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Obesity-derived disturbances in fatty acid and cholesterol metabolism are linked to
numerous diseases, including various types of malignancy. In tumor cells, metabolic
alterations have been long recognized and intensively studied. However, metabolic
changes in host cells in the tumor microenvironment and their contribution to tumor
development have been largely overlooked. During the last decade, research advances
show that fatty acid oxidation, cholesterol metabolism, and lipid accumulation play
critical roles in cancer-associated host cells such as endothelial cells, lymph endothelial
cells, cancer-associated fibroblasts, tumor-associated myeloid cells, and tumor-
associated lymphocytes. In addition to anti-angiogenic therapies and immunotherapy
that have been practiced in the clinic, metabolic regulation is considered another
promising cancer therapy targeting non-tumor host cells. Understanding the obesity-
associated metabolism changes in cancer-associated host cells may ultimately be
translated into therapeutic options that benefit cancer patients. In this mini-review,
we briefly summarize the lipid metabolism associated with obesity and its role in
host cells in the tumor microenvironment. We also discuss the current understanding
of the molecular pathways involved and future perspectives to benefit from this
metabolic complexity.

Keywords: cancer-associated host cells, metabolism, fatty acid oxidation, cholesterol metabolism, tumor
microenvironment

INTRODUCTION

The global obesity pandemic affects most high-income and middle-income countries, and it
is associated with an increased incidence of certain types of cancer (Swinburn et al, 2011;
Demark-Wahnefried et al., 2012). Obese adipocytes could release fatty acids (FAs), lipoproteins,
hormones, and growth factors into extracellular space and circulation. It is recognized that
adipocytes provide fuel and triggers for the metabolic reprogramming in changing tumor behaviors
(Nieman et al., 2013).

Although aerobic glycolysis is the dominant metabolic paradigm, cancer cells exploit lipid and
cholesterol to meet their unlimited energy demands. In some types of cancer, lipid-dependent
metabolism becomes a prominent pathway for energy production (Caro et al., 2012). Cancer
cells obtain lipids by taking up the exogenous lipids and de novo synthesis of endogenous
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lipids. Free fatty acids (FFAs) are taken up through FA translocase
CD36, FA transport proteins (FATPs)/SLC27A, and fatty acid-
binding proteins (FABPs) for mitochondrial oxidation and
energy production, while cholesterol-rich lipoproteins are taken
up by receptors such as the low-density lipoprotein receptor
(LDLR). Cholesterol can facilitate membrane microdomain
formation, which can initiate tumor growth (Oneyama et al,,
2009). Other than membrane composition, cholesterol is a
precursor for bile acids and steroid hormones which can
initiate cancer progression (Attard et al., 2009). For de novo
lipogenesis, citrate is exported from the mitochondrion as
a substrate, and ATP citrate lyase, acetyl-CoA carboxylase
(ACC), and fatty acid synthase (FASN) sequentially promote FA
production for further synthesis of triacylglycerols, cholesterol
esters, and phospholipids. Compared with healthy tissues
that prefer to use circulating lipids, tumor cells express
a significant amount of FASN protein (Cai et al, 2015).
Clinically, the first-in-class FASN inhibitor currently is under
phase II trial and shows antitumor potential (Falchook
et al, 2017). The lipid metabolism pathway is summarized
in Figure 1.

Although the lipid metabolism and cholesterol metabolism
in cancer cells per se have received substantial amount of
interest over the past two decades, it needs to be considered
that the tumor microenvironment (TME) is modulated by
complex signaling networks from malignant cells and multiple
other components, including vascular cells, stromal fibroblasts,
inflammatory cells, and blood cells. Constantly exposed to
various growth factors controlling tumor angiogenesis, lymphatic
growth, stromal fibroblast expansion, and inflammation, TME
becomes favorable for tumor growth, metastasis, and drug
resistance. Whether obesity-derived FA and cholesterols can
stimulate these host non-malignant cells is largely overlooked.
There are still challenges to be faced in understanding how
host cell lipid metabolism facilitates tumor development and
in bringing the drugs that target cancer-associated host cell
metabolism to the clinic.

