to Axin and GSK-3 proteins, leading to
the disassembling of the destruction complex, the release of
β-catenin and its nuclear localization (Salic et al., 2000). In the
nucleus, β-catenin interacts with LEF/TCF transcription factors
and other transcriptional activators to trigger activation of Wnt
target genes (Figure 2). The canonical Wnt signaling can be
modulated at different levels: (i) Inhibitors or antagonists of
the ligand/receptors, such as Dickkopf (Dkk) proteins, secreted
frizzled-related proteins (sFRPs), and WNT inhibitory factor 1
(WIF1); (ii) negative feedback through phosphorylation of Axins
proteins (Axin 1 and Axin 2) by GSK-3β. There are several
β-catenin-independent Wnt signaling pathways all related to
a specific co-receptor or other key elements. One of them is
the planar cell polarity (PCP) pathway that is mainly active
in epithelial and mesenchymal cells, being involved in tissue
polarization. The spatio-temporal organization of the pathway
is not so clear; there are at least two complexes involved
in Wnt-PCP located on adjacent cells, on the distal and the
proximal membrane, respectively. Core components on the
distal membrane consist in Frizzled and the scaffold partners
Dvl, Diego and Flamingo. The counterpart on the proximal
membrane involved Van Gogh, Prickle, and Flamingo scaffolds
(Vladar and Königshoff, 2020). Although the two complexes are
interconnected, a simple presentation of the signal transduction
after ligand binding on Frizzled receptors shows the recruitment
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FIGURE 2 | Wnt signaling, structure and activation: Wnt signaling is activated when glycoprotein ligands of the Wnt family bind Frizzled transmembrane receptors
located at cell membrane level. Upon ligand binding, several cascades could be activated: (i) The Wnt/β-catenin, the ligand binds to the frizzled receptors and its
coreceptors LRP5/6, which recruits the Disheveled (Dvl) protein, which in turn binds to Axin and GSK-3 proteins, leading to the disassembling of the β-catenin
destruction complex, the subsequent release of β-catenin and its nuclear localization In the nucleus, β-catenin interacts with LEF/TCF transcription factors and other
transcriptional activators to trigger activation of Wnt target genes. (ii) The Wnt planar cell polarity (PCP) pathway, the ligand binding on Frizzled receptors shows the
recruitment of Dvl, the scaffold proteins Diego and Flamingo and the formation of a protein platform triggering the activity of Rho family GTPase proteins to regulate
actin organization and cytoskeleton dynamics. (iii) the Wnt/Ca2+ which controls the levels of intracellular Ca2+. Upon ligand binding, Dvl is recruited and a
G-coupled protein is also recruited, which subsequently activate the phospholipase C, whose role consists in the cleavage of phosphatidylinositol-4, 5-bisphosphate
(PIP2) into inositol-1, 4, 5-trisphosphate (IP3) and diacylglycerol (DAG). The IP3 diffuses in the cytoplasm to induce Ca2+ release by cytoplasmic organelles. Ca2+

increase activates the Ca2+ -dependent kinases.

of Dvl, Diego and Flamingo and the formation of a protein
platform triggering the activity of Rho family GTPase proteins to
regulate actin organization and cytoskeleton dynamics (Figure 2;
Siar et al., 2012; Vladar and Königshoff, 2020). Another well-
known β-catenin-independent pathway is the Wnt/Ca2+, which
controls the levels of intracellular Ca2+ (Figure 2). Like the
two afore mentioned cascades; Dvl is also recruited after
ligand biding, but in the meantime a G-coupled protein is
also recruited, which subsequently activate the phospholipase
C, whose role consists in the cleavage of phosphatidylinositol-
4,5-bisphosphate (PIP2) into inositol-1, 4, 5-trisphosphate (IP3)
and diacylglycerol (DAG). The IP3 diffuses in the cytoplasm to
induce Ca2+ release by cytoplasmic organelles. Ca2+ increase
activates the Ca2+ -dependent kinases, such as protein kinase C
(PKC), Calcium-calmodulin dependent kinase II (CamKII), and
Calcium/calcineurin (CaCN). DAG also participates to the direct
activation of PKC (Kusserow et al., 2005; Baksh et al., 2007; Jeong
et al., 2020; Vladar and Königshoff, 2020).

The Wnt Signaling in MSCs
The role of Wnt signaling in the control of MSC biology is well
documented. Transcriptomic and proteomic approaches, such
as flow cytometry, ELISA, Western immunobloting, and mass

spectrometry, showed in MSCs the enrichment in both canonical
and non-canonical Wnt pathway components (Kuljanin et al.,
2017). Using phosphospecific antibodies, we observed that
Ser33/37/Thr41-phospho β-catenin (inactive) is totally absent
in MSC cell lysate, thus suggesting that the Wnt/β-catenin is
fully active in MSCs (Takam Kamga et al., 2016b; Wang et al.,
2019). The requirement of a functional β-catenin-independent
Wnt signaling, such as Wnt/Ca2+, Wn/Jnk, Wnt/Ryk, Wnt/Ror2,
was also described in MSCs (Qiu et al., 2011; Qu et al., 2013;
Jeong et al., 2020). Overall, the activation of the pathway
plays a critical role in cell fate decisions, notably for MSC
proliferation, self-renewal and differentiation. In particular,
Wnt signaling modulation in MSCs is widely investigated
to fully exploit regenerative properties of MSCs in different
research fields, such as bone, lung, and heart biology (Volleman
et al., 2020). The canonical Wnt/β-catenin pathway sustains
proliferation and renewal of MSCs; therefore, the use of
pharmacological modulators of the pathway has brought several
informations. The activation of the canonical Wnt/β-catenin
pathway with lithium chloride or exogenous ligands, such as
Wnt1 and Wnt3a, promotes MSC expansion by maintaining their
clonogenic properties, but inhibits osteogenic, and adipogenic
commitment (Liu et al., 2009, 2011; Jothimani et al., 2020).
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One key mechanism of the suppressive role of Wnt/β-catenin
on adipogenesis is the reduced expression of adipogenic
transcription factors CCAAT/enhancer binding protein alpha
(C/EBPalpha) and peroxisome proliferator-activated receptor
gamma (PPARgamma) (Ross et al., 2000; Yuan et al., 2016).
However, the use of Wnt/β-catenin inhibitors, such as Quercitin,
reduce MSC proliferation and multipotency by favoring their
osteogenic commitment and inhibiting both the chondrogenic
and the adipogenic differentiation (Qu et al., 2013; Narcisi et al.,
2015; Jothimani et al., 2020; Volleman et al., 2020). This model
failed to explain the positive contribution of canonical Wnt
in bone homeostasis in vivo (Wagner et al., 2020). Liu et al.
suggested a role for Wnt/β-catenin activation levels; in fact,
they observed a promoting effect with low concentrations of
Wnt3a during osteogenic differentiation, through the regulation
of key transcription factors such as RUNX2 and Osterix
(Osx), while higher concentrations suppressed both osteogenesis
and adipogenesis (Gaur et al., 2005; Liu et al., 2009). As
for quercitin-mediating promotion of osteogenesis, increased
Ca2+ signaling was also observed upon quercitin treatment,
suggesting that osteogenic switch could be modulated by the
balance between canonical and non-canonical signaling. In fact,
a tight crosstalk between canonical and non-canonical Wnt
leads to functional antagonism during osteogenic differentiation
(Baksh et al., 2007), and osteogenic suppression induced by
Wnt1 and Wnt3a is correlated with reduced Ror2/JNK levels
(Gaur et al., 2005; Liu et al., 2009). Therefore, these studies
proposed a binary view where the activation of Wnt/β-catenin
through exogenous ligands, such as Wnt3a, may suppress both
osteoblastic gene expression and MSC osteogenic differentiation
with decreased matrix mineralization, while the activation of
the non-canonical pathway has an opposite effects (Boland
et al., 2004; Jothimani et al., 2020). Moreover, the activation
of canonical pathway suppresses the non-canonical pathway
and vice versa. Therefore, higher concentrations of Wnt3a
suppresses osteogenesis by competing with non-canonical
ligands. For instance, Wnt5a stimulates osteogenesis through the
Wnt/ROR2/JNK signaling by competing with Wnt3a-mediated
Wnt/β-catenin. Consequently, quercitin switches the balance
toward non-canonical signaling, while Wnt3a or Wnt1 switch
it toward Wnt/β-catenin cascade (Baksh et al., 2007). A role
for canonical and non-canonical Wnt was also observed during
motility and migration processes. Some authors used lentiviral
constructs to enforce the expression of β-catenin or ROR2 in
MSCs. They observed that β-catenin or ROR2 upregulation
induces either nuclear β-catenin accumulation or the activation
of Wnt5a/JNK and Wnt5a/PKC pathways, belonging to the
canonical Wnt and non-canonical Wnt5a/ROR2 pathways,
respectively (Liu et al., 2009; Cai et al., 2014).

