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Osteoporosis is a frequently occurring bone disease in middle-aged and aged men
and women. However, current therapies on this disease are still not ideal. MicroRNAs
(miRNAs) are a class of endogenous non-protein-coding RNA with a length of 18-25
nucleotides. miRNAs have been identified as important regulators for development,
metabolism, carcinogenesis, and bone formation. miR-129-5p has been reported
as a regulator of cancer and neuroscience, whereas studies about its function
on bone formation is still limited. In this study, we investigated the function and
mechanism of miR-129-5p on osteoblast differentiation and bone formation. We
have assessed the expression of miRNAs in bone mesenchymal stem cells from
aging and menopause osteoporosis C57BL6 mice. The expression of miR-129-5p
was altered in all osteoporosis models. Besides, the expression of miR-129-5p was
negatively correlated with osteoblastic differentiation markers in the femur tissues
of C57BL/6 mice of different ages. We further demonstrated that overexpression
of miR-129-5p inhibited osteoblast differentiation in MC3T3-E1 cell line, as well as
bone formation of C57BL/6 mice. On the other hand, down-regulation of miR-129-5p
enhanced osteoblast differentiation and bone formation. We also found that miR-129-
5p inhibited Wnt/B-catenin pathway in osteoblast. The target gene of miR-129-5p
has been forecasted and proved as Tcf4. We further found that plasmid containing
Tef4-3' UTR sequence enhanced osteoblast differentiation, as well as Wnt/B-catenin
pathway in MC3T3-E1 cells. To further investigate the rescue effect of miR-129-
5p inhibitor, we manufactured bioengineered novel recombinant miR-129-5p inhibitor
through Escherichia coli system and then tested its function. The results showed
that the novel recombinant miR-129-5p inhibitor promoted osteoblast differentiation
and greatly ameliorated menopause osteoporosis in C57BL6 mice. In conclusion,
we have discovered miR-129-5p as an inhibitor of bone formation. miR-129-5p
inhibited downstream transcription factors of Wnt/B-catenin pathway through targeting
Tcf4. Moreover, novel recombinant miR-129-5p inhibitor showed rescue effect on
osteoporosis. This study has revealed a new mechanism of osteogenic differentiation
and provided novel therapeutic strategies for treatment of skeletal disorders.
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INTRODUCTION

Osteoporosis is a high-incident bone disease in middle-aged
and aged men and women, with symptoms identified as
declined bone mass and bone strength, deteriorated bone
microarchitecture, and increased risk of fracture (Hendrickx
etal., 2015). The causes of osteoporosis are multiple and complex.
Among those, declined osteoblast differentiation, which leads
to discouraged bone formation, was proved as one of the
major causes of osteoporosis (Jabbar et al., 2011; Gennari et al.,
2016). Osteoblast differentiation could be affected by multiple
signaling pathways and osteogenic factors, including microRNAs
(miRNAs), which were proved to be highly correlated with
osteoblast differentiation and osteoporosis.

MicroRNAs are a class of endogenous non-protein-coding
RNA with 18-25 nucleotides in length. miRNAs have been
known as important regulators for development, metabolism,
carcinogenesis, and bone formation (Bartel, 2009; Rigoutsos
and Furnari, 2010; Chen et al, 2017). Emerging numbers
of studies have reported miRNAs as regulators for osteoblast
differentiation and bone formation, such as miR-21, miR-
214, miR-188, miR-148-3p, miR-422a, etc. (Wang et al., 2013;
Cao et al, 2014; Li et al., 2015, 2017; Yuan et al, 2019).
These studies suggested that the functional and mechanism
researches on osteogenic miRNAs would be helpful to develop
potential therapeutic strategies for osteoporosis. miR-129-5p
has been reported as a regulator of cancer and neural disease
(Li G. et al, 2019; Zeng et al., 2019), whereas studies on
its function in bone formation are relatively limited. Shi
et al. (2020) reported that hsa-miR-129-5p inhibited osteogenic
differentiation of adipose-derived stem cells via Wnt/p-catenin
pathway, which implied that miR-129-5p may also be an inhibitor
of bone formation. Therefore, the reduction of miR-129-5p
level in bone tissue might be a potential anabolic strategy for
ameliorating osteoporosis.

Biological approaches have been made to use live cells to
bioengineer natural RNA molecules that are ready to use as RNAi
agents (Ponchon et al., 2009; Huang et al., 2013; Chen et al,
2015; Ho and Yu, 2016). These recombinant RNA technologies
provided a novel way for fast production of large quantities
of chimeric RNAs in a cost-effective manner. As benefit from
this technological progress, we used an improved ncRNA carrier
(nCAR; Ho et al., 2018) for production of recombinant miR-129-
5p inhibitor (nCAR/anti129). This bioengineered nCAR/anti129
may better capture the activity of natural RNAs and thus have
greater potential for clinical application.

In this study, we have identified miR-129-5p as an inhibitor
for osteoblast differentiation and bone formation. We found
that miR-129-5p blocked downstream transcript factors of
Wnt/B-catenin pathway by targeting Tcf4. In addition, novel
recombinant miR-129-5p inhibitor that was manufactured
through Escherichia coli system was applied to in vivo study
to further figure out its rescue effect on postmenopausal
osteoporosis. The study has discovered a novel mechanism
regulating osteoblast differentiation and bone formation and
provided new ideas for the translational medical research of
osteogenic miRNAs on osteoporosis.

RESULTS

miR-129-5p Was Associated With Bone

Formation Reduction
We detected miR-129-5p expression level in bone marrow
mesenchymal stem cells (BMSCs) of both male and female
aging mice femur tissue. Reverse transcriptase-polymerase chain
reaction (RT-PCR) results showed that in 21-month-old male and
female mice, the expression level of miR-129-5p was enhanced
by 218.3% (P < 0.001) and 70.7% (P < 0.001), respectively,
compared to 6-month-old control mice (Figure 1A). These
results implied that during the aging process, the expression of
miR-129-5p is up-regulated in bone tissue and osteogenic cells.
To further prove the correlation between miR-129-5p and
osteogenesis, correlation analysis was performed. The results
showed that miR-129-5p expression was negatively correlated
with the expression of osteogenic transcript factor Osterix and
Runx2 (runt-related transcription factor 2) in the femur tissue
of different ages of C57BL/6 mice (Figures 1B,C). These results
suggested that the expression level of miR-129-5p was negatively
correlated with osteogenesis.

miR-129-5p Inhibited Osteoblast

Differentiation and Bone Formation

The functions of miR-129-5p on osteoblast differentiation and
bone formation were investigated. miR-129-5p mimic and
inhibitor were synthesized to manipulate miR-129-5p expression
in MC3T3-El1 cells and calvaria of C57BL/6 mice. Mimic-NC and
inhibitor-NC were used as control.

