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The glucagon receptor (GCGR) is activated by glucagon and is essential for glucose,

amino acid, and lipid metabolism of animals. GCGR blockade has been demonstrated to

induce hypoglycemia, hyperaminoacidemia, hyperglucagonemia, decreased adiposity,

hepatosteatosis, and pancreatic α cells hyperplasia in organisms. However, the

mechanism of how GCGR regulates these physiological functions is not yet very

clear. In our previous study, we revealed that GCGR regulated metabolic network at

transcriptional level by RNA-seq using GCGR mutant zebrafish (gcgr−/−). Here, we

further performed whole-organism metabolomics and lipidomics profiling on wild-type

and gcgr−/− zebrafish to study the changes of metabolites. We found 107 significantly

different metabolites from metabolomics analysis and 87 significantly different lipids from

lipidomics analysis. Chemical substance classification and pathway analysis integrated

with transcriptomics data both revealed that amino acid metabolism and lipid metabolism

were remodeled in gcgr-deficient zebrafish. Similar to other studies, our study showed

that gcgr−/− zebrafish exhibited decreased ureagenesis and impaired cholesterol

metabolism. More interestingly, we found that the glycerophospholipid metabolism was

disrupted, the arachidonic acid metabolism was up-regulated, and the tryptophan

metabolism pathway was down-regulated in gcgr−/− zebrafish. Based on the omics

data, we further validated our findings by revealing that gcgr−/− zebrafish exhibited

dampened melatonin diel rhythmicity and increased locomotor activity. These global

omics data provide us a better understanding about the role of GCGR in regulating

metabolic network and new insight into GCGR physiological functions.
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INTRODUCTION

Glucagon is a 29-amino-acid polypeptide secreted by α cells from
the islet of Langerhans, which is catalyzed from proglucagon by
proconvertase 2 (Muller et al., 2017). Glucagon can specifically
recognize and bind to the glucagon receptor (GCGR), which
is widely distributed throughout the body and predominantly
expressed in the liver (Burcelin et al., 1995; Muller et al.,
2017). GCGR belongs to the class II G-protein–coupled receptor
superfamily of seven transmembrane spanning receptors, which
couples with GTP-binding proteins (G proteins) to adenyl
cyclase, and activates the downstream signals to regulate
glucose homeostasis through increasing glycogenolysis and
gluconeogenesis (Wewer Albrechtsen, 2018; Qiao et al., 2020).

Studies have revealed that GCGR also plays many important
roles in metabolism beyond glucose homeostasis (Charron and
Vuguin, 2015; Galsgaard et al., 2019; Dean, 2020). Knockout
or inhibition of GCGR in mice displayed pancreatic α-cell
hyperplasia and increased the plasma concentrations of glucagon,
glucagon-like peptide-1, low-density lipoprotein, and amino
acids. Hyperaminoacidemia was observed in Gcgr−/− mice in
many studies (Yang et al., 2011; Solloway et al., 2015; Dean
et al., 2017; Kim et al., 2017; Galsgaard et al., 2018; Winther-
Sorensen et al., 2020). Moreover, a lot of genes involved in amino
acid catabolism were found to be down-regulated in Gcgr−/−

mice, especially those related to glutamine, serine, and arginine
metabolism (Yang et al., 2011; Dean et al., 2017; Kim et al., 2017;
Winther-Sorensen et al., 2020). Further research revealed that
deficiency of GCGR caused disturbed amino acid catabolism and
reduced amino acid clearance in the liver and led to elevated
plasma amino acid levels, which in turn stimulated the pancreatic
α-cell hyperplasia and glucagon secretion (Dean et al., 2017;
Galsgaard et al., 2018; Winther-Sorensen et al., 2020). These
results suggested an endocrine loop of liver-α cell axis through
glucagon signaling (Holst et al., 2017; Wewer Albrechtsen et al.,
2018a,b; Dean, 2020).