MSC-DERIVED NOTCH AND WNT
SIGNALING PATHWAYS IN
HEMATOPOIESIS

Hematopoiesis is the process of blood cell formation through
the proliferation and differentiation of HSCs and progenitor

cells into specialized cells belonging to lymphoid and myeloid
lineages (Orkin and Zon, 2008). Activation of Notch and Wnt
signaling pathways is essential for the maintenance of HSCs
(Bigas et al., 2010). Pharmacological and loss- or gain-of-
function approaches have been useful strategies to investigate
the role of Notch and Wnt signaling pathways in hematopoiesis.
The retroviral expression in HSC/progenitors cell-enriched
populations of active forms of Notch receptors, Notch target
genes or β-catenin increases the pool of cells with repopulating
capacities, such as Lin- cord blood cells, CD34+ CD38- and
mouse KLS (c-Kit+ Sca1+ Lin-) cells (Varnum-Finney et al.,
2000; Kunisato et al., 2003; Reya et al., 2003; Vercauteren
and Sutherland, 2004). Accordingly, the addition of exogenous
ligands of the two pathways, such as Jagged-1 or DLL-1 (Notch
signaling), and Wnt3a (canonical Wnt signaling), to cultures
of purified primitive human blood progenitors induces self-
renewal, survival and expansion of stem cells provided with
pluripotent repopulating capacity in mouse models (Karanu
et al., 2000; Willert et al., 2003; Delaney, 2005). Our and other
groups have thoroughly described the expression of Notch and
Wnt signaling in MSCs (Kamdje et al., 2011; Kamdje et al.,
2012; Takam Kamga et al., 2016b), but other MSC-derived
stromal components, including osteoblasts, and endothelial cells,
can be the source of paracrine Wnt and Notch signaling in
the BM (Nemeth et al., 2009; Wang et al., 2016). Moreover,
MSCs can reconstitute the complete human BMME in irradiated
mice (Muguruma et al., 2006) and therefore improve HSC
engraftment following transplantation (Zhao et al., 2019). MSCs,
expressing Notch and Wnt components, represent a major
source of exogenous Notch or Wnt ligands that are involved
in HSC fate. Using both co-culture and repopulation assay
in SCID mice, Kadekar et al. observed that MSCs supported
HSC expansion by preventing the apoptosis of primitive HSCs
through a higher expression of β-catenin, DLL-1, Jagged1, Hes1,
Notch1, and cleaved Notch1 (NICD1) (Kadekar et al., 2015).
Similarly, several works have clearly showed the enhanced
expression of Notch and Wnt signaling in both co-cultured
MSCs and hematopoietic progenitors leading to proliferation and
maintenance of HSCs on MSC feeder layer (Kim et al., 2009,
2015a, 2018; Kikuchi et al., 2011). Interestingly, increased levels
of Notch components in MSCs resulted from the activation of
β-catenin pathways. Growing evidence supports a model where
HSC-MSC co-culture leads to higher level of β-catenin in MSCs,
whose gene transactivation may lead to Jagged1 expression,
which in turn acts as paracrine ligand to trigger activation
of Notch signaling in HSCs. Wnt/β-catenin signals in MSCs
enhance HSC self-renewal by inducing the crosstalk of Wnt-
Notch signals in the HSC niche (Kim et al., 2009; Oh, 2010;
Kadekar et al., 2015). Therefore, the canonical Wnt signaling
is significantly required by stromal cells (Jeong et al., 2020).
Excess of canonical Wnt signaling in HSCs impairs the function
of HSCs and their multilineage progenitors (Scheller et al.,
2006); as previously mentioned, this could be explained by the
competition between canonical and non-canonical Wnt cascades.
Higher levels of canonical signaling suppress the non-canonical
one. Activation of the non-canonical Wnt, with Wnt5a and
the co-receptor Ryk, leads to HSC quiescence, whereas Wnt3a,
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the canonical ligand, supports HSC proliferation (Liu et al.,
2011; Jeong et al., 2020). The involvement of the non-canonical
cascade may explain why Notch and Wnt pathways are also
involved in mediating adhesion and migration of HSCs. The
aforementioned work by Kadekar et al. showed enhanced levels
of Wnt/Notch components as well as migration and adhesive
properties in HSCs cultured on MSCs (Kadekar et al., 2015).
The crosstalk of Notch or Wnt pathways with stromal cell-
derived factor-1 (SDF-1)/CXCR4 axis is well described and
may be responsible for their influence on HSCs migration
and adhesion (Tamura et al., 2011; Kadekar et al., 2015).
Duryagina et al. (2013) observed that Jagged1 expression by
MSCs induces the release of SDF-1, thus supporting proliferation,
migration, and adhesion of CD34+ progenitors, resulting in
the increase of cobblestone area-forming cells and long-term
culture-initiating cells (LTC-ICs). Notch and Wnt signaling are
involved not only in the maintenance of HSCs, but also in T-cell
differentiation. Delaney et al. observed that the treatment of
CD34+ CD38− cord blood progenitors with low density of DLL1
enhanced generation of NOD/SCID repopulating cells, while
high density of DLL1 induced a switch toward lymphoid rather
than myeloid lineage (Delaney, 2005). However, higher levels
of Notch pathway preferentially support T cell differentiation
by stimulating the common lymphoid progenitor toward T-cell
rather than B-cell lineage. Precursor cells engineered to express
NICD1 and engrafted in immunodeficient mice give rise to
T-cell populations only. Conversely, silencing Notch activity
leads to the onset of B-cell progeny (Wilson et al., 2001).
Similarly, MSCs may support T-cell differentiation of co-cultured
precursor cells when forced to express Notch receptors (Notch1
and Notch2) and ligands (Jagged1 and DLL1) (Felli et al.,
1999; Aster, 2005; Vacca et al., 2006). During this process,
the type of the ligands expressed by stromal cell is crucial.
Some MSC cell lines, such as OP9, expressing different Notch
ligands, showed that MSC-derived DLL4 supports both αβ- and
γδ-lineage differentiation, while MSC-derived Jagged1 supports
TCR-αβ, but not TCR-γδ development and MSC-derived Jagged2
mainly supports γδ T cell differentiation at the expense of αβ