In MC3T3-E1 cells, the expression level of miR-129-5p was
increased by 123.7% (P < 0.001) compared to negative control
after mimic-129-5p transfection (Supplementary Figure S1A)
and was decreased by 37.8% (P < 0.001) when inhibitor-
129-5p was transfected (Supplementary Figure S1B). RT-
PCR results revealed that the expression level of osteogenic
transcript factor Osterix and Runx2 was decreased by 73%
(P < 0.001) and 51.8% (P < 0.05), respectively when cells
were exposed to mimic-129-5p (Figure 2B). Moreover, the
alkaline phosphatase (ALP)-positive blue-violet complexes and
alizarin red-stained mineralized nodules were both significantly
decreased (Figure 2A and Supplementary Figure S2A). As
for inhibitor-129-5p transfection, expression levels of Osterix
and Runx2 were enhanced by 135.5% (P < 0.01) and 42.4%
(P < 0.001), respectively (Figure 2D). ALP-positive blue-violet
complexes and alizarin red-stained mineralized nodules were
also significantly enhanced (Figure 2C and Supplementary
Figure S2B). The results confirmed that miR-129-5p inhibited
osteoblast differentiation.

Then miR-129-5p mimic and inhibitor were implemented in
calvaria of C57BL/6 mice by transfection reagent (Entranster ™
In vivo Transfection Reagent) to determine the function of
miR-129-5p in vivo. The expression levels of miR-129-5p in
mice calvarias were significantly enhanced by mimic-129-5p
(Supplementary Figure S1C, P < 0.001) and decreased by
inhibitor-129-5p (Supplementary Figure S1D, P < 0.001) 3 days
after the injection. Mineral apposition rate (MAR, an assessment
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FIGURE 1 | miR-129-5p was associated with bone formation reduction.

(A) Expression levels of miR-129-5p in BMSCs of 6- and 21-month male (left)
and female (right) C57BL/6 mice, as detected by reverse
transcriptase-polymerase chain reaction (RT-PCR; mean + SD,

*#*P < 0.001). (B,C) Correlation analysis between miR-129-5p level and
Oxterix or Runx2 mRNA levels in femur tissues from C57BL/6 mice,
respectively, as detected by RT-PCR.

of bone formation) of calvarial bone in mimic-129-5p transfected
mice was decreased by 32.2% (Figure 2E, P < 0.01), whereas
calvarial MAR in mice treated by inhibitor-129-5p was enhanced
by 75.1% (Figure 2F, P < 0.001). The in vitro and in vivo
results proved that miR-129-5p would inhibit both osteoblast
differentiation and bone formation.

miR-129-5p Inhibited Downstream
Transcript Factors of Wnt/g-Catenin
Pathway

We moved forward to investigate the mechanism of the
inhibitory effect of miR-129-5p on osteoblast differentiation.
The correlation between miR-129-5p expression and essential

osteogenic transcript factors in the femur tissue of different ages
of C57BL/6 mice was investigated. The expression of transcript
factor Hesl, Smad2, and Hifla showed no significant correlation
with miR-129-5p (Supplementary Figure $3). While Tcf7 and
Lefl, downstream transcript factors of Wnt/B-catenin pathway,
showed negative correlation with miR-129-5p (Figures 3A,B and
Supplementary Figure S4). Wnt/B-catenin pathway is one of the
most essential pathways that regulate osteoblast differentiation
and bone formation through its downstream transcript factors
TCF7 and LEF1 (Maria et al., 2007; Hu et al., 2018). These results
implied that miR-129-5p might inhibit downstream transcript
factors of Wnt/p-catenin pathway.

The expression levels and activities of TCF7 and LEF1
in miR-129-5p mimic- or inhibitor-treated MC3T3-E1 cells
were further determined. Results demonstrated that mRNA
expression levels of Tcf7 and Lefl were both significantly
inhibited by the overexpression of miR-129-5p (Figures 3C,D;
P < 0.001) and elevated by the knockdown of miR-129-
5p (Figures 3EG; P < 0.01, P < 0.001). Moreover, the
negative influence of miR-129-5p on TCF7/LEF1 was confirmed
by luciferase reporter assay. The luciferase reporter plasmid
containing TCF7/LEF1 binding site was constructed and co-
transfected into MC3T3-E1 cells along with miR-129-5p mimic
or inhibitor. Results showed that after mimic or inhibitor-
129-5p exposures, TCF7/LEF1 activities were evidently reduced
(approximately 47.4%, Figure 3E, P < 0.001) or enhanced
(45.4%, Figure 3H, P < 0.01). These data demonstrated that
miR-129-5p had inhibitory effect on both the expressions and the
activities of the downstream transcript factors of Wnt/B-catenin
pathway, which suggested that the regulation of miR-129-5p on
osteoblast differentiation was probably through the inhibition of
these transcription factors.

miR-129-5p Inhibited Osteoblast
Differentiation and Wnt/g-Catenin
Downstream Transcript Factors via
Targeting Tcf4
We have forecasted that miR-129-5p targeted Tcf4 (Table 1),
and TCF4 has been reported as an important conducting
transcriptional factor in Wnt/p-catenin pathway (Reinhold and
Naski, 2007). In this study, we for the first time determined
the regulatory effect of miR-129-5p on TCF4. We discovered
that mimic-129-5p significantly down-regulated TCF4 mRNA
and protein expressions (Figure 4A), which were up-regulated
by inhibitor-129-5p (Figure 4B). The binding effect of miR-
129-5p to Tcf4 -3’ UTR was also investigated by luciferase
reporter assay. The luciferase reporter plasmids that either have
a wild-type T¢f4-3' UTR (Luc-WT) or a T¢f4-3' UTR containing
mutant sequences (Luc-mut) of the miR-129-5p binding site
were constructed and transfected into MC3T3-E1 cells along
with mimic-129-5p or inhibitor-129-5p. Results revealed that
luciferase activities were significantly decreased by mimic-129-
5p in cells transfected by Luc-WT (Figure 4C) and enhanced by
inhibitor-129-5p (Supplementary Figure S5).

