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Background: Bone Marrow Mononuclear Cells (BM-MNC) constitute a promising

alternative for the treatment of Chronic Limb-Threatening ischemia (CLTI), a disease

characterized by extensive blockade of peripheral arteries, clinically presenting as

excruciating pain at rest and ischemic ulcers which may lead to gangrene and

amputation. BM-MNC implantation has shown to be efficient in promoting angiogenesis

and ameliorating ischemic symptoms in CLTI patients. However, the variability seen

between clinical trials makes necessary a further understanding of the mechanisms of

action of BM-MNC, and moreover, to improve trial characteristics such as endpoints,

inclusion/exclusion criteria or drug product compositions, in order to implement their

use as stem-cell therapy.

Materials: Herein, the effect of REX-001, a human-BM derived cell suspension enriched

for mononuclear cells, granulocytes and CD34+ cells, has been assessed in a murine

model of CLTI. In addition, a REX-001 placebo solution containing BM-derived red blood

cells (BM-RBCs) was also tested. Thus, 24 h after double ligation of the femoral artery,

REX-001 and placebo were administrated intramuscularly to Balb-c nudemice (n:51) and

follow-up of ischemic symptoms (blood flow perfusion, motility, ulceration and necrosis)

was carried out for 21 days. The number of vessels and vascular diameter sizes were

measured within the ischemic tissues to evaluate neovascularization and arteriogenesis.

Finally, several cell-tracking assays were performed to evaluate potential biodistribution

of these cells.

Results: REX-001 induced a significant recovery of blood flow by increasing vascular

density within the ischemic limbs, with no cell translocation to other organs. Moreover,

cell tracking assays confirmed a decrease in the number of infused cells after 2 weeks

post-injection despite on-going revascularization, suggesting a paracrine mechanism

of action.
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Conclusion: Overall, our data supported the role of REX-001 product to improve

revascularization and ischemic reperfusion in CLTI.

Keywords: Chronic limb-threatening ischemia, critical limb ischemia, stem cell therapy, revascularization,

angiogenesis, BM-MNC, bio-distribution assay

INTRODUCTION

Chronic limb-threatening ischemia (CLTI) results from the
narrowing and obstruction of major arteries of the limb, usually
correlated with the formation of atherosclerotic plaques (Conte
and Vale, 2018; Uccioli et al., 2018). The incidence of CLTI is
∼500–1,000 per million per year (Nehler et al., 2014), 10–15%
of which are older adults (Fowkes et al., 2013). CLTI patients
suffer from chronic rest pain, ischemic ulcers which may lead
to gangrene, and an eventual amputation of toes or extremities.
Also, due to associated comorbidities, CLTI patients are at a
greater risk of experiencing myocardial and cerebral vascular
infarctions (Norgren et al., 2007; Walter et al., 2011; Simpson
et al., 2014; Conte and Pomposelli, 2015). Therefore, CLTI is a
debilitating disease which significantly impacts patient’s quality
of life by leading to dependency on caregivers, permanent
local wound treatment, and the chronic use of pain-relieving
medications (Lawall et al., 2012).

To date, the ultimate treatment of CLTI is a surgical
revascularization through bypass grafting or angioplasty, and
amputations in case of non-salvageable limbs (Lichtenberg et al.,
2018), although success rate of treating CLTI is highly variable
and, in many situations, suboptimal (Patel, 2016). Moreover, only
30% of patients are suitable for a surgical revascularization due to
high comorbidities (Adam et al., 2005; Goodney et al., 2012). As
a result, amputation rates are unacceptably high in CLTI patients,
typically exceeding 15–20% at 1 year of intervention and can vary
according to additional comorbidities (Duff et al., 2019) such as
diabetes mellitus (DM), which elevates the amputation rate to
50% (Spreen et al., 2016). In general, DM patients are at a higher
risk of developing CLTI or progressing to the severest stages of
the disease, due to impaired vasculogenesis and vessel remodeling
mechanisms (Howangyin and Silvestre, 2014; Thiruvoipati et al.,
2015).

Thus, without effective treatments for CLTI, the prevalence of
this debilitating disease may remain constant or increase with
time (Duff et al., 2019). It is therefore imperative to identify
alternative therapies to treat CLTI, to improve the quality of
life of patients by reducing the need for multiple surgeries
and/or amputations.

Novel cell therapies based on the administration of bone
marrow-derived mononuclear cells (BM-MNC) have become
a promising alternative to conventional surgery or angioplasty
for the treatment of CLTI (Huang et al., 2005; Bartsch
et al., 2007; Cobellis et al., 2008; Lu et al., 2011; Davies,
2012; Fowkes et al., 2017; Kondo et al., 2018). BM-MNC
consist of a heterogeneous mix of mesenchymal stem cells
(MSC), hematopoietic progenitor cells (HPC), endothelial
progenitor cells (EPC), immature monocytes and lymphocytes,
and pluripotent stem cells (Ratajczak et al., 2008; Franz et al.,