T cells (Van de Walle et al., 2013). Assays with OP9 cell line
were also useful to understand the contribution of stromal cell-
derived Wnt signaling to T-cell development. Famili et al. (2015)
engineered OP9 cells to conditionally express either Wnt3a or
Wnt5a. They observed that low density of the canonical Wnt
ligands accelerates T-cell proliferation and maturation, while
higher levels of the signal blocks T-cell development and favors
alternative lineages. In parallel, in vitro experiments showed
no effect of the non-canonical Wnt ligand (Wnt5a). During
the T-cell switch, thymic stromal cell-derived Wnt signaling
influence T-cell expansion and maturation by controlling the
activation of transcription factors of the T-cell factor/lymphoid
enhancing factor (Tcf/Lef) family (Schilham et al., 1998; Staal
et al., 2001; van Loosdregt et al., 2013). This is associated with
defective final differentiation and reduced thymocyte number
in mice, either expressing the inhibitor of β-catenin and Tcf
(ICAT) or resulting deficient for canonical Wnt ligand, such
as Wnt1 (Mulroy et al., 2002; Pongracz et al., 2006). Famili
et al. (2015) observed that in the co-co-culture setting with OP9

cell line or in mouse models, low levels of β-catenin signaling
supports T-cell development, whereas higher activity of canonical
and non-canonical Wnt preferentially favors myeloid and B-cell
developments. Notably, the regulation of hematopoiesis by
canonical Wnt requires the physical contact between MSCs
and hematopoetic cells (Ichii et al., 2012; Famili et al., 2015).
MSCs and stromal cell mediated Wnt signaling is therefore
required at all steps of the hematopoiesis, being a decisional
factor for lymphoid and myeloid switch. Concerning myeloid
lineage, the role of Notch and Wnt pathways is not well-defined
compare to the lymphoid counterpart. For example, myelopoiesis
has been associated with low levels of Notch signaling (de
Pooter et al., 2006; De Obaldia et al., 2013). However, this
view may underestimate the complexity of Notch contribution
to myeloid lineage development. Notch involvement in myeloid
differentiation is certainly lower, as compared to lymphopoiesis
(De Obaldia et al., 2013); nevertheless, the fine tuning of
Notch levels is fundamental for myeloid cell development.
The role of Notch could be phase-dependent during myeloid
cell generation (Fehon et al., 1991). For instance, constitutive
Notch activation in 32 myeloid progenitor cells led to self-
renewal of myeloid precursors and inhibition of granulocytic
differentiation (Milner et al., 1996). The same results were also
achieved in HL-60 cell line, which failed to undergo ATRA-
mediated differentiation when genetically enforced to express
NICD1 (Carlesso et al., 1999). Conversely, Jagged1 may inhibit
proliferation of macrophage progenitors (Masuya et al., 2002;
Kim et al., 2009; Kadekar et al., 2015) and Notch pathway
seems to be involved in the differentiation of mature myeloid
cells (Fehon et al., 1991). The complexity of Notch contribution
to myeloid lineage could arise from the level of the pathway
activation. Using ex vivo systems for the expansion of cord blood
CD34 + CD38- HSC progenitors, DLL-1 at lower density was
capable of enhancing the generation of CD34+ cells as well as
CD14+ and CD7+ cells, consistently with early myeloid and
T-cell differentiation, respectively. However, culture with higher
amounts of DLL-1 induced apoptosis of CD34+ precursors,
thus resulting in decreased cell numbers, without any effects
on the generation of CD7+ cells (Delaney, 2005). A minimal
activity of Notch could be necessary for the maintenance of
myeloid progenitors, while higher activation could induce cell
differentiation. Again, the source of paracrine ligands that trigger
Notch activation in myeloid progenitors might be stromal cells.
Indeed, primitive (CD34+ CD38− Lin−), and intermediate
(CD34+ CD38+ Lin−) HSCs cultured on MSCs expressing
Jagged1 or DLL-1 showed enhanced self-renewal properties
associated with increased expression and activation of Notch1.
This suggests that in the BM niches MSCs provide exogenous
Notch ligands necessary for the maintenance of myeloid
progenitor pool and Jagged1 expression is the consequence of
Wnt/β-catenin activation, thus suggesting a role for Wnt-Notch
cross-talk in myelopoiesis (Fernández-Sánchez et al., 2011). In
parallel, thanks to in vitro colony-replating assays, Nteliopoulos
et al. observed that canonical and non-canonical Wnt-3 can
stimulate proliferation of myeloid progenitors and impair IL-3-
induced differentiation into myeloid populations (Nteliopoulos
et al., 2009). As MSCs are a source of Wnt ligands, we can
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hypothesize that stromal cells may support the self-renewal of
myeloid progenitors through the release of Wnt ligands (Toni
et al., 2006). However, there are a few studies addressing the role
of MSC-derived Wnt signaling in myeloid counterpart. Most data
arise from studies on myeloid malignancies and will be discussed
in the next section.