To further confirm the role of TCF4 as a mediator between
miR-129-5p and osteoblast differentiation, we constructed Tcf4-
UTR plasmid that contained T¢f4-3" UTR embodied miR-129-5p
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FIGURE 2 | miR-129-5p inhibited osteoblast differentiation and bone formation. (A) Alp and alizarin red staining of MC3T3-E1 cells treated with mimic-129-5p
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inhibitor-NC), as detected by Alp staining and alizarin red staining. NC: inhibitor-NC. inhibit-129: inhibitor-129-5p. (D) Osterix and Runx2 expression levels of
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binding sequence. The control plasmid was also established that
contained the mutant binding sequence (mutant) of miR-129-5p.
Tcf4-UTR and mutant plasmid were transfected to MC3T3-E1
cells along with mimic-129-5p or inhibitor-129-5p. For MC3T3-
El cells transfected with mimic-NC, osteoblast differentiation
marker Osterix was up-regulated by 31.9% (P < 0.01) after
treatment with Tcf4-3' UTR, as compared to cells treated
with mutant Tc¢f4-3" UTR. In high-expression miR-129-5p cells
induced by mimic-129-5p, Osterix was up-regulated by a more
drastic level of 132.8% (P < 0.001) after Tcf4-3’ UTR treatment
compared to mutant Tc¢f4-3" UTR (Figure 4E). For Runx2,
the similar patterns were observed as Osterix: Tcf4-3' UTR
enhanced its expression by 91.9% (P < 0.001) in cells transfected
with mimic-NC, which was enhanced by a higher degree of
220% (P < 0.001) in mimic-129-5p-treated MC3T3-E1 cells
(Figure 4F). Alp activities and mineralized nodules were also
enhanced by Tcf4-3' UTR, which were more significant in
mimic-129-5p-treated cells (Figure 4D and Supplementary
Figures S6A,B). On the other hand, in low miR-129-5p cells
induced by inhibitor-129-5p, the expression levels of Osterix and
Runx2, along with Alp activities and mineralized nodules were
only slightly enhanced by Tcf4-3" UTR as compared to cells with
normal miR-129-5p level (Figures 4G-I and Supplementary
Figures S6C,D). These results demonstrated that Tcf4-3" UTR
would alleviate the inhibitory effect of miR-129-5p on osteoblast
differentiation and proved that miR-129-5p inhibited osteoblast
differentiation via targeting Tcf4.

Moreover, we also investigated the expressions and the
activities of the downstream transcript factors of Wnt/B-catenin
pathway in Tc¢f4-UTR transfected MC3T3-E1 cells. The treatment
of Tcf4-UTR up-regulated mRNA expression levels of Tcf7 and
Lefl by 76.4% (P < 0.001) and 104.3% (P < 0.001), respectively in
mimic-NC-treated cells. However, in high-expression miR-129-
5p cells, Tcf4-UTR up-regulated Tcf7 and Lefl level up to 180%
(P <0.001) and 215.3% (P < 0.001), respectively (Figures 5A,B).
The activity of TCF7/LEF1 was enhanced by 108.9% (P < 0.001)
through Tcf4-UTR treatment in cells with normal miR-129-5p
level and reached 223.8% (P < 0.001) in high miR-129-5p cells
(Figure 5C). Meanwhile, after inhibitor-129-5p treatment, Tcf4-
UTR enhanced both expressions and activities of TCF7 and LEF1
by a minor extent than that in cells with normal miR-129-5p
level (Figures 5D-F). All these results indicated that miR-129-
5p inhibited osteoblast differentiation and downstream transcript
factors of Wnt/B-catenin pathway through targeting Tcf4.

Rescue Effect of miR-129-5p Inhibitor on

Postmenopausal Osteoporosis

We moved forward to investigate the rescue effect of miR-129-5p
inhibitor on osteoporosis. Postmenopausal osteoporosis mouse
model was constructed by ovariectomization. The transfection
of inhibitor-129-5p was implemented into calvarias of OVX
mice as previously described (Yin et al, 2019). Expression
levels of miR-129-5p in calvarias were significantly enhanced
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FIGURE 3 | miR-129-5p inhibited downstream transcript factors of Wnt/B-catenin pathway. (A,B) Correlation analysis between miR-129-5p and Tcf7 or Lef1 mRNA
levels in femur tissues from C57BL/6 mice, respectively, as detected by reverse transcriptase-polymerase chain reaction (RT-PCR). (C,D) Tcf7 and Lef1 expression
levels of MC3T3-E1 cells treated with mimic-129-5p, as detected by RT-PCR (mean + SD, ***P < 0.001). NC, mimic-NC; mimic-129, mimic-129-5p.
(E) TCF7/LEF1 activities of MC3T3-E1 cells treated with mimic-129-5p, as detected by Iuciferase reporter assay (mean + SD, ***P < 0.001). (F,G) Tcf7 and Lef1
expression levels of MC3T3-E1 cells treated with inhibitor-129-5p, as detected by RT-PCR (mean + SD, **P < 0.01, ***P < 0.001). NC, inhibitor-NC; inhibit-129,
inhibitor-129-5p. (H) TCF7/LEF1 activities of MC3T3-E1 cells treated with inhibitor-129-5p, as detected by luciferase reporter assay (mean + SD, **P < 0.01).

by OVX surgery and were significantly down-regulated upon
transfection (Figure 7A). Mineral apposition rate in the OVX
mice was decreased by 48.2% (P < 0.001) and increased
by 107.3% (P < 0.001) after treatment with inhibitor-129-5p
(Figures 6A,B). Moreover, the expression levels of osteogenic
factors OCN and OSTREIX, along with miR-129-5p target gene
TCF4, were all down-regulated after OVX surgery, which were

TABLE 1 | Bonding sequence of miR-129-5p to Tcf4 -3'UTR.