Studies also showed that GCGR regulated the lipid
metabolism through hepatic fatty acid β-oxidation and
lipogenesis, and adipocytes lipolysis. Deficiency of GCGR led to
decreased total body adipose mass and increased lean body mass,
without changes in the total body weight (Gelling et al., 2003).
After being fed with high-fat diet, the Gcgr−/− mice had much
smaller amounts of adipose tissue compared with wild type,
suggesting they were resistant to diet-induced obesity (Conarello
et al., 2007; Longuet et al., 2008). Nevertheless, Gcgr−/− mice
exhibited enhanced susceptibility to hepatosteatosis following
exposure to the high-fat diet (Longuet et al., 2008). Similarly,
knocking out GCGR and treatment with GCGR antagonist
(LY2409021) induced liver fat accumulation in zebrafish and
patients with type 2 diabetes (T2D), respectively (Guzman et al.,
2017; Kang et al., 2020). Moreover, the plasma triglycerides and
free fatty acids were increased in Gcgr−/− mice after 16 h fasting
(Longuet et al., 2008).

Metabolites are the final downstream products of cellular
regulatory processes, which can powerfully reflect the
physiological alteration in organisms. Metabolomics focuses on
the identification of numerous metabolites (molecular weight

<1,500 Dalton) and has a huge potential in characterizing
physiological and biochemical activities (Fiehn, 2002).
Lipidomics is a subset of metabolomics, which has similar
functions to metabolomics but focuses on lipids (Lam et al.,
2017). Although the serum metabolome has been studied in
Gcgr−/− mice (Yang et al., 2011; Dean et al., 2017), the whole-
animal metabolomics changes are still unclear. In this study,
we performed global metabolomics and lipidomics profiling
using the whole organism of GCGR knockout zebrafish, which
were further analyzed with our previous global transcriptomics
data (Kang et al., 2020). We aimed to reveal the comprehensive
metabolic alterations in gcgr−/− zebrafish.

MATERIALS AND METHODS

Zebrafish Husbandry
Zebrafish (Danio rerio) were raised in a recirculating aquaculture
system (Shanghai Haisheng Biotech Co., Ltd, Shanghai, China)
on a 14-h:10-h darkness cycle at 28◦C. Embryos were
obtained from natural breeding and raised at 28.5◦C in
embryo rearing solution and staged according to Kimmel
et al. (1995). In this study, 7 dpf (days post fertilization)
AB strain (wild type), gcgra−/−; gcgrb−/− double-mutant fish
(referred as gcgr−/− henceforth) larvae were used. All procedures
have been approved by the Xiamen University Institutional
Animal Care and Use Committee (protocol XMULAC20160089,
March 10, 2016).

Sample Collection and Preparation for
Global Metabolomics and Global
Lipidomics Profiling
For metabolomics, 25mg each of 7 dpf wild-type and
gcgr−/− mutant larvae were anesthetized and harvested into
a 1.5mL EP tube with 800 µL of precooled precipitant
(methanol: acetonitrile: pure water= 2:2:1). Six biological repeats
were performed for each group. After homogenization using
ultrasonication, the samples were placed in the −20◦C for
120min to precipitate. Then the samples were centrifuged at
25,000× g for 15min at 4◦C, and the supernatants were collected
in new tubes for lyophilization in a centrifugal evaporator.
After resupernation with 600 µL of 10% methanol solution, the
samples were centrifuged at 25,000 × g for 15min at 4◦C, and
then 5 µL of each sample was used for injection. The quality-
control (QC) samples were mixed from 50 µL of each sample.

For lipidomics, 25mg each of wild-type and gcgr−/−

mutant larvae added 800 µL of −20◦C precooled
dichloromethane/methanol (3:1) buffer solution. And the
samples homogenized with TissueLyser for 5min and then
placed in at −20◦C for 120min. After the centrifugation and

lyophilization, the samples were reconstituted with 600 µL of

lipid complex solution (isopropanol–acetonitrile–water= 2:1:1).