2009). Since the first implantation of autologous BM-MNC in
2002 (Tateishi-Yuyama et al., 2002), different pre-clinical and
clinical studies have reported the beneficial effects of different
combinations of BM-MNC in CLTI (Kalka et al., 2000; Hamano
et al., 2001; Franz et al., 2009; Fujita and Kawamoto, 2017;
Rigato et al., 2017). Overall, sufficient evidence has demonstrated
autologous BM-MNC (aBM-MNC) therapies to be safe and
effective in promoting new vessel formation, and thus, reversal
of CLTI (Fadini et al., 2010; Idei et al., 2011; Murphy et al., 2011;
Liang et al., 2016; Guo et al., 2018; Wahid et al., 2018), through
improved perfusion, ankle brachial index (ABI), wound healing,
pain at rest, pain free walking distance, and amputation free
survival (Amann et al., 2009; Cobellis et al., 2010; Fadini et al.,
2010; Ruiz-Salmeron et al., 2011; Yusoff et al., 2019). However,
the results found in clinical trials are variable and moreover, cell
survival is usually poor under ischemic environments (Brenes
et al., 2012; MacAskill et al., 2018; Qadura et al., 2018; Beltran-
Camacho et al., 2020), being necessary a deeper understanding of
the mechanism of action of BM-MNC in order to improve their
use as cell therapy to reverse CLTI.

In this study we investigated the regenerative effect of REX-
001, an adult human bone marrow (BM)-derived cell suspension
enriched for MNC, when injected in a murine model of CLTI,
in order to understand the mechanisms potentially involved in
BM-MNC induced revascularization within the ischemic tissues,
as well as to evaluate REX-001 potential bio-distribution after
intramuscular administration.

MATERIALS AND METHODS

Cell Isolation and Culture
REX-001 consists in a cell suspension of adult human BMderived
cells enriched for MNC, containing a population of lymphocytes
(20–51%), monocytes (4–22.3%) as well as granulocytes (20–
67.7%) and hematopoietic stem cells expressing CD34 (1.4–10%).
The final formulation of REX-001 can be found in the patent
(US 2018/0055884 A1). For this study, BM-MNC were isolated
from heparinized BM of healthy human donors (purchased from
Hemacare, Charles-River). Briefly, manufacturing is performed
with an initial BM volume reduction, including plasma, and
red blood cell (RBC) removal. The intermediate sample bag
containing volume-reduced BM goes through an automated
density gradient centrifugation, followed by two washes of the
MNC suspension. Approximately about 45ml of BM-MNC
product is collected in the output bag and the other components
are removed to the disposable bag. The drug substance is
centrifuged and the pellet is resuspended in the final formulation
mix (hereafter adjuvant), a lactated ringer’s solution with 1% w/v
HSA and 2.5% w/v glucose in a volume of 5–30 ml.
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On the other hand, the REX-001 Placebo Product (hereafter
Placebo), a cell suspension of BM-derived red blood cells (BM-
RBCs), is also collected from the RBC fraction during volume
reduction step, formulated in 20ml of adjuvant solution. Placebo
is visually indistinguishable from fresh active product.

Animals
Female Balb-C Nude (CAnN.Cg-Foxn1nu/Crl) mice (n:70) (see
Figure 1 for mice distribution), age 9 weeks, were obtained from
Charles River Laboratories. Mice were allocated in individual
ventilation cages inside special monitored rooms. Animals were
fed sterile standard chow diet ad libitum and had free access to
sterile water. Additionally, animals were constantly monitored
for signs of ill-health for euthanasia in case of excessive
suffering or presence of symptoms which would likely affect
the experiment results. No animal was sacrificed prematurely
during the experiment. Animal experiments were approved by
the Ethical committee of the University of Cadiz, as well as the
Andalusian Committee of animal experimentation (registration
number ES110120000210 and project number 07-04-2016-043).
This study followed the standard guidelines for animal research
included in the Spanish laws included into the RD 53/2013 as well
as the European Regulations (2012/707/UE).

Experimental Design
In order to evaluate the effect of REX-001 on revascularization in
amurinemodel of CLTI, and also determine the presence of these
cells within the ischemic tissues and/or their bio-distribution,
different assays were carried out, as described in Figure 1.

Evaluation of Revascularization Effect
Briefly, three separated assays using REX-001 cell suspensions
from healthy human donors were performed, with the same
strategy and follow-up in all of them (Figure 1A). For the
CLTI model, Balb-c nude mice (n:51) were anesthetized with
ketamine (100 mg/kg) and xylazine (10 mg/kg) administered
intraperitoneally before surgery, and double ligation of the
left femoral artery was performed, occluding the distal and
proximal ends with double knots (non-absorbable 6/0) of suture,
as described (Niiyama et al., 2009; Beltran-Camacho et al.,
2020). Mice received Ketoprofen (2 mg/kg) intraperitoneally as
analgesic for three consecutive days.

Mice were then equally distributed between groups, based on
blood flow levels and ischemic status registered 24 h after surgery,
prior cell administration. Thus, mice received either REX-001
cells (an equivalent amount of REX-001 to obtain 1·106 MNC)
in 50 µl of adjuvant solution (R n:21), or 50 µl of the Placebo
solution (P, n:15). In addition, another set of mice received 50 µl
of the adjuvant, vehicle solution (A, n:15). Administration was
done through 3-4 intramuscular injections in different sites of
the left limb muscles: low back, low frontal, and middle muscles.
Two mice died a few days later after infusion (from the A and R
groups), and no measurements were registered from them. The
total number and distribution of mice within the groups/assay
can be found in Figure 1A.