Sequences Folding Energy (-Lcal/mol)

GTAA—-ACA—-AAGCAAAAAA
(RN I [ARRRRN
CGTTCGGGTCTGGCG C

—6.10

rescued by inhibitor-129-5p treatment. mRNA expression level
of transcript factors Tcf7 and LefI also exhibited similar tendency
(Figures 6C-H, 7B-F). The results proved the rescue effect of
inhibitor-129-5p on postmenopausal osteoporosis, and further
implied that miR-129-5p might serve as a potential therapeutics
target for osteoporosis.

Bioengineered Recombinant miR-129-5p
Inhibitor Enhanced Osteoblast
Differentiation and Rescued

Postmenopausal Osteoporosis

To further achieve the translational medical application of
miR-129-5p with higher efficiency and lower cost, bioengineered
novel recombinant miR-129-5p inhibitor was manufactured
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through E. coli system (Supplementary Figure S7), and its
function was further determined. The recombinant miR-129-5p
inhibitor efficiently decreased miR-129-5p level in MC3T3-E1
cells (approximately 56%, Figure 8A, P < 0.01). The Alp
activities and mineralized nodules, along with Osterix and Runx2
expression level, were all significantly enhanced, indicating that

the recombinant miR-129-5p inhibitor promoted osteoblast
differentiation (Figures 8B,C and Supplementary Figure S8).
TCF and LEF1 presented a significant increment in both
mRNA expressions and activities (Figures 8D-F). Expression
of miR-129-5p target gene TCF4 was also significantly increased
(Figure 8G), demonstrating that recombinant miR-129-5p
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inhibitor enhanced TCF4 level and downstream transcript
factors of Wnt/B-catenin pathway. Moreover, recombinant
miR-129-5p inhibitor was also implemented in calvarias
of OVX mice. The mineral apposition rate was decreased
by 56.3% (P < 0.001) in the OVX mice, but was increased
by 100.2% (P < 0.001) upon recombinant miR-129-5p
inhibitor treatment (Figures 8H-I). The in vitro and in vivo
results have proved the prospect that recombinant miR-129-
5p inhibitor may be used as a potential therapeutic drug
for osteoporosis.

DISCUSSION

Osteoporosis has become an emerging threat to elderly
population because of its high incidence. The patients
would suffer from bone mass reduction, bone microstructure
deterioration, hunchback, muscle spasms, myasthenia, pain,
and increased risk of fracture. Many factors contribute to
osteoporosis, including genetic diseases, hormonal disruption,
malnutrition, drug side effects, disuse, etc. (Georgiou et al,
2012). Among all reasons, one of the most essential causes of

osteoporosis is the deterioration of osteoblast differentiation,
which decreased bone formation and further led to osteoporosis.

The differentiation of osteoblast is a long-term physiological
process that could be impacted by many genetic and epigenetic
factors. miRNAs are a sort of non-coding RNA with 18 to
25 nucleotides in length. miRNAs are widely expressed in
eukaryotes and have been known as important regulators for
multiple physiological and pathological processes (Bartel, 2009;
Rigoutsos and Furnari, 2010; Chen et al., 2017). miRNAs
played an important role in regulating osteoblast differentiation
and bone formation. Wang et al. revealed that miR-214
inhibited bone formation via targeting Atf4 (Wang et al,
2013). Li et al. (2015) have reported that miR-188 inhibited
osteogenic differentiation of BMSCs and consequently promoted
BMSC adipogenic differentiation, which further mediated aging-
related osteoporosis. Zuo et al. (2015) discovered miR-103a,
which was sensitive to mechanical stimulation and mediated
disuse osteoporosis by targeting Runx2. Wang et al. (2018,
2020) recently discovered that miR-139-3p inhibited osteoblast
function and bone formation through Elkl. These studies
demonstrated the important role of miRNAs on bone formation
and implied that translational medical research of osteogenic
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FIGURE 6 | Rescue effect of miR-129-5p inhibitor on postmenopausal osteoporosis. (A) Representative images showing calvarial mineral apposition rate of
C57BL/6 mice after OVX and inhibitor-129-5p treatment. Scale bar: 10 um. BL (baseline): sacrifice before RNA treatment. Sham: sham OVX operation group. OVX:
OVX group. Mock: transfection reagent control group. inhibit-NC: inhibitor-NC—treated group. inhibit-129: inhibitor-129-5p-treated group. (B) Calvarial mineral
apposition rates of C57BL/6 mice after OVX and inhibitor-129-5p treatment (mean 4 SD, ***P < 0.001). (C) Expression of OCN in calvarial tissues of C57BL/6 mice
after OVX and inhibitor-129-5p treatment, as detected by immunohistochemical staining. Scale bar: 50 um. (D) Quantification of relative integrated optical density
(IOD) values of OCN immunostaining using Image-Pro Plus 6.0 software (mean + SD, ***P < 0.001). (E) Expression of OXTERIX in calvarial tissues of C57BL/6 mice
after OVX and inhibitor-129-5p treatment, as detected by immunohistochemical staining. Scale bar: 50 um. (F) Quantification of relative 10D values of OXTERIX
immunostaining using Image-Pro Plus 6.0 software (mean £ SD, ***P < 0.001). (G) Expression of RUNX2 in calvarial tissues of C57BL/6 mice after OVX and
inhibitor-129-5p treatment, as detected by immunohistochemical staining. Scale bar: 50 pm. (H) Quantification of relative 10D values of RUNX2 immunostaining
using Image-Pro Plus 6.0 software (mean + SD, ***P < 0.001).
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miRNAs would be helpful to discover potential treatment

for osteoporosis.

miR-129-5p is a miRNA that has been reported as a regulator
of cancer development and Alzheimer disease (Li G. et al., 2019;
Zeng et al., 2019). Shi et al. found hsa-miR-129-5p inhibited

osteogenic differentiation of adipose-derived stem cells (Shi
et al, 2020), while its function on bone formation is still
unexplored. To further reveal the correlation between miR-129-
5p and osteoporosis, in this study, we have stimulated aging-
related osteoporosis in male aging mice model and menopause
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alizarin red staining. (C) Osterix and Runx2 expression levels of MC3T3-E1 cells treated with recombinant miR-129-5p inhibitor, as detected by RT-PCR (mean + SD,
**P < 0.01). (D,E) Tcf7 and Lef1 expression levels of MC3T3-E1 cells treated with recombinant miR-129-5p inhibitor, as detected by RT-PCR (mean + SD,