Finally, 5 µL of each sample was used for injection. The QC

samples were mixed from equivalent amount of each sample.
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Ultraperformance Liquid Chromatography
and Quadrupole Time-of-flight Mass
Spectrum Condition
For metabolomics, ultraperformance liquid chromatography
(UPLC) system (2777C, Waters, MA, USA) equipped with an
ACQUITY UPLC HSS T3 column (100 × 2.1mm, 1.8µm,
Waters, MA, USA) was used for separation. The column oven
temperature was maintained at 50◦C, and the flow rate was 0.4
mL/min. The mobile phase was consisted of solvent A (water +
0.1% formic acid) and solvent B (methanol + 0.1% formic acid).
Metabolites were eluted using the following gradients: 0–2min,
100% phase A; 2–11min, 0% to 100% B; 11–13min, 100% B; 13–
15min, 0% to 100% A. The small molecules eluted from column
were detected by the high-resolution tandem mass spectrometer
Xevo G2 XS QTOF (Waters, MA, USA) both in positive and
negative ion modes. The capillary voltages were set at 3 kV (+)
and 2 kV (–), respectively. The sampling cone voltage was set
at 40V in both modes. The Centroid MSE mode was used for
data acquisition. The first-stage scan range of Time-of-flight mass
was from 50 to 1,200 Da with the scan time of 0.2 s. For the
tandem mass spectrometry (MS/MS) detection, the parent ions
were fragmented using 20–40 eV with the scan time of 0.2 s.
During the data acquisition, the LE signal was performed every
3 s to calibrate the mass accuracy.

For lipidomics, the separation was performed using UPLC
equipped with an ACQUITY UPLC CSH C18 column (100
× 2.1mm, 1.7µm, Waters, MA, USA). The column oven was
maintained at 55◦C, and the flow rate was 0.4 mL/min. The
mobile phase was consisted of solvent A (ACN: H2O = 60:40,
0.1% formate acid and 10mM ammonium formate) and solvent
B (IPA: ACN= 90:10, 0.1% formate acid and 10mM ammonium
formate). Gradient elution was performed in the following
conditions: 0–2min, 40–43% phase B; 2–7min, 50–54% phase B;
7.1–13min, 70–99% phase B; 13.1–15min, 40% phase B. For the
Q-TOF detection, the conditions were similar to metabolomics
with some exception. The first-stage scan range of TOF mass was
from 100 to 2,000 Da in positive mode and 50 to 2,000 Da in
negative mode. For the MS/MS detection, the parent ions were
fragmented using 19–45 eV.

Data Processing and Analysis
For both global metabolomics and global lipidomics, the raw data
obtained from the mass spectrometer were subjected to analysis
by the Progenesis QI 2.2 (Waters, MA, USA), including peak
alignment, peak picking, normalization, deconvolution, and peak
identification. Then, the data were processed usingmetabolomics
analysis R package metaX (BGI, Shenzhen, China) for further
analysis. First, the low-weight ions with RSD (relative standard
deviation) >30% were filtered and removed from the extracted
data to ensure the metabolic quality. In addition, the data
were corrected by QC-RLSC (QC-based robust LOESS signal
correction) method (Dunn et al., 2011).

Next, in the univariate analysis, the fold change (FC)
detection was performed. Simultaneously, the t-test analysis
was used to calculate the p-value. In the multivariate analysis,
principal component analysis (PCA) was performed for general

clustering among the groups. Moreover, the partial least-squares
discriminate analysis was employed to different ions between
clusters, as influence intensity and explanation capacity of each
ion were calculated by VIP (variable importance of projection),
and components with VIP exceeding 1 were regarded as potential
compounds contributing remarkably to the differences between
groups. Based on results from QC sample detections, RSD
threshold was set below 30% for error reduction, which was
reflected in FC of metabolites. The metabolites identification
was further performed through Human Metabolome Database
(HMDB), Kyoto Encyclopedia of Genes and Genomes (KEGG),
and LipidMaps. Finally, metabolites meeting the criteria (VIP
> 1, P < 0.05, FC < 0.83, and FC > 1.2) were selected
as significantly different. All the raw data were deposited
in the database of MetaboLights (www.ebi.ac.uk/metabolights/
MTBLS2067) (Haug et al., 2020).

Based on the different metabolites, we performed KEGG
analysis by using R language especially the R package
“clusterProfiler” (Yu et al., 2012). Further, integrative analyses of
metabolomics and lipidomics with our previous transcriptomics
data (Kang et al., 2020) were conducted through display of
metabolites associated with genes on the pathways. On the basis
of pathways analysis by different metabolites, the transcription
level of relative genes in these pathways was selected for analysis.
Criteria for different transcripts were set as follows: Q < 0.05, FC
< 0.83, and FC > 1.2.