Follow up of Physiological Changes in
Response to Hind Limb Ischemia and Cell
Administration
Blood flow was measured for both paws, on day 0 (before
and after surgery), day 1, day 7, day 14, and day 21, using
a Laser Doppler system (Periflux System 5000; Perimed). The
right limb was taken as control, not-injured limb, and perfusion
was expressed as the ratio of left (ischemic) vs. right (non-
ischemic) limb. In addition, ischemic symptoms such as motility
impairment, inflammation, ulceration, and necrosis were also
registered for all mice during the entire assay according to Tarlov
and ischemia scores (Tarlov, 1954; Yu et al., 2005; Brenes et al.,
2012), registered in Supplementary Tables S1–S3.

Tissue Extraction and Processing
Mice (n:49) were sacrificed in a CO2 chamber on day 21 after
surgery. Low frontal muscles (tibialis) and middle muscles (bicep
femoris, adductor, and semi-membranous) of the left limb were
extracted and fixed for 15 days embedded in 4% formaldehyde
prior dehydration in 30% sucrose during 24 h. Tissues were then
frozen in OCT before immunohistochemistry (IHC).

Cell Pre-Labeling Assay
In addition to the groups described in section Evaluation of
revascularization effect, another set of Balb-C Nude mice (n:6)
were employed to confirm the presence of human cells within
the injured area, by using a pre-labeling approach (Figure 1B).
Thus, REX-001 cells were pre-labeled with biocompatible organic
fluorescent nanoparticles (LuminiCell TrackerTM 540, SCT010
Sigma-Aldrich), 1 h at 37◦C, 5% CO2, and washed several times
with PBS 1X before being administered (1·106 cells/mouse) to
mice that underwent femoral ligation 24 h earlier, as described
above. Mice were sacrificed in a CO2 chamber at different times
after surgery: day 4 (n:2), day 14 (n:2), and day 21 (n:2), and
muscles from low frontal limb and medium limb were extracted
and processed as described before.

Immunohistochemistry (IHC)
Different tissue sections from all mice were employed to calculate
the number of vessels and diameter size changes in response to
cell administration and also to detect pre-labeled human cells
within the ischemic limbs. Thus, tissues embedded in OCT were
cut in consecutive sections of 8µm and placed in poly-lysine
slides. In total, 5 tissue sections (low frontal), separated by 32µm
each, were employed for cellular and vessel detection, while 3
tissue sections (middle muscles) were used to measure vascular
diameters. All sections were pretreated for antigen retrieval
and permeabilization with 1% SDS during 5min and with 1%
triton, 20min, followed by a blocking step with 5% goat serum
(S-1000, Vector Laboratories) and 0.1% triton for 1 h. Tissues
were then incubated with anti-α-actin smooth muscle (α-SMA,
1:400, A5228 Sigma-Aldrich) at 4◦C, over-night. Tissue auto-
fluorescence was prevented by incubation with 0.3% Sudan Black
B-70% ethanol for 20min and incubation with specific secondary
antibodies for 1 h in the darkness at room temperature (RT) were
performed. Finally, nuclear staining with DAPI (0.2µg/ml) was
carried out.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 December 2020 | Volume 8 | Article 602837

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Rojas-Torres et al. REX-001 Enhances Revascularization in CLTI Mice

FIGURE 1 | Schematic representation of experimental distribution. (A) Schematic representation of evaluation of revascularization effect assay distribution. Three

independent assays were performed equally with REX-001 cells obtained from healthy human batches. Balb-c nude received either adjuvant solution (A), placebo (P)

or REX-001 cells (R). (B) A pre-labeling assay was performed to confirm the presence of REX-001 cells within the ischemic tissues, sacrificing Balb-c mice at different

times, as shown. (C) Finally, REX-001 biodistribution was evaluated after intramuscular administration with DiR cell pre-labeling and NiR in vivo and ex vivo detection,

and also by detection of specific human Alu sequences by qPCR in several organs (limbs, spleen, kidneys, lungs, liver). The number of mice per assay and total

numbers per group is shown.
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FIGURE 2 | REX-001 cells enhance revascularization and blood recovery in CLTI mice. (A) Blood flow evolution per group within time. Perfusion (PU) averaged ratios

of left (injured) vs. right (non-injured) limbs are shown. (B) Representative images of ischemic symptoms (inflammation, necrotic fingers) in adjuvant (A), placebos (P)

(Continued)
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FIGURE 2 | and REX-001 (R) treated mice. (C) Weight changes, normalized vs. averaged values on day 0, pre-surgery. (D) Motility changes within time, according to

Tarlov score values. Ischemic changes (ulceration, necrosis) detected along the assay, measured with both, the Ischemia (E) and modified ischemia scores (F).