MSC-DERIVED NOTCH AND WNT
SIGNALING IN LEUKEMIA

Notch in Leukemia
Several studies have addressed the role of Notch in leukemic
diseases (Table 1). Early association between Notch and
hematopoietic malignancies was shown in T-ALL, where more
than 50% of patients have activating mutations of Notch
signaling, thus representing the first gene aberration in T-ALL
(Weng et al., 2004). Notch mutations in T-ALL mainly target the
HD or the PEST domains. By sequencing the heterodimerization
domain of NOTCH1 in mouse models of T-ALL, O’Neil (2006)
found that more than 74% of the tumors harbored activating
mutations in Notch1. Mutations in HD domain induce a
constitutive, ligand-free activity of the receptors. The second
hotspot of mutations is the PEST domain targeting NICD
to ubiquitination-mediated proteolysis. The mutation in the
PEST domain determines the lack of degradation of the active
form of the receptors, thus leading to a constitutive activity
of the pathway (Weng et al., 2004). In nude mouse models of
T-ALL, tumor establishment correlated with Notch1 mutation
(Lin, 2006). The importance of Notch activation for T-ALL cell
survival has raised the use of gamma-secretase inhibitors (GSIs).
T-ALL cells are highly sensitive to different GSIs (Grosveld,
2009; Real and Ferrando, 2009; Baratta, 2019) as well as to other
Notch inhibitors, such as Notch transcription factor inhibitors
(Moellering et al., 2009) and Notch blocking antibodies (Wu
et al., 2010). Besides Notch1, higher levels of Notch3 were
found in T-ALL cells, and its genetic inhibition through siRNA
led to growth inhibition and apoptosis (Masiero et al., 2011).
Constitutive activation of Notch is also a hallmark of B-cell
CLL. Notch activating mutations occur essentially in the PEST
domain of Notch receptors and are associated with a shorter
overall survival (Willander et al., 2013). Rosati et al. (2013)
found high expression of Notch1, Notch2, Jagged1, and Jagged2
in CLL correlated with higher activation of the pathway. This
activation is further increased in CLL cells that are resistant to
spontaneous apoptosis in ex vivo culture. Accordingly, our group
demonstrated that Notch inhibition, through GSIs or blocking
antibodies, induces CLL apoptosis, and sensitizes leukemia
cells to treatment with chemotherapeutic agents (Kamdje et al.,
2012). Except in T-ALL, Notch mutations are very rare in other
leukemia types, where its role is either well defined or quite
controversial (Liu et al., 2013). In B-cell acute lymphoblastic
leukemia (B-ALL), Notch1 mutation was not observed, but a
tumor suppressor role of the pathway was suggested (Morimura
et al., 2000; Zweidler-McKay et al., 2005). Notch seems to be
epigenetically silenced in B-ALL, since Notch3, Jagged1, Hes2,
Hes4, and Hes5 are frequently hypermethylated in leukemia

B-cell lines and primary B-ALL cells. Restoration of Hes5
expression by lentiviral transduction resulted in growth arrest
and apoptosis in Hes5-negative B-ALL cells (Kuang et al., 2013).
Activation of the pathway induces growth arrest and apoptosis
in B-ALL cells (Morimura et al., 2000; Zweidler-McKay et al.,
2005; Kuang et al., 2013). Putting in the context of anti-leukemic
treatment, epigenetic analysis of blast cells collected from
B-ALL patients along the course of the disease revealed that the
methylation pattern of Notch receptors’ genes changes according
to the disease step. It was observed that Notch genes receptors
are highly methylated at diagnosis, less methylated upon drug
treatment and became hypermethylated in relapsed patients
(Takam Kamga et al., 2019a). These observations suggested that
the methylation status of Notch genes might be relevant for
drug response. This is strengthened by the results obtained in
non-leukemic systems where evidence of epigenetic modulation
of Notch genes in cancer cells treated with chemotherapeutic
agents like 5-fluorouracil and cisplatin was demonstrated (Maeda
et al., 2014). Collectively these data support further research to
unravel the role of epigenetic silencing of Notch in leukemia
disease. Studies in solid cancers have also reported that Notch
genes are the targets of several miRNA (or vice-versa) involved
in drug resistance including miR-1, miR-200, miR-34 etc. (Ji
et al., 2009; Li et al., 2009). Consistently recent studies have
provided the evidence that the BM-microenvironment transfer
miRNA in leukemia cells, supporting cell survival (Liu et al.,
2015; Ganesan et al., 2019).

Our group has recently shown that human BM MSCs,
through Notch activation, protect B-ALL cells from apoptosis
induced by chemotherapeutic agents; in fact, Notch signaling
inhibition abrogates the protective role of human BM MSCs
toward B-ALL cells (Kamdje et al., 2011), thus highlighting
the contribution of the BMME in Notch signaling. In myeloid
malignancies, the role of Notch is still matter of investigation.
In chronic myeloid leukemia (CML), Notch emerges as tumor
suppressor gene rather than oncogene, although still poorly
investigated. Yin et al. (2009) observed that overexpression of
Notch1 active form in the CML cell line K562 significantly
inhibits cell proliferation, while knocking-down the pathway
through the expression of a dominant negative of RBP-jk
promotes colony-forming activity. In acute myeloid leukemia
(AML), the role of Notch remains controversial: Kannan et al.
(2013) described Notch expression and activation in ex vivo
AML cell samples and AML cell lines, but weak activation of
the pathway, as demonstrated by the low expression level of
the Notch target genes. Similarly, Lobry et al. (2013) described
epigenetic silencing of Notch target genes in AML; consistently,
they demonstrated that the reactivation of Notch signaling
induced apoptosis and differentiation of leukemia blast cells into
mature cells. These results are consistent with the anti-leukemic
role of demethylating/hypomethylating agents azacytidine or
decitabine in AML (DiNardo et al., 2018; Leung et al., 2019).
However, our and other groups found that Notch activation is
not homogenous within AML samples and cell lines (Tohda
and Nara, 2001; Sliwa et al., 2014; Czemerska et al., 2015). In
the study by Tohda and Nara (2001) 6 cell lines out of 8 and
40% of AML fresh samples showed active forms of Notch1
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TABLE 1 | Roles of Notch and Wnt signaling pathways in leukemia.

Leukemia cell-derived Notch/Wnt signaling MSC-derived Notch/Wnt signaling

AML Biomarkers – Higher expression and activation of Notch signaling
components is associated to poorer prognosis in AML (Xu
et al., 2011; Sliwa et al., 2014; Takam Kamga et al., 2019a).

– High activation of Wnt/β-catenin is associated to shorter
survival (Khan and Bendall, 2006; Griffiths et al., 2010).

– Overexpression of Notch1 and Jagged1 in AML-MSCs
(Takam Kamga et al., 2016a).

– Overexpression of Wnt molecules in AML-MSCs (Takam
Kamga et al., 2016b).

Oncogene – Notch/Jagged1 expression and activation in acute
promyelocytic leukemia (APL) supports leukemia cell
growth (Grieselhuber et al., 2013).

– Activation of Wnt/β-catenin/TCF/LEF pathway supports
growth of leukemia cells (Khan and Bendall, 2006).

– Epigenetic modification of Wnt inhibitors in AML (Griffiths
et al., 2010).