Sampling of Zebrafish Larvae and
Melatonin Enzyme-Linked Immunosorbent
Assay
Seven-dpf zebrafish larvae were sampled every 4 h from ZT3
to ZT23 into tubes; each sample contained 20 larvae. After
removing excess egg water, the tubes containing the samples
were flash-frozen in liquid nitrogen. Samples were then stored
at −80◦C until use. This procedure was done in triplicate.
Melatonin enzyme-linked immunosorbent assay (ELISA) assay
was conducted according to the manufacturer’s instruction
(Zcibio technology Co., Ltd, Shanghai, China). Briefly, samples
were thawed on ice, and 200 µL PBS was added to each sample.
Samples were then homogenized and centrifuged at 12,000
rpm for 5min at 4◦C, and supernatants were used for ELISA.
Fifty microliters of supernatant was pipetted into the melatonin
antibody prepackaged 96-well microtiter plate, and then 50µL of
biotin antigen was added; the plate was covered and incubated
at 37◦C for 1 h. After incubation, the plate was washed three
times, and 50 µL of enzyme conjugate was added and incubated
for 30min at 37◦C, and then the plate was washed again for
three times. Then, 100 µL of substrate solution was added, and
the plate was again incubated for 15min at 37◦C. Finally, 50
µL of stop solution was added, and extinction was measured
at 450 nm. The obtained optical densities of the standards
(y-axis, logarithmic) were plotted against their concentrations
(x-axis, logarithmic). A curve fit was performed, and the
concentrations of the samples were then calculated from the
standard curve.
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Zebrafish Behavioral Assays
Zebrafish larvae behavioral assays were performed under LD
(light–dark) conditions as previously reported (Zhong et al.,
2018). Briefly, a single zebrafish larva was placed in each well
of 48-well plates at 7 dpf (24 WT, 24 gcgr−/− mutant). The 48-
well plate was placed inside the DanioVison system (Noldus,
Wageningen, Holland), where white light was illuminated from
9:00 AM to 11:00 PM (14 h light phase), and infrared light was set
from 11:00 PM to 9:00 AM (10-h dark phase). Locomotor activities
of larvae were monitored for 2 consecutive days from 7 to 8 dpf
using an automated video-tracking system, and the movement
of each larva was recorded, and the average distance movement
was analyzed.

RESULTS

Global Metabolomics and Lipidomics
Analysis of GCGR Knockout Zebrafish
Global metabolomics and lipidomics were applied to profile the
metabolic changes caused by GCGR deficiency in zebrafish. RSD
threshold of 30% was displayed for 87.0% of metabolomics and
90.0% of lipidomics, respectively, indicating high reproducibility
and stability. The profiles of QC groups, wild-type (WT) groups,
and gcgr−/− mutant groups were clustered separately in both
negative and positive modes of the PCA plots (Figures 1A–D).
These results indicated that the processing and analysis of
HPLC-QTOF data met the required quantifications, and the
differences between two experimental groups were significant.
After filtration, 107 of 790 metabolites were identified to be
significantly different by metabolomics analysis, with 49 up-
regulated and 58 down-regulated in gcgr−/− mutant groups
(Figure 1E, Supplementary Table 1). Eighty-seven of 898 lipid
molecules were identified to be significantly different by
lipidomics analysis, with 38 up-regulated and 49 down-regulated
in gcgr−/− mutant groups (Figure 1F, Supplementary Table 1).

According to the HMDB database, the identified 194
different metabolites were matched to seven classes (Figure 1G,
Supplementary Table 1). They were lipids and lipid-like
molecules (number of metabolites, 158); organic acids and
derivatives (13); organoheterocyclic compounds (13); organic
oxygen compounds (4); organic nitrogen compounds (3);
nucleosides, nucleotides, and analogs (2); and homogeneous
non-metal compounds (1). Among these metabolites, the cluster
of lipids and lipid-like molecules were the most abundant,
with 75 increased and 83 decreased, indicating that the lipid
metabolism was greatly influenced by GCGR deficiency.