OBESITY-RELATED CIRCULATING FFA
AND CHOLESTEROL LEVELS

In 1960, researchers found that most obese individuals have
elevated FFA levels in serum (Gordon, 1960). FFAs from highly
saturated fat consumption or dysregulated lipolysis can induce
various responses, including insulin resistance, inflammation,
lipotoxicity, and endothelial dysfunction (Pleiner et al., 2002;
Jiao et al,, 2011; Oh et al., 2018). Furthermore, FFAs exert
pathophysiological functions through free fatty acid receptors
(Vangaveti et al., 2010).

During obesity, dyslipidemia is a classic hallmark with
reduced high-density lipoprotein cholesterol (HDL-C) levels and
increased levels of small, dense low-density lipoprotein (LDL)
particles, circulating triglycerides (TGs), or both (Kathiresan
et al., 2006). Besides genetic dyslipidemia, lifestyle with excessive
dietary intake of total calories, saturated fat, cholesterol,
and trans fats are the leading cause for the increased rates

of cholesterol synthesis and reduced expression of LDLR
(Glatz and Katan, 1993).

LIPID METABOLISM IN ENDOTHELIAL
CELLS AND LYMPHATIC ENDOTHELIAL
CELLS

Tumor cell-derived angiogenic factors induce neovascularization
in TME. Although tumors utilize similar mechanisms as normal
growing tissues, tumor vasculatures are generally malformed
with a high degree of disorganization, lack of clear separation
between arterioles and venules, lack of pericyte coverage, and
high permeability (Cao, 2009). Compared with the quiescent
state of endothelial cells (EC) in healthy tissues, the angiogenic
features of tumor vessels require a proliferative and migratory
EC state, which is the basis of antiangiogenic drugs, such as
bevacizumab. This sprouting state is recently shown driven by
metabolic switches in EC.

It is reported that glycolytic flux is doubled under proliferative
status in EC, and the glycolysis activator 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) is the key
enzyme for EC glycolysis (De Bock et al, 2013). Under
physiological status, shear stress blocks PFKFB3-related
metabolism in EC via flow-sensitive transcription factor
(Doddaballapur et al., 2015). In contrast, PEKFB3 is upregulated
in pathological angiogenesis and PFKFB3 blockade shows
the antiangiogenic effect (Schoors et al., 2014). Although
proliferating EC is considered to rely on glycolysis, it exerts a
metabolic paradigm shift to fatty acid oxidation (FAO) upon
glucose deprivation (Dagher et al., 2001). Indeed, CPT1a-guided
FAO stimulates EC proliferation (Schoors et al., 2015), and
inhibition of CPTla in ECs impairs vessel stability (Patella
et al, 2015). Interestingly, in proliferating EC, FAO is not
providing additional ATP but is used for de novo synthesis of
nucleotides (Schoors et al.,, 2015). It is reported that obesity-
related hormone leptin promotes FAO in ECs by increasing
CPT1a activity, suggesting obesity not only provides the fuel
but also is capable of triggering host cell metabolism (Yamagishi
et al,, 2001). Moreover, under proliferation, EC increases FA
uptake and the expression of FABP4 (Elmasri et al., 2009). FABP4
inhibition leads to a marked increase of FAO in tumoral EC
and decreases tumor angiogenesis (Harjes et al., 2017). It is
reported that vascular endothelial growth factor (VEGF)-B is
involved in modulating FA uptake in EC (Hagberg et al., 2010).
Whether VEGE-B blockade inhibits tumor angiogenesis requires
further validation.