P < 0.01, ***P < 0.001). (F) TCF7/LEF1 activities of MC3T3-E1 cells treated with recombinant miR-129-5p inhibitor, as detected by luciferase reporter assay
(mean + SD, ***P < 0.001). (G) TCF4 expression levels of MC3T3-E1 cells treated with recombinant miR-129-5p inhibitor, as detected by RT-PCR and Western
blot (mean + SD, ***P < 0.001). (H) Representative images showing calvarial mineral apposition rate of C57BL/6 mice after OVX and recombinant miR-129-5p
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osteoporosis in female aging menopause mice model. The
expression of miR-129-5p in BMSC demonstrated that miR-
129-5p expression was enhanced in both osteoporosis models.
Moreover, correlation analysis also proved that miR-129-5p
negatively correlated with osteogenic marker gene in different
ages of mice (Figure 1). We further proved the inhibitory
effect of miR-129-5p on osteoblast differentiation and bone

formation (Figure 2). The results proved that miR-129-5p
is an important regulatory factor to osteoblast differentiation
and bone formation.

MicroRNA inhibited the translation of target gene by binding
to its 3’ UTR region (Lai, 2002). In Shi et al’s (2020)
study, hsa-miR-129-5p inhibited Wnt/B-catenin pathway via
targeting Grm5. In Li et al. (2013); Zhang et al. (2017),

Frontiers in Cell and Developmental Biology | www.frontiersin.org

November 2020 | Volume 8 | Article 600641


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Yin et al.

miR-129-5p Inhibits Bone Formation

and Cao et al. (2018), hsa-miR-129-5p inhibited Wnt/p-catenin
pathway via targeting Apc, Sox4, and Wnt5a, respectively.
Wnt/B-catenin pathway is one of the most essential pathways
regulating bone formation, which activates multiple osteogenic
factors by TCF7 and LEF1 (Maria et al., 2007; Georgiou
et al,, 2012). In our study, we have first proved that miR-
129-5p inhibited the expression and activity of downstream
transcription factors of Wnt/B-catenin pathway TCF7 and LEF1
(Figure 3). However, Tcf7 and Lefl were not target genes
of miR-129-5p (predicted by miRDB, http://www.mirdb.org/,
Chen and Wang, 2020), so we turned our attention to the
regulator of Tc¢f7 and Lefl. Because multiple TCFs within wnt
signaling pathway played essential roles on regulating Tcf7
and Lefl. Therefore, we used miRDB to screen the targeting
effect of miR-129-5p on TCFs and found the 3'UTR of Tcf4
had 6 binding sites of miR-129-5p. TCF4 has been reported
as an important regulatory factor of wnt/B-catenin pathway,
and therefore promoted osteogenic differentiation (Reinhold
and Naski, 2007). On this basis, we confirmed the targeting
effect of miR-129-5p on Tcf4. Moreover, the 3'UTR sequence of
Tcf4 was also proved to enhance both osteoblast differentiation
and downstream transcription factors of wnt/p-catenin pathway
(Figures 4, 5). All these results illustrated that miR-129-5p
promoted osteoblast differentiation and bone formation through
inhibiting downstream transcription factors of wnt/p-catenin
pathway by targeting Tcf4. However, besides TCF4, other
unknown mechanisms may also exist for the inhibition of
osteoblast differentiation by miR-129-5p.

Based on the finding that miR-129-5p inhibited bone
formation, we have further proved that the inhibitor of miR-
129-5p ameliorated menopausal osteoporosis (Figures 6, 7).
However, until now, most RNA-based therapeutic drugs were
still manufactured by chemical synthesis, which resulted in
very high cost on synthesis and the unclear biosafety. The
novel RNA bioengineering system that can express functional
miRNA and siRNA by E. coli was recently established (Ho
et al, 2018; Li X. et al, 2019), which could manufacture
recombinant RNA with extremely low cost (multi-mg RNA
in 1L E. coli), along with high safety and high efficiency.
Using this technique, the novel recombinant miR-129-5p
inhibitor was manufactured, and its effects on osteoblast
have been proved as good as chemical synthesized miR-
129-5p inhibitor. Moreover, the novel recombinant miR-129-
5p inhibitor also proved its high efficiency on rescuing
menopausal osteoporosis at much lower dose (four times
less) compared to chemical synthesized miR-129-5p inhibitor
(Figure 8). These results have proved that the novel recombinant
miR-129-5p inhibitor may serve as a promising drug for
osteoporosis treatment.

Taken together, identified miR-129-5p that
inhibited osteoblast differentiation and bone formation.
miR-129-5p targeted Tcf4 and thus inhibited downstream
transcription factors of Wnt/B-catenin pathway. miR-129-5p
inhibitor ameliorated menopausal osteoporosis, and the novel
recombinant miR-129-5p inhibitor showed its high efficiency on
promoting osteoblast differentiation and rescuing osteoporosis.
The study illuminated a new mechanism regulating bone

we have

formation and also provided novel therapeutic strategies for the
treatment of osteoporosis.

MATERIALS AND METHODS

Cell Culture and Mouse Model

Murine preosteoblast MC3T3-E1 cell line was generously
provided by Dr. Hong Zhou (The University of Sydney, Sydney,
Australia). MC3T3-E1 cells were cultured in osteoblast culture
medium containing o modified eagle medium (a-MEM, Gibco,
11900-024, Carlsbad, CA) supplemented with 10% fetal bovine
serum (FBS; Biological Industries, 04-001-1A, Kibbutz Beit
Haemek, Israel), 1% L-glutamine (Sigma, G8540, St. Louis,
MO, United States), 1% penicillin (Amresco, 0242, Solon, OH,
United States), and streptomycin (Amresco, 0382, Solon, OH,
United States). Cell cultures were maintained at a humidified
37°C, 5% CO, incubator (Thermo Fisher Scientific, Waltham,
MA, United States). Murine mesenchymal stem cell line C3H10
T1/2 was purchased from Runde Biotechnology Co., Ltd. (Xi’an,
China). C3H10 T1/2 cells were cultured in mesenchymal stem
cell culture medium containing Dulbecco modified eagle medium
(DMEM, Gibco, 12800-017) supplemented with 10% FBS, 1% L-
glutamine, 1% penicillin, and streptomycin. Cell cultures were
maintained at a humidified 37°C, 5% CO; incubator.