GCGR Knockout Induced Metabolic
Disorder in Zebrafish
Next, we performed KEGG pathway analysis and pathway-based
network analysis for these changed metabolites in gcgr−/−

mutant. The result showed that 176 different metabolites
were enriched in 68 KEGG pathways, including metabolism
(number of pathways, 42), environmental information
processing (9), organismal systems (8), cellular processes
(7), genetic information processing (1), and human diseases (1)

(Figure 2A, Supplementary Table 2). Interestingly, metabolism-
related pathways accounted for 61.8%% (42/68) of total
enriched pathways covering 168 metabolites (Figure 2A,
Supplementary Table 2). Thus, we then further analyzed these
metabolism-related pathways in detail. The pathways related
to lipid metabolism (number of pathways, 12), amino acid
metabolism (11), metabolism of cofactors and vitamins (6),
carbohydrate metabolism (5), and metabolism of other amino
acids (4) were highly enriched (Figure 2C). Interestingly, 4
KEGG pathways containing more than 15 different metabolites
were enriched, including glycerophospholipid metabolism
(number of metabolites, 60), arachidonic acid (ARA)metabolism
(33), linoleic acid metabolism (20), and steroid hormone
biosynthesis (18), all belonging to lipid metabolism (Figure 2B
and Supplementary Table 2). To explore the association and
crosstalk between those metabolism-enriched pathways, the
pathway-based network analysis was performed. As shown in
Figure 2C, close linkages were shown in amino acid metabolism,
carbohydrate metabolism, lipid metabolism, and so on, as several
metabolites are shared by multiple pathways. Taken together,
these data suggested that GCGR knockout in zebrafish induced
metabolic disorder, especially in lipid metabolism and amino
acid metabolism. The details regarding pathway perturbation
were further discussed as follows.

Lipid Metabolism Remodeling in gcgr−/−

Mutant Zebrafish
Among these altered metabolism pathways, the lipid
metabolism–related pathways were dramatically changed, which
had 12 pathways enriched covering 125 metabolites enriched.
Glycerophospholipid metabolism was the top enriched lipid
metabolism pathway, with 60 significantly different metabolites,
including classes of diacylglycerol (DG), triacylglycerol
(TG), phosphatidylcholine (PC), phosphatidylserine (PS),
phosphatidylethanolamine (PE), phosphatidylinositol (PI),
lysophosphatidylethanolamine (LPE), lysophosphatidylcholine
(LPC), lysophosphatidic acid (LPA), lysophosphatidylinositol
(LPI), and cytidine diphosphate DG (CDP-DG) (Figures 3A,B,
Supplementary Table 1). Fatty acids are utilized for production
of fatty acyl-CoAs, which are essential component for
glycerophospholipid metabolism (Watkins, 2013). Based on
this, fatty acids were also analyzed here. Interestingly, the
enriched monounsaturated fatty acids (oelsaeure and icosenoic
acid) and polyunsaturated fatty acid [eicosatrienoic acid,
eicosapentaenoic acid, docosapentaenoic acid, docosahexaenoic
acid, linoleate, icosadienoic acid, dihomolinolenate, arachidonate
(ARA), adrenic acid, tetracosahexaenoic acid] were all down-
regulated (Figure 3A), whereas all the saturated fatty acids,
including behenic acid and dodecanoic acid, were up-regulated
(Figure 3A).

Moreover, all these LPEs, LPCs, LPAs, and LPI involved
in glycerophospholipid metabolism pathways were significantly
decreased, whereas CDP-DG and PI were increased in gcgr−/−

mutant (Figures 3A,B). Most of the PCs were increased after
GCGR knockout, with only a few decreased. The same trend
was observed for PSs and PEs. DGs were half increased and
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FIGURE 1 | Profile of global metabolomics and lipidomics data. (A–D) Principal component analysis (PCA) of metabolomics (A,B) and lipidomics (C,D) profile of

wild-type (WT) and gcgr−/− were indicated by different color circles. PCA scores were plotted in both positive mode (A,C) and negative mode (B,D). (E,F) Volcano

plots of all identified metabolites from metabolomics (E) and lipidomics (F) analysis. The x-axis indicates Log2 (fold change) while the y-axis indicates -Log10