– Notch signaling is required for β-catenin-mediated
oncogenesis in mouse models of AML (Kode et al., 2014).

– MSC-derived Notch signaling supports growth and survival
of leukemic cells (Takam Kamga et al., 2016b).

– MSC-derived Notch signaling supports growth and survival
of leukemic cells (Takam Kamga et al., 2016a).

Tumor suppressor – Enforced expression of Notch receptors in AML inhibits
leukemia cell growth and survival (Kannan et al., 2013;
Lobry et al., 2013)

Mediator of drug resistance – MSC-derived Notch signaling reduces apoptosis in AML
treated with chemotherapeutic agents (Takam Kamga et al.,
2016a).

– Stromal cell-derived Wnt signaling reduces apoptosis in
AML treated with chemotherapeutic agents (Takam Kamga
et al., 2016b)

B-ALL Biomarkers – Higher expression and activation of Notch signaling is
observed in refractory patients (Kamdje et al., 2011; Takam
Kamga et al., 2019b).

– Wnt ligands and receptors are overexpressed in B-ALL
cells (Khan et al., 2007).

– Overexpression of LEF1 predicts poor outcomes (Kühnl
et al., 2011)

Oncogene – Epigenetic inactivation of Notch in B-ALL (Kuang et al.,
2013).

– Stimulation of Wnt/β-catenin signaling supports growth and
survival of B-ALL cells (Khan et al., 2007).

– MSC-derived Notch signaling supports growth and survival
of leukemic cells (Kamdje et al., 2011).

– MSC-derived Wnt signaling supports growth and survival of
leukemic cells (Yang et al., 2013).

Tumor suppressor – Activation of Notch signaling induce cell cycle arrest and
apoptosis (Morimura et al., 2000; Zweidler-McKay et al.,
2005; Kuang et al., 2013).

Mediator of drug resistance – Notch inhibitors sensitize B-ALL cells to chemotherapy
(Takam Kamga et al., 2019b).

– Wnt inhibition sensitizes B-ALL to chemotherapy (Fu et al.,
2019).

– MSC-derived Notch signaling reduces apoptosis in B-ALL
treated with chemotherapeutic agents (Kamdje et al., 2011).

– MSC-derived Wnt signaling reduces apoptosis in B-ALL
treated with chemotherapeutic agents (Yang et al., 2013).

CLL Biomarkers – Notch activating mutation are observed in CLL patients
(Willander et al., 2013).

– Notch1 mutation is found in intermediate-risk patients,
predicting poorer survival (Willander et al., 2013).

– Higher expression and activation of Notch signaling is
observed in refractory patients (Rosati et al., 2013).

– Wnt5 is enriched in CLL patients (Janovska et al., 2016).
– Low WNT3 expression is a signature of patient with short

therapy-free survival (Janovská and Bryja, 2017).

Oncogene – Activation of Notch signaling supports growth and survival
of CLL cells (Kamdje et al., 2012; Rosati et al., 2013).

– Lef1 is a prosurvival factor s (Willander et al., 2013).
– Wnt/PCP controls migration of CLL cells (Janovska et al.,

2016).

– MSC-derived Notch signaling supports growth and survival
of leukemic cells (Kamdje et al., 2012).

– MSC-induced accumulation of β-catenin in CLL cell
supports growth and survival of leukemia cells (Mangolini
et al., 2018).

Tumor suppressor

Mediator of drug resistance – Notch inhibitors sensitize CLL cells to chemotherapy
(El-Gamal et al., 2014).

– MSC-derived Notch signaling reduces apoptosis in CLL
cells treated with chemotherapeutic agents (Kamdje et al.,
2012; Mangolini et al., 2018).

– MSC-induced accumulation of β-catenin in CLL cells,
supports drug resistance of leukemia cells (Mangolini et al.,
2018).

(Continued)
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TABLE 1 | Continued

Leukemia cell-derived Notch/Wnt signaling MSC-derived Notch/Wnt signaling

CML Biomarkers

Oncogene – β-catenin is a target of BCR-ABL (Zhao et al., 2007;
Tomasello et al., 2020)

– Wnt1 signaling supports growth and survival of CML cells
(Majeti et al., 2009).

Tumor suppressor – Notch1 suppresses growth and survival of K562 cell line
(Yin et al., 2009).

Mediator of drug resistance – Inhibition of Wnt/β-catenin sensitizes cells to TKI (Zhang
et al., 2013).

– MSC-derived Notch signaling reduced apoptosis in CML
treated with chemotherapeutic agent.

– MSC-derived Wnt signaling reduced apoptosis in CML
cells treated with TKI (Han et al., 2013; Zhang et al.,
2013).

T-ALL Biomarkers

Oncogene – Notch1 is mutated in more than 50% of patients (Weng
et al., 2004).

– Notch signaling drives oncogenesis and supports growth
and survival of T-ALL cells (Weng et al., 2004; O’Neil, 2006).

– Notch 3 supports survival of T-ALL cells (Masiero et al.,
2011).

Tumor suppressor

Mediator of drug resistance – Notch inhibition sensitizes cells to drug treatment
(Grosveld, 2009; Real and Ferrando, 2009).

– MSC-derived Notch/Jagged1 signaling reduces
apoptosis in Jurkat cell line treated with
chemotherapeutic agents (Yuan et al., 2013).

– MSC-derived Wnt signaling reduces apoptosis in ALL cell
treated with chemotherapeutic agents (Yang et al., 2013).

receptors. Some observations suggest that Notch expression and
activation levels in AML could be correlated with the molecular
background of each samples or the FAB subgroup (Tohda and
Nara, 2001; Salat et al., 2008; Grieselhuber et al., 2013; Sliwa et al.,
2014; Czemerska et al., 2015; Takam Kamga et al., 2019a). For
example, ETO in association with RBP-jk inhibits the expression
of Notch target genes, while the leukemogenic fusion protein
AML1/ETO is devoid of this repressive activity (Salat et al.,
2008). Grieselhuber et al. (2013) identified Notch expression
and activation in acute promyelocytic leukemia presenting the
PML-RARα rearrangement. However, Notch pathway activation
has been observed mostly in more immature AML subtypes
and was associated with bad prognosis, as patients with hyper-
expression of Notch1 displayed poorer overall survival (Xu
et al., 2011; Sliwa et al., 2014; Takam Kamga et al., 2019a).
Notably, in a recent study we found that less mature AML
subtypes (M0-M1) expressed high levels of all the four receptors
(Notch1–4) and some ligands (Jagged2, DLL-3), whereas
adverse cytogenetic risk groups overexpressed Notch3, Notch4,
and Jagged2 as compared to good cytogenetic risk patients.
Accordingly, univariate and multivariate analysis confirmed a
longer overall survival for patients presenting low expression
of Notch4, Jagged2, and DLL3 on leukemia cells at diagnosis
(Takam Kamga et al., 2019a).