Groups tested: Balb-c nude mice injected with Adjuvant (vehicle-only) (n:14), Placebo (P, n:15) and REX-001 (R, n:20, from different donors, R1, n:6, R2, n:5, R3, n:9).

The averaged values from the three assays is shown as mean ± SE. Complete scores meaning are described in Supplementary Tables 1–3. Significant differences

were calculated by two-way ANOVA and Tukey post-hoc, represented as: * with colors compared to post-surgical ratios at day 0 and * in black between groups in the

same day (*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, and ****p-value < 0.0001).

The entire tissue area of each section was analyzed by
fluorescence microscopy, acquiring images at 20x and 40x using
MMI CellCut Plus (Olympus) and visualizing them with the Zen
2 (Zeiss) software. Results were expressed as the number of blood
vessels per cm2 or blood vessels diameter (µm). Additionally,
the number of vessels containing pre-labeled cells vs. the total
number of vessels were also quantified, as described (van Weel
et al., 2008; Beltran-Camacho et al., 2020). Results were expressed
as the mean± SEM.

Bio-Distribution Assay
In order to confirm the presence of human (h) cells within
the ischemic tissues and moreover, evaluate potential
bio-distribution after intramuscular administration, two
complementary approaches were carried out (Figure 1C): the
application of an in vivo assay labeling cells with the lipophilic
dye 1,1-dioctadecyl 3,3,3,3 tetra-methyl-indo-tricarbocyanine
iodide (DiR) andNear Infrared (NiR) detection (Kalchenko et al.,
2006; Bulte and Daldrup-Link, 2018), and further quantification
of human DNA (hu-DNA) by q-PCR with specific Alu sequences
(Funakoshi et al., 2017).

DiR Labeling
REX-001 cells (3·106) were labeled with 6.67µMof DiR (Biotium
#60017) according to manufacturer’s instructions, 25min at
37◦C, 5% CO2, centrifuged and washed three times with PBS
1X to discard excess or unbound dye. The final cell pellet
was then resuspended in 50 µl adjuvant solution before being
administered intramuscularly to Balb-c nude (n:3) mice 24 h after
femoral ligation, as described before (1·106/mouse). In addition,
a negative control consisting in a mouse injected with unlabeled
cells was used to discard any background signal. Anesthetized
mice were scanned using NiR LI-COR Odyssey system (LI-COR)
at days 1 and 4 after cell infusion. Parameters used for the scan:
intensity 3, detectors in 700 nm and 800 nm activated, ∼30min.
Mice were sacrificed on day 4 and organs (lungs, kidneys, liver,
spleen, right, and left limb muscles) were extracted and scanned
again ex vivo to evaluate the presence of cells in individual organs.
Intensity values were normalized vs. the negative control, taken
their background signal as cero.

Alu-Based qPCR Quantitative Assay
Finally, the presence of human cells in different organs was also
quantified by amplification by qPCR of Alu specific sequences
(Figure 1C), as described (Beltran-Camacho et al., 2020). Thus,
24 h after femoral ligation, another set of CLTI mice (n:9)
received intramuscularly 50 µl of adjuvant solution (A, n:3),
placebo solution (P, n:3) or 1·106 REX-001 cells (R, n:3). Animals
were sacrificed 4 days after cell transplantation and organs (lungs,

kidneys, liver, spleen, right, and left limbmuscles) were extracted,
directly frozen in liquid N2 and stored at−80◦C. Biopsies (≈ 40–
50mg) were crushed using liquid N2 into a fine powder. Genomic
DNA was isolated from tissue samples using the E.Z.N.A. R©
Tissue DNA Kit (Omega-biotek D3396-01). Human DNA (hu-
DNA) was quantified using the Alu detection approach, as
described (Funakoshi et al., 2017; Beltran-Camacho et al., 2020).

Each qPCR reaction employed 100 ng of genomic DNA in
which Alu sequences were amplified using TaqMan Universal
Master Mix II (ThermoFisher 4440043), 0.2µM primers and
0.25µM hydrolysis probes designed by (Funakoshi et al.,
2017): forward primer 5′-GGTGAAACCCCGTCTCTACT-3′,
reverse primer 5′-GGTTCAAGCGATTCTCCTGC-3′ and label
probe 5′-(6-FAM)-CGCCCGGCTAATTTTTGTAT-(BHQ-1)-3′

(synthesized by Metabion). qPCR was carried out using a CFX
Connect Real-Time System (Biorad) with the following protocol:
1 cycle of 95◦C/10min and 50 cycles of 95◦C/15 s, 56◦C/30 s,
and 72◦C/30 s.

Linearity and resolution limits were determined by diluting
known amounts of hu-DNA (from 5 ng to 1 pg) in murine
DNA, as described (Funakoshi et al., 2017; Beltran-Camacho
et al., 2020). qPCR was performed in triplicates and Ct mean
values were plotted to obtain the lineal equation as well as the R2

values (Supplementary Figure S2). The sensitivity of the assay
is such that one human cell among 10,000 mouse cells could
be detected.