Aging and ovariectomized (OVX) mice were adopted to
construct the osteoporosis model. All mice were purchased from
the Laboratory Animal Center of the Fourth Military Medical
University (Xi’an, China). For aging mice model, 12 male and 12
female 6-month-old male C57BL/6 mice were maintained under
standard animal housing conditions (12-h light, 12-h dark cycles
and free access to food and water). Six male mice and six female
mice which, were kept until 21 months old, were selected as aging
group, whereas the other mice were used as control group. Mice
were euthanized, and femurs were collected and processed for
RNA-seq or BMSCs isolation for RT-PCR.

For OVX mouse model, sixty-six 2-month-old female
C57BL/6 mice were maintained under standard animal housing
conditions. The mice were ovariectomized or sham-operated at
3 months of age. Mice were euthanized 38 days after surgery
(4 months of age), and the calvarias were collected to investigate
the therapeutic effects of miR-129-5p inhibitor and recombinant
miR-129-5p inhibitor. Euthanasia was performed using CO,.
All animal experiments were performed in accordance with
the recommendation of the Guiding Principles for the Care
and Use of Laboratory Animals (the Institutional Experimental
Animal Committee of Northwestern Polytechnical University,
Xi’an, China), and all animal studies were reviewed and
approved by the Institutional Experimental Animal Committee
of Northwestern Polytechnical University, Xi’an, China. For all
procedures involving animals, all efforts were made to reduce the
number of the mice used and their suffering.

Isolation of BMSCs

Mouse BMSCs were isolated to investigate the expression levels of
miR-129-5p in male and female aging mice. Mouse femurs were
immediately harvested, and attached soft tissues were removed.
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Bone marrow was washed and collected by phosphate-buffered
saline (PBS) using a 25-gauge syringe needle. The collected
PBS with bone marrow was centrifuged (1,200g, 8 min) and
dissociated by culture medium using a 29-gauge syringe needle.
The suspension was cultured in a 60-mm plate for 3 h (37°C,
5% CO3), and culture medium was changed. Cells were cultured
for another 36 h with culture medium changed every 12 h. The
cells were transferred into a new plate as the first-passage cells.
Third-passage cells were used for RT-PCR detection.

Real-Time PCR

Real-Time PCR was used to assess expression levels of miR-
129-5p and selected mRNAs. Total RNA was extracted from
mouse femur and calvarial tissues or culture cells using Trizol
reagent (Invitrogen, 15596018). Mouse femur and calvaria were
harvested and grinded with liquid nitrogen and then digested
by Trizol reagent; 1 pg of total RNA was used for cDNA
synthesis using one-step PrimeScript RT reagent kit (TaKaRa,
RR037A, Dalian, China). Quantitative PCR amplification was
performed using the Thermal Cycler C-1000 Touch system
(BIO-RAD CFX Manager, Hercules, CA) and SYBR Premix Ex
Taqll kit (TaKaRa, RR820A). For mRNA, Gapdh was used as
internal control gene. For miR-129-5p, U6 was used as internal
control. The quantitative PCR reaction conditions included
initial denaturation step at 95°C for 30 s, followed by 42 cycles at
95°C for 10's, 60°C for 30 s, and 72°C for 5 s. Data were calculated
using the comparative Ct method (272 2 ©!) and expressed as
fold change compared to corresponding control. Primers (for
sequences, see Table 2) were synthesized by Sangon Biotech Co.,
Ltd. (Shanghai, China).

TABLE 2 | Primer Sequences for qRT-PCR.

Target gene Sequences (5'—3')

miR-129-5p-Forward CTTTTTGCGGTCTGGGCTTGC

miR-129-5p-Reverse AGTGCAGGGTCCGAGGTATT

miR-129-5p-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCA
CTGGATACGACGCAAGC

Osterix-Forward CCCTTCCCTCACTCATTTCC

Osterix- Reverse CAACCGCCTTGGGCTTAT

Runx2-Forward CGCCCCTCCCTGAACTCT

Runx2-Reverse TGCCTGCCTGGGATCTGTA

Tcf4-Forward
Tcf4-Reverse

ATCGCAGACGCAAGAGGTTTCAG
ACATACCGCTTCGCACATTCAGAG

Tcf7-Forward CAGAATCCACAGATACAGCA
Tcf7-Reverse CAGCCTTTGAAATCTTCATC
Lef1-Forward GATCCCCTTCAAGGACGAAG
Lef1-Reverse GGCTTGTCTGACCACCTCAT
Ocn-Forward GAAGGCAACAGTCGATTCACC
Ocn-Reverse GACTGTCTTGCCCCAAGTTCC
Gapdh-Forward TGCACCACCAACTGCTTAG
Gapdh- Reverse GGATGCAGGGATGATGTTC
U6-Forward GTGCTCGCTTCGGCAGCACATAT
U6-Reverse AAAATATGGAACGCTTCACGAA

Transfection of the miR-129-5p Mimic
and Inhibitor

miR-129-5p mimic and inhibitor (Genepharma, Shanghai,
China) transfection was performed to manipulate miR-129-5p
expression. For transfection in vitro, MC3T3-E1 or C3H10 T1/2
cells were seeded in a 24-well plate at 3.2 x 10* cells per
well and were transfected with miR-129-5p mimic or inhibitor
by Lipofectamine™ 2000 (Invitrogen, 11668-030) according to
the manufacturer’s instructions (40 nM), using mimic-NC or
inhibitor-NC as normal control, respectively. The overexpression
or knockdown of miR-129-5p in cells was confirmed by RT-PCR
36 h after the transfection.

For in vivo transfection, 32 female C57BL/6 mice (4-month-
old) were randomly divided into four groups (mimic-NC, mimic-
129-5p, inhibitor-NC, inhibitor-129-5p). For each group, mice
were injected subcutaneously over the calvarial surface with
plasmids formulated with Entranster™ [n Vivo Transfection
Reagent (Engreen, 18668-11-2, Beijing, China) at the dosage of
40 pL (including 4.8 pg RNA) according to the manufacturer’s
instructions. All mice received the same standard diet during
the experimental period. Three mice from each group were
euthanized 3 days after treatment, and calvarias from mice
were processed for RT-PCR (n = 3/group). All other mice were
euthanized 21 days after treatment, and calvarias were processed
for histomorphometric analyses (n = 5/group; Yin et al., 2019).