Wnt Signaling in Leukemia
Wnt pathway deregulation is a common feature of leukemia.
In lymphoid malignancies, such as ALL, CLL non-canonical
and canonical Wnt pathway-related genes and proteins are
over-expressed in lymphoid tumor cells, thus resulting prone

to apoptosis upon interference with the pathway including
β-catenin inhibition (Rosenwald et al., 2001; Lu et al., 2004;
Janovská and Bryja, 2017). Consistently, over-expression of
LEF-1 mRNA is a hallmark in ALL and CLL patients with
poor prognostic. The constitutive activation of the pathway
deregulation can result from gene mutation (Tomasello et al.,
2020), but also from epigenetic modifications. In CLL for
example, Next generation sequencing of samples from patients
confirmed that 40% of patients harbors somatic mutations in Wnt
pathway components (WNT1, WNT10A, DKK2, RSPO4, FZD5,
RYK) (Wang et al., 2014). Studies have indicated a crosstalk
between molecular aberrations and epigenetic activation of
the pathway, acting in a concerted manner to interfere with
Wnt inhibitors while promoting Wnt agonists or activators.
Consistently the promoter of genes coding for Wnt pathway
inhibitors including WIF1, DKK3, APC, SFRP1, SFRP2, SFRP4,
and SFRP5 are frequently hypermethylated and consequently
downregulated in samples from CLL and ALL (Roman-Gomez
et al., 2004; Martin et al., 2008; Rahmatpanah et al., 2009).
It is worthy to mention that the tumor suppressor gene
APC could also be the target of epigenetic modification. In
T-ALL, the promoter of APC is methylated in about 50% of
cases and correlates with β-catenin over-expression (Matsushita
et al., 2006). In B-ALL cell lines and primary B-ALL cells,
the Wnt pathway is activated by over-expression of Wnt
proteins and receptors (Wnt-2b, Wnt-5a; Wnt-10b, Wnt-16b;
FZD7; FZD8) and their stimulation with Wnt-3a increases the
survival and proliferation of these cells (Khan et al., 2007).
Similarly to what is observed in CLL, the hyperactivation of
the pathway is due at least in part to the hypermethylation
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of the Wnt inhibitors (Kong et al., 2018). Concerning myeloid
malignancies, Zhao et al. found that β-catenin deletion causes
a reduction in the ability of mice to develop BCR-ABL-
induced CML (Zhao et al., 2007). Indeed, stabilization and
nuclear localization of β-catenin is a direct consequence of
the BCR-ABL (Tomasello et al., 2020). As a consequence,
the treatment of CML stem/progenitor cells with β-catenin
inhibitor ICG001 reduces cell survival and proliferation by
sensitizing cells to tyrosine kinase inhibitors (TKI). Interestingly,
the addition of purified Wnt1 activates β-catenin and protects
CML cells from TKI treatment, thus confirming the important
role of Wnt pathway in maintaining CML stem cells (Zhang
et al., 2013). In AML, our and other groups have observed
an enrichment in Wnt components in AML primary cells
compared to normal hematopoietic progenitors, although the
expression of the Wnt components was not homogenous
across samples (Majeti et al., 2009). Interestingly, β-catenin
was enriched in high-risk patients; subsequently, we observed
that patients presenting higher activation of the pathway had
shorter progression free survival (Takam Kamga et al., 2020).
The pivotal role for Wnt pathway in AML pathogenesis is
also supported by studies in which cells transfected with AML-
associated translocation products (PLZF-RARA and AML1-
ETO) display activation of pakoglobin, a homolog of β-catenin.
This induction is followed by the transactivation of TCF/LEF
transcription factors and the increase in the proliferation and
survival of murine hematopoietic progenitor cells (Khan and
Bendall, 2006; Griffiths et al., 2010). In fact, the constitutive
activation of Wnt signaling in AML may not result from
β-catenin mutation, but from Flt3 hyperexpression leading to
Akt-mediated phosphorylation and GSK-3β inactivation, with
β-catenin stabilization (Brandts et al., 2005; Román-Gómez et al.,
2007; Valencia et al., 2009). In accordance with the pro-oncogenic
role of Wnt in AML, β-catenin down-regulation in AML cell
lines and ex vivo cells through shRNA or pharmacological
inhibitors, such as quercitin IWP-2, Niclosamide and PNU-
74654, decreases their proliferation rate in vitro and homing
as well as their engraftment after xenotransplantation (Toni
et al., 2006; Gandillet et al., 2011; Takam Kamga et al., 2020).
Interestingly, the Wnt inhibitors quercetin induced pronounced
apoptosis in AML, in vivo and in vitro in part by its demethylating
activity (Maso et al., 2014; Alvarez et al., 2018). In fact, in AML,
the use of demethylating agents such as Decitabine decreased
methylation status of Wnt antagonist including SFRP1, HDPR1,
and DKK3, providing evidence that activation of the pathway
resulted from an epigenic silencing (Li et al., 2014). Similarly to
CLL, in AML the promoter of genes coding for Wnt antagonists
(sFRP1, sFRP2, sFRP4, sFRP5, DKK1, and DKK3 etc.) are
frequently methylated predicting poor outcome in patients (Jost
et al., 2008; Valencia et al., 2009).

The Role of MSCs in Leukemia
As previously discussed, several studies have reported a
supportive and protumorigenic role for MSCs toward different
leukemia subtypes, including AML, B-ALL, CLL, CML, and
T-ALL (Lee et al., 2019). A comparison of MSCs isolated from
myeloid and lymphoid leukemia environment compared to
MSCs isolated from healthy donors revealed that stromal cells

are the sites of deep molecular changes involving modulation
of the expression and/or secretion of cytokines, chemokines,
adhesion molecules, and extracellular matrix molecules such
as SDF-1/CXCR4, CD44. These modifications are thought to
improve MSCs-mediated survival and growth of leukemic
cells and mainly leukemia stem/progenitors cells (Ge et al.,
2011; Yu et al., 2019; Azadniv et al., 2020). MSCs have the
double ability to keep leukemic stem cells in a quiescent state
while promoting proliferation and growth of leukemia cells.
Coculture experiments showed that MSCs supports the culture
of primary leukemia cells and promote the long term survival
of leukemia stem cells (Ito et al., 2015). Evidence from studies
support a bidirectional crosstalk between MSCs and leukemia
stem/progenitor cells. In the study of the Yu et al. (2019), they
observed that MSCs co-cultured with B-ALL leukemia stem cells
showed downregulation of lumican increased expression of CD44
and diverse chemokine including IL-3, IL-7, IL-10, and G-CSF.
These educated MSCs were more potent to protect leukemic
cells against VP-16. Similarly, in AML, CXCR4, CD44, integrins
like VCAM1 or VLA-4 are activated upon the contact between
AML cells and MSCs to promote resistance of leukemia cells.
A treatment of AML cells with the specific CXCR4-SDF inhibitor,
AMD3100 or antibodies against CD44, VCAM1, significantly
sensitizes AML stem cells to treatment with chemotherapeutics,
thus abrogating MSCs mediated chemoresistance and persistence
of the minimal residual disease (Matsunaga et al., 2003; Tabe et al.,
2007; Nervi et al., 2009; Jacamo et al., 2014). This mechanism can
be translated in other leukemia as demonstrated by several studies
(Konopleva et al., 2009).