The amount of hu-DNA detected in 100 ng of total genomic
DNA extracted wasmeasured by qPCR, and further extrapolation
of the total hu-DNA extracted was then calculated per mg of
tissue. Finally, the amount of DNA (ng) per cells was calculated
considering the relation of 5 pg of DNA per human cell (Dolezel
et al., 2003). Ct values were analyzed with Bio-Rad CFX manager
software (Biorad). Results were expressed as the mean ± SE of
human cells detected per mg of tissue.

Statistical Analysis
Statistical analysis was performed with GraphPad Prism v.8
software. Data were verified for normal distribution using
Shapiro-Wilk normality test. Experiments with two different
categorical independent variables (blood flow measurements
within time) were analyzed with a two-way ANOVA test
and Tukey’s multiple comparison test for post-hoc analyses.
Differences between three groups was tested with either One-way
ANOVA test and Tukey-s multiple comparisons test for post-
hoc analysis or Kruskal-Wallis test and Dunn’s test as post-hoc.
Finally, the Pearson Coefficient value was calculated to check for
potential correlations between the variables tested. Differences
were statistically significant with p < 0.05.
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FIGURE 3 | Vasculogenesis and arteriogenesis. (A) The number of blood vessels (vessels/cm2) and (B) diameter sizes (µm) were measured for mice administered

with adjuvants (A, n:14), placebos (P, n:15) or REX-001 cells (R, n:20). (C) Vessel classification based on abundance percentage of different ranges of internal lumen

(Continued)
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FIGURE 3 | diameter (µm). (D) Representative IHC images to measure vascular density and diameter size are shown, using anti-mouse smooth muscle α-actin (red)

and DAPI (blue). Data were presented as mean ± SEM. Significant differences were seen between the REX-001 (R) and adjuvant (A) treated mice (*p-value < 0.05),

calculated with a one-way ANOVA, and Tukey post-hoc tests.

RESULTS

REX-001 Promotes a Significant Blood
Flow Recovery in CLTI Mice
Immediately after femoral ligation, a significant decrease of blood
flow was observed in all groups compared to pre-surgical values
(>85% reduction), detecting a slight recovery in the three groups
by day 7 (Figure 2A). Major changes were detected after day 14,
with the group of mice treated with REX-001 (R) already showing
a significantly higher recovery of blood flow (p < 0.0001) after
surgery, compared to placebo- (P) and adjuvant-treated animals
(A), whose blood flow rates also increased vs. baseline (p <

0.05) although remained below that of REX-001-treated mice.
By day 21, differences were more pronounced, with the REX-001
group presenting blood flow ratios significantly higher than that
of P group (p-value < 0.01) and the group of adjuvant-treated
mice (p-value < 0.001). Remarkably, mice with placebo (P) and
adjuvant solutions (A), showed similar blood flow ratios after 21
days of follow up.

In order to evaluate individual variability, coefficient
of variations (CVs %) were calculated per day in each
group of mice and human donor material, as indicated in
Supplementary Figure S1. The highest variations were seen on
day 7 (39.07–50.66% on average) and day 14 (38.10–55.06% on
average). After 21 days post-surgery, mice treated with REX-001
cells showed a more defined pattern, with higher increase of
blood flow ratios and lower variability (27.10%CV) than placebos
and adjuvant groups (36.08 and 47.39%CV, respectively).

Evaluation of Ischemic Symptoms
All mice were evaluated periodically, and images were taken of
all mice on days 0, 1, 7, 14, and 21 (Figure 2B). In terms of
body weight, no differences were observed between all groups
(Figure 2C) or between different REX-001 batches, losing weight
right after surgery (on day 1 they lost on average 1.5 ± 0.06 g)
but with tendency to recover, and to gain weight by day 21 in the
case of the REX-001 and P groups. Although the adjuvant group
(A) recovered less body weight than the others, weight changes
were likely due to the surgical intervention and not due to the
treatment applied.

Similarly, a significant mobility impairment was observed for
all mice 24 h post-surgery (p < 0.0001), the majority of them
not bearing weight properly on the injured toe or limping in
some cases, probably as a result of the inflammation related to
the surgical procedure (Figure 2D). Mobility-related symptoms
continued unchanged after day 7, althoughmost mice, mainly the
ones treated with REX-001 (R), appeared to recover certain grade
of mobility by day 21 independent of their ischemic outcomes.
Finally, in response to femoral ligation, mice began showing
symptoms of inflammation and ischemia (reddish area and black
nails) by day 2, progressing to black necrotic fingers in some

cases (Figures 2E,F). Overall, the placebo group (P) showed the
worst symptoms along the assay, while the adjuvant group (A)
showed a slower progression but worsening status from day 7
onwards, with some mice losing several digits by the end of the
study. REX-001 treated mice (R), however, began showing some
improvement after day 7, with less inflammation and, despite
showing nails or even necrotic toes, there was not worsening
along the time of the assay, suggesting that cell administration
might have stopped the ischemic progression.

REX-001 Promotes Collateral Vessel
Formation and Arteriogenesis
We subsequently tested whether blood flow recovery was related
to an increased vascularization (Figure 3). Overall, our results
indicated that administration of REX-001 promoted a significant
increase in the number of µ-SMA positive vessels (Figure 3A)
and vessel diameter (Figure 3B) compared to the adjuvant group
(p-value < 0.05). Conversely, the placebo group (P) showed a
slight increase in the number and diameter of vessels than the
adjuvant group (A), although these changes were not significant
compared to adjuvants or REX-001 treated mice.