Alkaline Phosphatase Staining and
Alizarin Red Staining

For osteogenic differentiation treatment, MC3T3-E1 cells at
confluence of 100% were induced by osteogenic medium with
a-MEM, 10% FBS, 1% B-glycerophosphate (Sigma, G9422),
1% ascorbic acid (Sigma, A7631), 1% penicillin/streptomycin,
and 1% L-glutamine. The cell cultures were maintained at
37°C with 5% CO,, and medium was replaced every 2 days.
As for C3H10 T1/2 cells, osteogenic medium was made
by DMEM, 20% FBS (ExCell Bio, FND500, Moorebank,
Australia), 1% PB-glycerophosphate, 1% ascorbic acid,
1% penicillin/streptomycin, 1% L-glutamine, and 1 mM
dexamethasone (Sigma, D4902).

Alp staining and alizarin red staining were performed to
determine osteoblast differentiation. ALP of osteoblasts was
stained 3 days after having been induced by osteogenic medium.
The staining was performed by 5-bromo-4-chloro-3-indolyl
phosphate (BCIP)/ nitro blue tetrazolium (NBT) Alkaline
Phosphatase Color Development Kit (Beyotime Biotechnology,
C3206, Shanghai, China) according to the manufacturer’s
instruction. Briefly, cells were washed with PBS (pH7.4)
and fixed in 10% buffered formaldehyde. Formaldehyde was
washed with PBS, and then cells were stained with BCIP/NBT
solution. The staining was stopped by immersing into distilled
water. After staining, the plates were dried and scanned with
CanoScan 9000F Mark II scanner (Canon, Tokyo, Japan).
For MC3T3-E1 cells, alizarin red staining was carried out
after having been induced by osteogenic medium for 21 days.
As for C3H10 T1/2 cells, alizarin red staining was carried
out after 10 days treatment of osteogenic medium. The
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cells were washed with PBS and then stained with 0.5%
alizarin red S (pH 4.0, Sigma, A5533) for 30 min. After
immersion into tap water for 30 min, the plates were dried
and scanned with CanoScan 9000F Mark II scanner and
analyzed by Image-Pro Plus 6.0 software (National Institutes of
Health, Bethesda, MD) to determine the ALP and alizarin red
staining intensities.

Western Blot

For detection of protein levels, Western blot analysis was
performed as previously described (Yin et al, 2018). Protein
samples from cultural cells were extracted. Cells were washed
three times by cold PBS and then digested by cell lysis buffer
(Beyotime, P0013, Haimen, China) with 1% protease inhibitor
cocktail (Calbiochem, 539134, Darmstadt, Germany). Protein
concentrations were analyzed by bicinchoninic acid protein
assay kit (Thermo Fisher Scientific, 23225); 100 ng of proteins
for each sample was subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (PAGE) using 5% stacking
gel and 12% separating gel, 140 V, 30 min, and transferred
(400 mA, 1 h) to nitrocellulose filter membranes (Pall, 66485,
Port Washington, NY, United States). Membranes were blocked
with 4% skimmed milk (BD Biosciences, 232100, Franklin
Lakes, NJ, United States) for 1 h at room temperature and
then incubated with primary antibodies at 4°C overnight
with the following primary antibodies: TCF4 (Rabbit pAb,
1:1,000, Proteintech, 22337-1-AP, Rosemont, IL, United States)
and GAPDH (Rabbit pAb, 1:1,000; Proteintech, 10494-1-
AP). Blots were then incubated with horseradish peroxidase
(HRP)-labeled secondary antibody (1:2,000; CWBIO, CW0103,
Beijing, China) and visualized using chemiluminescence
detection system (Thermo Fisher Scientific, NCI5080). Protein
bands were scanned by a chemiluminescence imaging system
(Tanon, 4600SE, Shanghai, China). GAPDH was adopted as
internal control.

Bone Histomorphometric Analyses

Bone histomorphometric analysis was performed to investigate
the effect of miR-129-5p on bone formation. To measure
mineral appositional rate, double-calcein labeling was performed
by intraperitoneal injection with calcein green (20mg/kg body
weight, Sigma, C0875) in the time sequence of 10 and 3 days
before euthanasia for specimen collection. Collected calvarial
samples were directly embedded in OCT (Leica, 14020108926,
Wetzlar, Germany). Transverse cryosections (4 pum in thickness)
were made by a freezing-microtome (Leica, CM1100), and
slides were examined with a fluorescent microscope (NEXCOPE
NIB900, Ningbo, China). Bone dynamic histomorphometric
analyses for mineral apposition rate were performed using
image analysis software (Image J, National Institutes of Health,
Bethesda, MD, United States; Ushiku et al., 2010).

Immunohistochemical Staining

To investigate the rescue effect of miR-129-5p inhibitor
on osteogenic gene and TCF4 levels in mice calvarias,
immunohistochemical staining analysis was performed as
previously described (Yin et al., 2019). Mouse calvarias were

dissected and fixed in 4% paraformaldehyde, decalcified in 17%
ethylenediaminetetraacetic acid (Sigma, E9884) for 21 days, and
embedded in paraffin (Huayong, Shanghai, China). Sections
(5 wm in thickness) were dewaxed, immersed in the distilled
water, blocked in 5% goat serum (CWBIO, CW0130) in PBS,
and then incubated overnight at 4°C with primary antibodies
against OCN (Rabbit pAb, 1:200, Santa Cruz Biotech, sc-
365797, Dallas, TX, United States), OSTERIX (Rabbit pAb,
1:50; Proteintech, 12593-1-AP), and TCF4 (Rabbit pAb, 1:100,
Proteintech, 22337-1-AP), respectively. Following three washes
in PBS, the sections were labeled with HRP-labeled secondary
antibody 1.5 h at room temperature and developed for
color reaction using diaminobenzidine (CWBIO, CW2068) and
hematoxylin counterstain. Slides were scanned by Aperio AT2
Digital Pathology Scanner (Leica), and protein immunostaining
intensities on top surface of the calvarias were analyzed by Image-
Pro Plus 6.0 software.