Putting Together the Contribution of
MSC-Derived Notch and Wnt Signaling
Pathways in Leukemia
Stromal BMME promotes the survival of leukemia cells through
the activation of many pathways, including Notch and Wnt
signaling (Vianello et al., 2010; Kamdje et al., 2011, 2012;
Tabe and Konopleva, 2015; Cai et al., 2016; Takam Kamga
et al., 2016a). On the other hand, Notch and Wnt signaling
are the targets of persistent modifications occurring often
in parallel in the BM niche during leukemogenesis (Kode
et al., 2014; Kim et al., 2015b). Therefore, analyzing MSCs
isolated from leukemia samples can provide an overview of
these persistent modifications involving both pathways, which
eventually can be considered as a unique microenvironmental
communication system, the so called Wntch pathway (Sengupta
et al., 2007; Hayward et al., 2008; Takam Kamga et al., 2016a;
Azadniv et al., 2020). Studies revealed that, increasing activity
of Notch signaling results from an aberrant β-catenin signaling
in the same stromal compartment and vice versa (Kode et al.,
2014). In normal hematopoiesis, stromal β-catenin signaling
induces expression of Jagged1; consequently, stromal Jagged1,
and Wnt ligands induce in HSCs Notch and Wnt signaling,
respectively, and support their self-renewal in a cell-to-cell
contact-dependent manner (Ichii et al., 2012; Kadekar et al.,
2015). The same phenomenon occurs in leukemia cells and
stem cells, where studies reported higher levels of stromal
Notch parallel with higher activation of the Wnt signaling
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FIGURE 3 | MSC-derived Notch and Wnt signaling in leukemia: (1) Contact between MSC and leukemia cells; (2) Activation of the Notch and Wnt signaling
cascades in MSC; (2) Synthesis of Notch and Wnt target genes including Jagged1; (4) Upregulation of Notch1 and Jagged1 expression; (5) Activation of adhesion
molecules and Notch signaling; (6) Release of NICD and stabilization of β-catenin; (7) Transactivation of Notch and Wnt target genes.

(Figure 3) (Yang et al., 2013; Takam Kamga et al., 2016a,b).
Therefore, Notch signaling is required for leukemic role of the
canonical Wnt (Kode et al., 2014). The functional outcome of
this Wnt/Notch crosstalk between MSCs and B-ALL or AML
cells is the induction of leukemia cell proliferation, survival and
chemoresistance. Consequently, Wnt and/or Notch inhibition
through pharmacological modulators, including small molecules
inhibitors (PNU-74654, Niclosamide, GSIs) and Notch blocking
antibodies, may sensitize leukemia cells to drug treatment, thus
abrogating the protective role of MSC monolayer (Kamdje
et al., 2011; Takam Kamga et al., 2016a, 2020; Fu et al.,
2019). This antileukemic role requires the production of reactive
oxygen species (ROS) and the modulation of prosurvival
proteins, such as mTor, NF-κB, STAT-3, and Erk (Kamdje
et al., 2011; Takam Kamga et al., 2016a,b). This role observed
in ex vivo co-culture systems was validated in mouse models

of AML and B-ALL (Toni et al., 2006; Yang et al., 2013;
Takam Kamga et al., 2019a,b).

The Notch-dependent role of Wnt/β-catenin was also
described in CLL; in this disease, the non-canonical
Wnt/PCP/ROR1 is the main activated Wnt signaling and is
involved in migration of leukemic cells (Janovska et al., 2016).
Constitutive activation of β-catenin is low, but this does not
exclude its involvement in the pathogenesis of CLL (Lu et al.,
2004; El-Gamal et al., 2014; Mangolini et al., 2018). In fact,
CLL cells constitutively express Notch receptors and ligands,
whereas MSCs from CLL patients show upregulated Notch
receptors and ligands (Kamdje et al., 2012). Culture of primary
CLL cells on primary MSCs or EL08-1D2 stromal cell line
leads to Notch 2 activation in MSCs, which in turn induces
activation of Wnt/β-catenin in co-cultured CLL cells. On the
other hand, conditional deletion of Notch2 in MSCs prevents
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β-catenin accumulation in CLL cells (Kamdje et al., 2012;
Mangolini et al., 2018). Again, the use of Notch inhibitors
(GSIs or Notch blocking antibodies) chemosensitizes CLL cells
cultured on MSCs monolayer (Kamdje et al., 2012). N-cadherin,
a crucial molecule regulating migration and homing of normal
hematopoietic cells, is required for the stabilization of β-catenin
in co-cultured CLL cells as well as CML cells (Kamdje et al.,
2012; Han et al., 2013; Zhang et al., 2013; Mangolini et al., 2018).
Consequently, it represents a central mechanism involved in the
crosstalk between β-catenin and adhesion molecules to mediate
chemoresistance (Toni et al., 2006; Zhang et al., 2013).

In T-ALL, the role of Notch as tumor-driven mechanism
has been thoroughly studied, but the influence of stroma-
derived Notch signaling is necessary for leukemia cell survival
(Ntziachristos et al., 2014) as well as for chemoresistance toward
dexamethasone and asparaginase (Iwamoto et al., 2007; Yuan
et al., 2013; Cai et al., 2016). Contact with MSCs enhances
Notch1, Jagged1, and CD28 expression on T-ALL cells (Yuan
et al., 2013) and promotes leukemia cell homing into BM niche
in xenotransplantation models; on the other hand, IL-6, SCF,
HIF-1α, VEGFα, and Notch ligand Jagged1 is overexpressed
in stromal cells (Wang et al., 2016). This aberrant stromal
Notch activation negatively regulates CXLC12 in stromal cells,
thus hampering their supportive functions toward HSCs and
promoting preferentially T-ALL cell development. By contrast,
Notch blockade reverts leukemia-associated abnormal blood
lineage distribution, thrombocytopenia, and osteoblast functions
(Wang et al., 2016). In co-culture, Jagged1 expression on MSCs
induces drug resistance in the T-ALL cell line Jurkat, which is
prevented by anti-Jagged1 neutralizing antibodies (Yuan et al.,
2013). Similarly, the specific β-catenin inhibitor XAV939 may
suppress T-ALL cell resistance to cytarabine, thus suggesting that
Wnt/Notch cross-talk can be involved in T-ALL and deserves
additional investigation (Yang et al., 2013). Overall, the use of

Notch or Wnt inhibitors in coculture experiments, impeded
increased activity of Notch and Wnt signaling both in leukemia
and stromal cells, thus suppress enhancing leukemia survival
and drug resistance. The challenge consists in the availability of
efficient and safe Notch and Wnt inhibitors.