Emerging evidence suggests that cholesterol levels may
regulate angiogenesis. Elevated circulating cholesterol level
promotes tumor angiogenesis, and cholesterol uptake-blocking
agent ezetimibe significantly inhibits tumor angiogenesis
(Solomon et al., 2009). Cholesterol efflux from ECs to HDL
reduces lipid rafts, interferes with VEGFR2 signaling, and
inhibits angiogenesis (Fang et al., 2013). Activation of endothelial
liver X receptors (LXRs), regulators of cholesterol homeostasis,
reduces tumor angiogenesis by impairing the compartmentation
of VEGFR2 (Noghero et al., 2012). Moreover, cholesterol
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FIGURE 1 | Simplified scheme of major lipid metabolic pathways. Exogenous FAs are taken up for FAO and energy production. Exogenous cholesterol-rich
lipoproteins are imported for building membranes. De novo lipogenesis starts from exported citrate and makes complex FA in the Golgi body. FA, fatty acid; FAO,
fatty acid oxidation; TCA, tricarboxylic acid cycle; CoA, coenzyme A; ACLY, ATP citrate lyase; ACC, acetyl-CoA carboxylase; FASN, fatty acid synthase; FACS, fatty
acyl-CoA synthetase; ABCA/G, ATP-Binding Cassette A/G; LXR, liver X receptor;
type 1; MSR1, macrophage scavenger receptor 1; FATP, fatty acid transport proteins.

LDLR, low-density lipoprotein receptor; SR-B1, the scavenger receptor, class B

trafficking is a potential target for blocking angiogenesis in TME
(Lyu et al., 2017). Of note, VEGF-B is reported to impair LDLR
recycling and reduce cholesterol uptake in EC. Its role in TME
needs additional investigation (Moessinger et al., 2020).

The role of FA synthesis in tumor ECs remains incompletely
understood. It is reported ACC regulates EC migration, and
FASN is critical for vessel sprouting. ACC inhibition shifted
the phospholipid composition of EC membranes and reduced
membrane fluidity, filopodia formation, and migratory capacity
(Glatzel et al., 2018). FASN knockout elevates malonyl-CoA
levels, causing malonylation of mTOR and impairment of
pathological angiogenesis (Bruning et al., 2018).

Intratumoral and peritumoral lymphatics are essential for
lymph metastasis of tumor cells. However, the role of metabolism
in lymphatic endothelial cells (LECs) is largely unknown. It is
reported that FAO is crucial for lymphatic development through
epigenetic regulation of lymphatic transcription factor PROX1
(Wong et al., 2017). The role of FA synthesis on the lymphatic
network and tumor-induced lymphangiogenesis is still unknown.
It seems like FASN is needed for the growth and maintenance
of LECs, and FASN inhibitor reduces LEC migration and tumor
lymph metastasis (Bastos et al., 2017).

It is reasonable to speculate that EC metabolism in TME is
context-dependent (Li et al., 2019a). Single-cell RNA sequencing
studies revealed extensive heterogeneity of metabolic gene
expression signatures between ECs from different tissues (Li et al.,
2019b). Tumor type may determine the metabolism pattern of
ECs. Moreover, in TME, malignancy-derived various cytokines
may disrupt EC metabolic switch. To target EC metabolism as
an antiangiogenic therapy in TME, it is necessary to consider
the impact of tumor type and tumor-derived cytokines. Hypoxia
may be another parameter regulating EC metabolism. ECs,

especially sprouting ECs, have to establish functional vessels for
avascularized tissues. Under this status, it requires ECs to have
a functional metabolism under hypoxia. In tumors, this need
becomes even stronger. Whether obesity-derived FA and LDL
can affect this unique metabolism requires further investigation.
For LECs metabolism in TME, limited studies prevent us from
understanding it in detail. We do know FAO and FASN are
involved in the regulation of lymphangiogenesis. Further studies
will be required to explore the mechanism and to understand
the significance.