Further classification of vascular vessels per diameter size
(Figure 3C), indicated that mice treated with either adjuvant or
placebo solution had higher number of vessels (80.3% and 70.7%
from the total diameters measured) with lower diameters (0–50
µm) compared to the REX-001 group (54.1%). Conversely, REX-
001 treated mice (R) showed more vessels with larger diameters
(14% ranged between 100 and 200µm and 3.8% diameters
>200µm) than the other groups (Adjuvants, with only 1.6% of
capillaries between 100 and 200µm; Placebos, with 8.6% between
100 and 200µm and only 0.3% of diameters >200µm). Several
examples are shown in Figure 3D.

In summary, the overall data related to vessel formation were
in agreement with the results seen for blood flow after surgical
ligation and ischemia, in which, by day 21, only the REX-001
group presented a significant perfusion recovery compared to the
adjuvant and placebo groups (p-value < 0.01). Considering these
data, we evaluated whether there was any relationship between
vessel formation, diameter, and blood flow ratios, by applying a
Pearson correlation test to the measurements obtained at day 21.
Remarkably, we found significant correlations between blood-
flow ratios and vessel number (p-value: 0.03, R: 0.599), but not
between blood flow and internal diameter sizes (p-value: 0.21,
R: 0.28) or between vascular density and diameters (p-value:
0.087, R: 0.372).

REX-001 Migrates to Vasculature of
Ischemic Tissues After Intramuscular
Administration
IHC assays confirmed the presence of pre-labeled REX-001
within the ischemic tissues surrounding the femoral artery,
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FIGURE 4 | Detection of human pre-labeled BM-MNC. (A) The graph represents the number of cells pre-labeled with LuminiCell TrackerTM 540, detected on day 4,

14, and 21 by IHC. (B) The proportion of vascular vessels detected on day 4, 14, and 21, incorporating REX-001 pre-labeled cells (pre-labeled+/αSMA+) is shown.

(C) Representative IHC images confirming the presence of pre-labeled cells (green) within the tissue and also (D) in the vicinity of vascular vessels (α-SMA staining,

reed), are shown for mice sacrificed on day 4, 14, and day 21.
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FIGURE 5 | Biodistribution assay. (A) Representative images of NiR scanning performed in vivo on day 1 (after cell administration) and day 4 in Balb-c nude mice with

DiR pre-labeled REX-001 (R+, n:3) or with un-labeled cells (R-), both administered intramuscularly. (B) Representative images of ex vivo NiR scanning for the organs

extracted on day 4 for the R+ and R- mice (lungs, spleen, kidneys, liver, and limbs). Intensity values were calculated as K counts/mm2, with final R+ intensities

calculated after subtracting background, negative signal from R- mice. (C) The number of cells detected per mg of organ tissue analyzed on day 4 (after cell

administration) in Balb-c nude treated with either REX-001 cells (R, n:3), placebos (P, n:3) or adjuvants (A, n:3) was calculated after measuring the presence of human

DNA with specific Alu sequences and qPCR analysis, in several organs (spleen, kidneys, lungs, liver, left limb).
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mainly on day 4, but also on day 14 and day 21 after
femoral ligation, although in lower levels than at early dates
(Figure 4A). Moreover, pre-labeled REX-001 were found in
the vicinity of vascular vessels (pre-labeled+/αSMA+) mainly
on day 4 (14.09%), with fewer numbers at day 14 (8.47%)
and scarcely detected at day 21 (Figure 4B). Thus, REX-001
cells migrated to the damaged vasculature after intramuscular
injection, although their numbers significantly decreased after
2–3 weeks post-injection (Figures 4C,D).

Cell Bio-Distribution
Next, we subsequently tracked the route of migration of cells
post-intramuscular administration, in order to explain the
decrease in the number of cells in ischemic areas after elapsed
time. Two independent cell-tracking assays were carried out.
First, according to in vivo (Figure 5A) and ex vivo (Figure 5B)
NiR scans, our data corroborated that after intramuscular
administration, DiR-prelabelled cells were mainly allocated in the
ischemic areas of the limb, with almost no presence of REX-
001 4 days after cell administration in lungs, kidneys, liver nor
the spleen (Figure 5B). Similarly, amplification of specific human
Alu sequences by qPCR (Funakoshi et al., 2017; Beltran-Camacho
et al., 2020) confirmed the presence of humanDNA,mainly in the
hind limb muscle (Figure 5C) (9.90 ± 5.76 cells/mg of tissue).
Also, a small percentage of human DNA was detected in the hind
limb when the placebo solution was administered (<1 human
cells/mg tissue).