Luciferase Reporter Assay

To analyze the function of miR-129-5p in regulating TCF7/LEF1
activity in MC3T3-E1 cells, TCF7/LEF1 luciferase reporter
plasmid was constructed by inserting eight repeats of TCF7/LEF1
binding motif sequence (AGATCAAAGG) to the promoter
region of nanoluc luciferase gene sequence in PNLI.1 plasmid
(N1351, Promega, Fitchburg, WI). MC3T3-E1 cells were seeded
in a 6-well plate at 1 x 10° cells per well, and TCF7/LEF1
luciferase reporter plasmid was transfected by Engreen
Entranster ™ H4000 Reagent according to the manufacturer’s
instructions. Six hours after transfection, the medium was
replaced by antibiotic-free culture medium. After 3-h culture,
the cells were transfected with miR-129-5p mimic or inhibitor
(40 nM) with its relative mimic-NC or inhibitor-NC as negative
control. A luciferase reporter assay was performed 72 h after
the transfection using the Nano-Glo® Luciferase Assay System
(Promega, N1120, Fitchburg, WI, United States) according
to the manufacturer’s instruction. Briefly, 100 pL cell culture
medium was collected into a microplate, and then 100 pL
diluted Nano-Glo® Luciferase Assay Substrate was added.
Nanoluc luciferase luminescent signals were quantified by a
microplate reader (Synergy, United States) at 460 nm, and each
value from the nanoluc luciferase constructs was normalized by
a normal control.

To detect interaction between miR-129-5p and Tcf4, wild-
type binding sequence of miR-129-5p in Tc¢f4-3" UTR (Luc-
WT, with binding site sequence “GCAAAAAA”) and its relative
mutant binding sequence (Luc-mut, with binding site sequence
“TAGGGGGG”) were designed and were synthesized by TsingKe
Biotech Co., Ltd. (Beijing, China) and then inserted into pMIR-
Report Luciferase plasmid (miaolingbio, P0471,Wuhan, China),
respectively, with empty pMIR-Report Luciferase plasmid (Luc-
vec) as control. Internal control pRL-TK Renilla plasmid
was generously provided by Dr. Pengsheng Zheng (Xian
Jiaotong University, Xi’an, China). The reporter plasmids were
co-transfected with pRL-TK Renilla plasmid into MC3T3-
E1l cells, and miR-129-5p mimic/inhibitor transfection was
performed as mentioned above. Luciferase reporter assays
were performed with the dual-luciferase reporter assay system
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(Promega, E1910, Fitchburg, WI, United States) according to the
manufacturer’s instruction. Luminescent signals were quantified,
and each value from the firefly luciferase was normalized by
Renilla luciferase.

Therapeutic miR-129-5p Inhibitor in OVX
Mice

To investigate therapeutic effect of miR-129-5p inhibitor on
osteoporosis, 48 OVX mice were randomly divided into seven
groups (baseline, sham, OVX, mock, inhibitor-NC, inhibitor-
129-5p). The transfection was performed at 8 and 15 days
after OVX, respectively. And mice were injected subcutaneously
over the calvarial surface with inhibitor-129-5p or inhibitor-
NC formulated with Entranster™ In vivo Transfection Reagent
twice per day, at the dosage of 40 pL (including 4.8 pg
RNA) according to the manufacturer’s instructions. In the
mock group, mice were injected with the same volume of
normal saline mixed with transfection reagent. The mice in
OVX group received no treatment. All mice were given the
same standard diet during the experimental period. All mice
of the baseline group and three mice from other groups were
euthanized 11 days after OVX treatment, and calvarias were
used for RT-PCR (n = 3/group). All the other mice were
euthanized 35 days after OVX, and calvarias were used for
immunohistochemical staining and histomorphometric analyses
(n =3/group; Yin et al., 2019).

Manufacture and Transfection of
Recombinant miR-129-5p Inhibitor

Recombinant miR-129-5p inhibitors were manufactured
to achieve the translational medical application of miR-
129-5p with high efficiency and low cost. The production
was performed as previously described (Ho et al., 2018; Li
X. et al, 2019). In brief, sequence of inhibitor-129-5p was
designed and synthesized and then inserted into plasmid
pBSMrnaSeph. The edited plasmid was transformed into
E. coli (HST08). Total RNA of E. coli was extracted and
purified by fast protein liquid chromatography. The purity
of recombinant miR-129-5p inhibitors were checked by
denaturing urea 8% PAGE. The whole manufacture process
was performed by RQCON Biological Technology Co.,
Ltd. (Xi’an, China).

In vitro transfection of recombinant inhibitor-129-5p
(nCAR/anti129) was performed by Lipofectamine™ 2000
according to the manufacturer’s instructions (10 nM), using
empty tRNA scaffold (tRNAM®t fused Sephadex aptamer, MSA)
as control. As for in vivo transfection of recombinant miR-129-
5p inhibitor, 18 OVX mice were randomly divided into five
groups (baseline, sham, OVX, mock, MSA, nCAR/antil29).
The transfection was performed at 8 and 15 days after
OVX, respectively. Mice were injected subcutaneously
over the calvarial surface with recombinant miR-129-5p
inhibitor or MSA formulated with Entranster™ In vivo
Transfection Reagent twice per day, at the dosage of 40 pL
(including 1.2 pg RNA) according to the manufacturer’s
instructions. In the mock group, mice were injected with

normal saline mixed with transfection reagent, and the OVX
group was given no treatment. All mice received the same
standard diet during the experimental period. The mice in
the baseline group were sacrificed at 11 days after OVX
treatment; all other mice were killed 35 days after OVX, and
calvarias were processed for histomorphometric analyses
(n = 3/group).

Statistical Analysis

The statistical analyses of the data were performed with
GraphPad Prism version 6.0 software (GraphPad Software,
Inc., La Jolla, CA, United States), and a Student ¢-test
was used. The data are presented as mean =+ standard
deviation (SD). P < 0.05 was considered statistically significant
for all comparisons. Correlation between miR-129-5p and
other genes was exhibited by linear regression and Pearson
correlation coefficient.
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