LIPID METABOLISM IN
CANCER-ASSOCIATED FIBROBLASTS

Healthy fibroblasts can become activated during tumorigenesis.
In general, cancer-associated fibroblasts (CAFs) promote tumor
progression by secreting tumor-supporting factors, acting as
a barrier to immune surveillance, and facilitate tumor cell
migration (Yang et al., 2016b; Sahai et al., 2020). Of note,
fibroblasts can exhibit phenotype heterogeneity; depletion of
fibroblasts accelerates pancreatic cancer, suggesting CAFs may
restrain tumor growth (Ozdemir et al., 2014). Multiple studies
demonstrate fibroblast subsets in TME with differential abilities
to affect tumor progression (Sahai et al., 2020). Understanding
the metabolism of CAFs has potential importance for revealing
the complexity of CAFs and their interactions with cell
compartments in TME.

Several studies described metabolic features of CAFs,
and majority of them focus on glucose and glutamine
metabolism. Transforming growth factor (TGF)-p- or platelet-
derived growth factor (PDGF)-induced CAFs switch from
oxidative phosphorylation to aerobic glycolysis to meet the
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requirements of extracellular matrix (ECM) production (Zhang
et al,, 2015). It should be noted that studies on CAF lipid
metabolism are quite limited. However, the lipid metabolism
and fate determination of fibroblasts in other tissues can
provide us with enlightenment. In TME, ECs may convert into
a fibroblast-like state, known as endothelial-to-mesenchymal
transition (EndoMT) (Platel et al., 2019). It is reported that FAO
is a negative regulator for EndoMT (Xiong et al., 2018). In skin
fibroblasts, peroxisome proliferator-activated receptors (PPARs)
signaling that regulates FA uptake and oxidation promotes a
catabolic phenotype by enhancing ECM internalization and
lysosomal degradation (Zhao et al., 2019). The CD36-expressing
fibroblasts transplantation improved skin elasticity and reduced
ECM deposition in mice (Zhao et al., 2019). In general, FA uptake
and FAO reduce fibrogenesis and proliferation in fibroblasts. This
view warrants validation in CAFs.

Cholesterol levels may also regulate fibrogenesis and fibroblast
activation. However, the existing evidence is insufficient and
contradictory. In cardiac fibroblasts, LXR agonist prevents
TGEF-B-induced collagen synthesis and a-smooth muscle actin
expression (Cannon et al, 2015). Another group reported
that LXR inverse agonist suppresses fibrosis in non-alcoholic
steatohepatitis in vivo, suggesting opposing effects of LXR
signaling on regulating fibrogenesis (Griffett et al., 2015).

Interestingly, CAFs are capable of synthesizing and
transferring lipids to neighboring cells (Santi et al, 2015).
Higher FASN activity in CAF identified its role as FAs supplier
in breast cancer (Lopes-Coelho et al., 2018). A recent study
using lipidomic profiling showed that CAFs provide fatty acyl,
long-chain, and unsaturated FAs for colorectal cancer tumor cell
development (Gong et al., 2020). There is still a lack of evidence
of lipid synthesis changing CAF phenotypes.

In other types of fibroblasts, FAO may reduce fibrosis and
fibrogenesis. If this result can be replicated in TME, metabolic
regulation in CAF may have antitumor potential. It is worth
noting that upon CAF activation, ECM overexpression is not
completely negative for tumor treatment. Type I collagen
reduction, together with a significant decrease in tumor tissue
stiffness, promotes tumor metastasis (Ozdemir et al., 2014). This
work raises a warning for blunting CAF for fibrogenesis using
FAO. The other point is that in skin fibroblast, FAO did not
downregulate glycolysis in vivo, which means regulation is not
made through a classic metabolic switching. It is necessary to
verify this phenomenon in the TME. In general, due to the lack
of understanding of CAF metabolism and the essential impact of
CAF on the TME, research on CAF metabolism should become
the next focus in this field. Once enough evidence is provided,
it may present exciting new therapeutic opportunities for the
management of cancer.