DISCUSSION

To date, different studies have demonstrated the potential of
using autologous BM-MNC to treat CLTI patients, as a safe and
efficient strategy to achieve therapeutic angiogenesis and prevent
amputation (Idei et al., 2011; Murphy et al., 2011; Liang et al.,
2016; Guo et al., 2018). However, the urgent need to translate
BM-MNC therapy into clinic may be reflected by the few pre-
clinical assays testing BM-MNC in animal models of CLTI, and
moreover, by the high variability seen between clinical trials
(e.g., different study designs, dosing, routes of administration).
This, in turns, could explain the scarce knowledge regarding the
underlying mechanisms of action of these cells as well as the cell
migration routes (Fadini et al., 2010; Idei et al., 2011; Pignon
et al., 2017; Qadura et al., 2018). In addition, the selection of
an optimal investigational product composition (bone marrow
vs. peripheral/blood origin); isolated (MSC, CD34+, and EPC)
or combined (mixed ex vivo or selected from an original cell
source, such as BM-MNC); un-stimulated or pre-conditioned
with VEGF, FGF-2, G-CSF, is still under intensive research
(Zhang et al., 2008; Layman et al., 2011; Brenes et al., 2012;
Gremmels et al., 2014; Beegle et al., 2016; Dong et al., 2018;
MacAskill et al., 2018). Therefore, major effort is required to
reach a consensus regarding these factors in order to standardize
cell therapy in ischemic diseases such as CLTI (Brenes et al.,
2012).

REX-001, a solution enriched with human BM-derived
MNC, is intended for treatment of CLTI, and is currently
under investigation in a two pivotal Phase III clinical trials

(NCT03174522 and NCT03111238). Herein, we have shown, for
the first time, the pre-clinical results evaluating the effect of REX-
001 product on revascularization in a murine model of CLTI,
using the Balb-c nude strain, as well as the cellular biodistribution
of this product as result of intramuscular administration.
Furthermore, the comparative effect of REX-001 vs. the placebo
solution, specifically designed and formulated for the double-
blinded aforementioned Phase III clinical trials, has been also
analyzed for the first time in an animal model.

In our study, a significant decrease of blood flow (>85%
reduction) was seen after double ligation of the femoral artery,
leading to inflammation and reduced mobility (most probably
associated with the surgical procedure) as well as other ischemic
symptoms (ulceration, necrotic digits), which were detected in
most mice, with no clear differences between groups treated
with either REX-001, placebos or adjuvants (vehicle only). The
ischemic symptoms worsened with time, leading to progression
of necrosis and digits falling off due to severe necrosis in several
cases, although in general, REX-001 treated mice showed a less
worsening status in the last 2 weeks, while mice in the adjuvant
group showed slower disease progression, yet, presented the
worst ischemic conditions on day 21. Regarding blood flow
recovery, all three groups showed a slight increase of blood
flow after 7 days of femoral ligation, although the REX-001
group showed a significant recovery by day 14 and 21 compared
to both placebos (p-value < 0.01) and adjuvant treated mice
(p-value < 0.001).

Balb-c nude mice are known to show poor perfusion recovery
and slower revascularization response compared to other strains,
such as C57BL/6 (Fukino et al., 2003; Nossent et al., 2017;
Aref et al., 2019). As a result, the recovery seen in these mice
(after 14–21 days) was slower than in other models (7–14 days),
corroborating a dependency in the results with the strain used, as
suggested (Fukino et al., 2003; Saqib et al., 2011; Aref et al., 2019).
Nevertheless, the model applied seemed adequate to evaluate
CLTI (Saqib et al., 2011; Nossent et al., 2017), and our data
supports the positive effect of REX-001 product by enhancing
blood flow perfusion after the ischemic injury induced.

Furthermore, the increase of blood flow in REX-001 treated
mice was accompanied by a significant increase in vascular
density and a higher percentage of vessels with wider diameters
than placebos and moreover, than the adjuvant treated mice. The
placebo solution promoted an increase of the number of vessels
compared to the vehicle solution, although this was insufficient
in achieving a significant recovery of blood flow. Therefore,
similar to human trials, and in line with pre-clinical studies
with intramuscular or intra-arterial administration of BM-MNC
(Shintani et al., 2001; Yoshida et al., 2003), our data supports
that administration of REX-001 promotes an increase of blood
reperfusion due to increased vascular density.

We also confirmed the presence of human cells near the
vascular vessels in ischemic tissues (14.9% of vessels contained
REX-001 on day 4), supporting the hypothesis that cells
administered intramuscularly do indeed reach the vasculature
in ischemic areas adequately (Beltran-Camacho et al., 2020).
Moreover, in vivo and ex-vivo DiR-pre-labeling assays and
qPCR amplification of human Alu sequences, indicated that
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REX-001 remained in the ischemic limbs, with no apparent
cell translocation to other organs. Remarkably, the fact that we
detected human DNA traces of the placebo solution (a residual
RBC fraction derived from the human BM initial source) in the
ischemic limbs, even at very low levels, supported the sensitivity
of the strategy followed.