Pharmacological Strategies to Interfere
With Wnt/Notch Signaling in Cancer
Given the importance of Wnt and Notch pathways in cancer
development and chemoresistance, numerous pharmacological
inhibitors have been developed both as research tools but also
as future anticancer drugs (Rizzo et al., 2008; Ntziachristos
et al., 2014; Takebe et al., 2015). Inhibitors are designed to
target specific steps of the signaling cascade such as ligand-
receptors interaction, receptors processing, cytoplasmic effectors,
and the formation of transcription complexes (Table 2). In the
Wnt cascade, inhibitors of ligand-rectors interaction have been
developed with regards to natural antagonists of the pathways.
Notably, recombinant DKK (DKK-1-4) and SFRP (SFRP1-4)
proteins have been developed and used in preclinical experiments
to inhibits Wnt signaling in AML, multiple myeloma, and other
hematological malignancies (Toni et al., 2006; Chim et al.,
2007). Recombinant antibodies directed against Frizzled have
also been successfully developed (Pavlovic et al., 2018). Quercetin
(a polyphenol) and Niclosamide (an anthelminthic) are both
capable to kill leukemia cells and stem cells at least in part
by interfering with LRP5/6 (Lu et al., 2011; Maso et al., 2014;
Alvarez et al., 2018; Takam Kamga et al., 2020). The post-
tranlational addition of porcupine on Wnt ligand is required for
the secretion of Wnt proteins. This has served as the basis for
the development of Wnt-porcupine inhibitors as WNT974, IWP-
2, ETC-159 etc. (Lazzaroni et al., 2016; Kalantary-Charvadeh
et al., 2020). Interestingly many inhibitors of this family

TABLE 2 | Notch and Wnt inhibitors.

Inhibitors Cellular target References

Secreted Frizzled proteins (sFRPs): sFRP1-5 Ligands (Wnt proteins) Toni et al., 2006

Dickkopf (DKK) proteins: DKK1-4 Receptors (Frizzled) Chim et al., 2007

Niclosamide Co-receptors (LRP5/6) Lu et al., 2011; Takam Kamga et al., 2020

Quercetin Wnt antagonist promoters/Co-receptors (LRP5/6) Maso et al., 2014; Alvarez et al., 2018

WNT974 Porcupine Lazzaroni et al., 2016

IWP-2 Porcupine Kalantary-Charvadeh et al., 2020; Takam Kamga et al., 2020

ETC-159 Porcupine Kalantary-Charvadeh et al., 2020

PKF118-310 β-catenin/TCF/LEF Leow et al., 2010

PNU-74654 β-catenin/TCF/LEF Takam Kamga et al., 2020

ICAT β-catenin/TCF/LEFAPC-Axin interaction Pongracz et al., 2006

XAV939 Tankyrase Yang et al., 2013

Anti-Notch1-4, Anti-Jagged1/2 Receptors Kamdje et al., 2011; Kamdje et al., 2012

Anti-Jagged1/2, Anti-DLL-1/3-4 Ligands Kamdje et al., 2011; Kamdje et al., 2012

Gamma secretase-I (GSI-I) Gamma secretase Baratta, 2019

GSI-IX (DAPT) Gamma secretase Grieselhuber et al., 2013; Takam Kamga et al., 2019b

GSI-XII Gamma secretase Takam Kamga et al., 2019a

Others GSI-Is Gamma secretase Ran et al., 2017; Baratta, 2019

SHAM1 MALM/RBP-jK Moellering et al., 2009
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such as Novartis LGK974 are tested in clinical trials for
patients with advanced metastatic solid cancers (Novartis
Pharmaceuticals, 2020). Another level of the pathway inhibition
is the use of disruptor of the β-catenin/TCF/LEF complexes such
as PNU-74654 and PKF118-310 and XAV939. The use of PNU-
74654 in association with Ara-C or Idarubicin, abrogate bone
marrow protection of AML cells. Similarly, XAV939 suppress
T-ALL cell resistance to cytarabine (Leow et al., 2010; Yang et al.,
2013; Takam Kamga et al., 2020).

Concerning Notch cascade, ligands, and receptors could be
targeted by using Notch receptors/Ligand blocking proteins
(Kamdje et al., 2011; Kamdje et al., 2012). Several Notch
blocking antibodies are used in clinical trials including OMP-
52M51 (anti-Notch1), OMP-21M18 (anti-DLL4), OMP-59R5
(anti Notch2/Notch3) (Andersson and Lendahl, 2014; OncoMed
Pharmaceuticals, Inc, 2020). Decoy receptors were also developed
to interfere with ligand receptors binding (Funahashi et al., 2008).
However, the family of gamma secretase inhibitors (GSIs) has
been the main source of the development of Notch inhibitors.
They present the unique characteristics to inhibits the activity
of all receptors. It is indeed an advantage to exclude redundant
activity, but it becomes an inconvenient when only one or two
receptors are involved in the cancer process (Ran et al., 2017;
Baratta, 2019). Ultimately a transcriptional inhibitor of Notch
signaling was synthesized, SAHM1. We provided evidence that
SAHM1 could interfere with MSC-induced Notch signaling in
AML, abrogating drug resistance (Takam Kamga et al., 2016a).

CONCLUSION

Stromal microenvironment is the major regulator of drug
resistance in leukemia, therefore many studies have tried to
dissect the molecular mechanisms supporting the pro-survival
role of BMME (Agarwal and Bhatia, 2015). The crosstalk between
Notch and Wnt signaling acts as a conserved mechanism

to promote the BMME-induced chemoresistance of leukemia
cells, regardless the leukemia subtype (Sengupta et al., 2007).
These pathways can be targeted at different levels of their
cascade through several inhibitors, some of them already used
in clinical trials, with different results in terms of outcome and
toxicity. Thus, Wnt and Notch inhibitors represent potential
therapeutic strategies to target leukemia BMME, regardless the
underlying molecular signature, thus minimizing the risk of
leukemia subclone selection due to the use of inhibitors of
specific molecular aberrations (Rizzo et al., 2008; Ntziachristos
et al., 2014; Takebe et al., 2015). Most data supporting this
view emerge from co-culture studies between leukemia cells
and MSCs. Indeed, MSC-based 2D co-culture cannot address
cellular heterogeneity and mechanical constrain observed in
a 3D BM (Marino et al., 2019). Nevertheless, all the results
were successfully translated into different mouse models, thus
confirming that ex vivo MSC-leukemia cell coculture can be an
effective surrogate to investigate BMME interactions in vitro and
to pave the way toward the identification of new therapeutical
approaches capable of overcoming chemoresistance.
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