LIPID METABOLISM IN
TUMOR-ASSOCIATED MYELOID CELLS
AND LYMPHOCYTES

Understanding immune cell metabolism in cancer is of
growing significance in the past decade with the success of

immunotherapy. In TME, infiltrated immune cells include
tumor-associated macrophages (TAMs), dendritic cells (DCs),
myeloid-derived suppressor cells (MDSCs), and several T
cell subpopulations. Understanding the differential metabolic
requirements of diverse immune cells helps us regulate the
complex immune response in TME. Among various kinds of
tumor-associated host cell types, the role of lipid metabolism
in regulating immune cells has been most intensively studied.
Knowledge from classic immunology and evidence collected in
TME indicates the importance of immune cell lipid metabolism
in tumor growth and provides novel therapeutics for cancer.
Evidence has been well-documented in several comprehensive
reviews (Geeraerts et al, 2017; Le Bourgeois et al, 2018;
Giovanelli et al., 2019; Leone and Powell, 2020). For the balance
of this article, here we briefly discuss lipid metabolism in
immune cells as below.

TAMs account for the largest fraction of the myeloid
infiltrate in solid malignancies, and they display heterogeneous
transcriptional programs and phenotype plasticity (Cassetta et al.,
2019). At the beginning of this century, alternatively activated
macrophages are found to be prone to increase FAO (Vats
et al.,, 2006). Lipids uptake via CD36 and upregulation of FAO
supports reactive oxygen species (ROS), JAK1-STAT6 activation,
and hence the protumor function (Zhang et al, 2018; Su
et al., 2020). DCs regulate the balance between immunity and
tolerance through selective activation by the triggers in TME.
Generally, tolerogenic DCs rely on FAO for their energetic
demands, increasing the tumor burden in mice (Malinarich
et al., 2015). Msrl-mediated FA uptake reduces DCs" capacity
to process antigens (Herber et al., 2010). MDSCs play vital
roles in TME, and their inhibition is critical for successful
cancer immunotherapy. MDSCs prefer FAO over glycolysis
as a primary source of energy, while treatment with FAO
inhibitors improved antitumor immunity (Hossain et al., 2015).
In general, induction of FAO primes myeloid cells in TME for an
immunosuppressive phenotype.

For cholesterol metabolism, TAMs readily take up
lipoproteins from dying cells and developed mechanisms
for eliminating cholesterol from the cell. Cholesterol efflux
in TAMs supports IL-4 signaling and promotes tumor
progression (Goossens et al., 2019). For other myeloid cells,
cholesterol metabolism promotes a protumor phenotype.
LXR signaling inhibits CCR7 expression in DCs and their
migration to tumor-draining lymph nodes (Villablanca et al.,
2010). In contrast, cholesterol loading in LXR knockout
CDl11c" cells promotes the antigen presentation (Ito et al,
2016). Under a high-fat diet, cholesterol acts on neutrophils
via its metabolite, 27-hydroxycholesterol, and priming an
immune-suppressive environment for tumor metastasis
(Baek et al., 2017).

Dysregulation of key enzymes in lipid metabolism may
lead to various problems such as lipid accumulation. FASN
upregulation in tumor-associated myeloid cells stimulates
PPARP/3 and supports tumor cell invasion (Park et al., 2015).
In support of this view, various lipolytic enzymes involved
in intracellular lipid metabolism, including monoacylglycerol
lipase, AB-hydrolase containing 5, epidermal fatty acid-binding
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protein, and adipocyte/macrophage fatty acid-binding protein,
strongly affect TAM function and tumor progression (Rao
et al, 2015; Miao et al., 2016; Hao et al., 2018; Xiang et al,
2018). In DCs, chaperone-binding oxidatively truncated lipids
prevent the translocation of pMHC to the surface of DC
and partially explained the DC attenuation (Veglia et al,
2017). In MDSCs, lipid accumulation reprograms MDSC to
be highly immunosuppressive cells (Al-Khami et al., 2017).
In general, a number of studies indicate that lipid synthesis
and accumulation play an important role in the function
of myeloid cells.