Conversely, the percentage of REX-001 in the ischemic limbs
decreased within time, with no detection 21 days post-surgery.
Different studies have reported such decrease, using among
others, autologous cells expressing green fluorescent protein
(GFP) and firefly luciferase (Fluc) reporter genes (van der Bogt
et al., 2012), with a significant cell loss from the ischemic
tissues after 4 weeks (van der Bogt et al., 2012). In this sense,
future efforts should be made to implement transplanted BM-
MNC survival and/or the ratio of local delivery in order to
enhance the revascularization orchestrated by these cells. We
have demonstrated here, in agreement with several clinical trials
using this approach (Higashi et al., 2004; Cobellis et al., 2008;
Matoba et al., 2008; Motukuru et al., 2008; Iafrati et al., 2011),
the efficiency of intramuscular administration to maximize the
local concentration of stem cells in the ischemic area. Perhaps, as
suggested (Davies, 2012; Qadura et al., 2018), the combination
of intra-muscular and intra-arterial administration may be an
even better strategy to allow stem cells to reach additional areas,
at higher concentrations, including ischemic muscle regions that
still are perfused (Van Tongeren et al., 2008; Franz et al., 2009)
and thus, achieve a higher and faster blood perfusion recovery.

In our study, the decrease in cell numbers with time did not
correlate with cell translocation to other organs, suggesting that
infused REX-001 might not proliferate after having promoted
angiogenesis, so these cells may not be directly involved in vessel
formation (given the small percentage of REX-001+ vessels), but
they most probably contribute to revascularization in a paracrine
fashion (van Weel et al., 2007; Burdon et al., 2010; van der Bogt
et al., 2012). In this regard, some of the cells included in REX-
001 product (enriched for MNC, as well as granulocytes and
hematopoietic stem cells expressing CD34) might participate in
the paracrine effect. For instance, circulating BM-derived EPC
(CD34+CD45+) have been described as powerful angiogenic
agents (Yanishi et al., 2020). These cells release angiogenic and
chemo-attractant factors once migrated into the ischemic tissues,
recruiting immune cells (neutrophils, monocytes) and activating
other cells that will participate in the inflammatory response and
also contribute to vascular remodeling (Beltran-Camacho et al.,
2020). In addition, BM-immune precursors cells are thought
to have an active role in angiogenesis and/or arteriogenesis
itself (Nossent et al., 2017). For instance, neutrophils not
only participate in inflammation but they can also promote
vascularization by inducing angiogenesis via a pro-angiogenic
phenotype (Lin et al., 2017; Seignez and Phillipson, 2017; Beltran-
Camacho et al., 2020).

Preliminary results obtained in our laboratory indicated that
REX-001 cultured ex vivo releases angiogenic cytokines such as
CXCL4/PF4, metalloproteinase-8 (MMP-8) or Interleukin-8 (IL-
8) to the conditioned medium. Moreover, the levels of MMP-8
seem to increase exponentially after several hours of culturing

these cells in basal media at 37◦C, 5% CO2. The involvement
of MMP-8 as well as other metalloproteinases in angiogenesis
has been already described (Lin et al., 2008; Deryugina and
Quigley, 2010; Fang et al., 2013; Quintero-Fabian et al., 2019).
Studies with MMP-8 and MMP-2 knock-out mice have shown
an in vitro diminishment of cell proliferation and neo-capillary
network growth, as well as a reduction in HUVECmigration and
impaired angiogenesis in vivo (Cheng et al., 2007; Fang et al.,
2013). MMPs not only contribute to the remodeling/degradation
of the extracellular matrix (ECM), but also participate in many
biological processes involved in stroke, cardiovascular diseases or
arthritis (Chuang et al., 2019). Moreover, macrophage activation
results in MMP secretion. Remarkably, some MMPs are related
to the transition from M1 to M2 macrophage phenotypes,
associated with immunomodulatory processes (Berg et al., 2019),
suggesting that this transition might be promoted in presence
of REX-001 cells. Future assays should be performed to confirm
such phenomenon. Apart from MMP-8, IL-8 was also detected
as released by REX-001 in vitro. IL-8, also named neutrophil
chemotactic factor, is a soluble chemoattractant produced mainly
by macrophages, but also by other cell types such as epithelial
and endothelial cells (Oude Nijhuis et al., 2003). Notably, not
only does IL-8 boost phagocytosis in macrophages, it also
stimulates angiogenesis (Koch et al., 1992; Wu et al., 2018;
Fousek et al., 2020). Thus, although preliminary, these results
indicate that REX-001 release certain factors such as MMP-8 and
IL-8 that might contribute to the vascular restoration induced
by this cell product. Further studies are required to confirm
these data and moreover, to complete the information regarding
the molecular mechanisms of action of these cells. Despite
this, our results confirmed that the administration of REX-
001, and therefore the combined effect of such populations,
has proven to be effective in promoting revascularization
after CLTI.

CONCLUSION

Overall, our findings demonstrate the efficacy of REX-001
implantation to enhance blood flow recovery after ischemic
injury, by inducing functional neovascularization in a murine
model of CLTI. Moreover, detailed cell-tracking corroborated
the efficiency of intramuscular administration, with REX-001
exerting a focalized action within the ischemic tissues and
no apparent translocation to other organs. The decrease seen
in cell numbers within time, despite promoting an increased
revascularization, suggests a paracrine mechanism of action for
these cells. Future research should now be focused on analyzing
the molecular mechanisms of action of REX-001 cells as well as
to evaluate their effect at the clinical level.
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