T cells can be divided into many subtypes and kill
tumors directly or indirectly by synthesizing various biological
molecules. In T cells, glycolysis is observed upon activation by the
T-cell receptors (TCR) and costimulatory signals in TME (Chang
et al.,, 2013). In contrast, FAO mainly provides energy for Treg
and memory T cells (O’Sullivan et al., 2014; Miska et al., 2019).
FAO blockade suppresses Treg population, while the addition
of FAs promotes their differentiation (Michalek et al., 2011).
Interestingly, PD-1 inhibits glycolysis and promoting FAO in T
cells, and PD-1 blockade recovers T cell capacity (Patsoukis et al.,
2015), suggesting the link between lipid metabolism and immune
checkpoint. Of note, linoleic acid, a type of FA accumulated in
fatty liver disease, causes more oxidative damage and mediates
selective loss of intrahepatic CD4" T lymphocytes (Ma et al.,
2016), suggesting obesity triggers specific T cell response.

The role of cholesterol metabolism in T cells is controversial.
T cell activation triggers simultaneous suppression of the
LXR pathway for cholesterol transport and induction of the
sterol regulatory element-binding protein (SREBP) pathway for
cholesterol synthesis (Bensinger et al., 2008). In TME, increasing
the cholesterol level in CD8" T cells may induce exhaustion by
endoplasmic reticulum (ER) stress (Ma et al., 2019). However,
another group reported that cholesterol causes enhanced T-cell

receptor clustering in CD8" T cells and antitumor effect
(Yang et al., 2016a).

FA synthesis supplies membrane materials for activated
effector T cells. For example, SREBPs are crucial for CD8™" T cell
expansion (Kidani et al., 2013), while blocking ACC1 restrains
the formation of TH17 cells and promotes the development of
Treg cells (Berod et al., 2014). In general, lipid metabolism is also
important for maintaining the balance between effector T cells
and Treg cells; studies on the effect of lipid metabolism on T cell
function need to focus on the different T cell types.

As a cell group with direct or indirect killing effect in
TME, immune cells are attractive therapeutic targets for
metabolic regulation. However, similar metabolism in activated
antitumoral immune cells and tumor cells leads to competition
between tumor development and antitumor immunity. In TME,
glucose competition, hypoxia, and lactic acid secretion promote
immunosuppressive phenotype in TAMs, DCs, and T cells. The
accumulation of FAs caused by obesity may facilitate this process.
The prerequisite of targeting lipid metabolism of immune cells
to treat tumors is a better understanding of lipid metabolism in
different cell types and its overall consequences. The effects of
lipid metabolism on various types of cancer-associated host cells
are summarized in Figures 2A,B.

CONCLUSION
Targeting non-tumor host cells, such as antiangiogenic
therapy and immunotherapy, has achieved significant

effects in the clinical practice of cancer treatment. However,
metabolic regulation for combating tumors has not yet

become mainstream. Host cell metabolism in TME is
significantly ~ different from those in healthy tissues,
and these differences provide opportunities to target
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host cell metabolism for treating tumors. Among the host
cell populations in TME, immune cells are undoubtedly the
most promising and the most studied cell group. Targeting the
metabolism of suppressive immune cells or targeting effector
cell metabolism to enhance tumor killing gives promising results
in pre-clinical studies. However, similar evidence is lacking in
other host cell types in TME. In this untouched research field,
a series of studies are needed to understand obesity-related lipid
metabolism and its influence on the host cells in TME. Moreover,
future work should focus on the disruption of the TME on the
metabolism of these host cells. The change of physical parameters
in TME can increase angiogenesis, promote CAF activation,
suppress the immune response, modulate drug resistance, and
induce certain metabolic programs to support the malignancy. It
is necessary to understand the molecular pathways involved in
the host cell lipid metabolism to clarify what effect obesity has
on this complex metabolic disruption and to benefit from this
metabolic complexity.
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