(P-value). Every single metabolite is represented as a dot. Different colors were used to represent down-regulated (blue), up-regulated (red), or non-significant (gray)

metabolites. (G) Pie charts showing different classes of total different, elevated, and decreased metabolites. Different colors indicate different classes.
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FIGURE 2 | Pathway analysis of different metabolites. (A) Histogram of the holistic matching. All different metabolites are enriched into seven categories. The left blue

bar indicates the number of enriched pathways. The right red bar indicates the number of covered metabolites. (B) Bar chart showing the number of metabolites

covered by each enriched pathway. The y-axis indicates the number of metabolites while the x-axis indicates the pathway name. Red: increased; blue: decreased.

The class of each pathway was labeled by the color bar on the top. (C) The network of enriched pathways. Each pathway is represented by a dot. Red: the ratio of

the up-regulated metabolites is higher than down-regulated metabolites; blue: the ratio of down-regulated metabolites is higher than up-regulated metabolites. The

dot size indicates the number of metabolites in the corresponding pathway. The line thickness represents the amount of substances shared by the linked pathways;

the coarser, the more metabolites.
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FIGURE 3 | GCGR knockout induced glycerophospholipid metabolism dysregulation. (A) Disturbed glycerophospholipid metabolism. Dots represent metabolites, and

blocks represent transcripts-encoded enzymes. Red: up-regulated, blue: down-regulated; or green: set substrates mixed with both up-regulated and down-regulated

metabolites. The left displayed the heatmap enriched fatty acids. (B) Heatmap of corresponding glycerophospholipid metabolite sets. Z score normalized ionic strength

for each metabolite was represented by different colors: high (red), low (blue), or average (white). The class of each pathway was marked by the color bar on the top.
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FIGURE 4 | GCGR knockout influenced arachidonic acid metabolism. Disturbed arachidonic acid metabolism. Dots represent metabolites, and blocks represent

transcripts-encode enzymes. Red: up-regulated, blue: down-regulated; or green: set substrates mixed with both up-regulated and down-regulated metabolites.

half decreased. Among six changed TGs, four of them (TG
56:8, TG 56:7, TG 60:3, TG 58:4) were up-regulated, whereas
TG 58:6 and TG 62:7 were down-regulated. Among all of
these changed lipids in glycerophospholipid metabolism, LPC
(16:0) (−2.10) and LPC (P-18:0) (−1.91) were altered the most
(Supplementary Table 1). To further investigate how GCGR
affects lipid metabolism in multiple levels, we also carried
out the integrated analysis of metabolomics data with our
previous transcriptomics data (Kang et al., 2020). We found 29
significantly altered transcripts (Supplementary Table 3) were
associated with glycerophospholipid metabolism. As shown in
the Figure 3A, the transcriptional levels of genes encoded
Pap, Dppl, Ept, Cpt, and Ptdsst1 were increased, whereas
others such as Acs3, Lpat, Lpcat, Lpeat, and Lpiat were
decreased, consistent with the metabolites profile (Figure 3A,
Supplementary Table 3). Taken together, these data suggested
glycerophospholipid metabolism reprogramming in GCGR-
deficient zebrafish.

ARA metabolism was one of another dramatically
changed pathway, with 33 metabolites altered. Fifteen
PCs, which were the source for releasing of ARA, were
altered (Figure 3B). Additionally, the transcriptional level
of Pla2 (phospholipase A2) was decreased (Figure 4,
Supplementary Table 3). ARA (ARA, −0.93) was down-
regulated. Except for ARA and PC, all other 17 metabolites
were increased (Figure 4, Supplementary Table 2). The
products of ARA were eicosanoids, including prostaglandins,
leukotrienes, lipoxins, thromboxanes, hepoxilins, isoprostanes,
and hydroxyeicostetraenoic acids, which played important
roles in organism physiology (Bend and Karmazyn, 1996;

Sharma and Sharma, 1997; Fishbein et al., 2020). We found
that the metabolites from six classes were increased, including
prostaglandins consisting of PGE2 (prostaglandin E2, 0.93),
PGG2 (prostaglandin G2, 1.20), 6-Keto-PGF1a (1.54), 6-keto-
PGE1 (1.80), and 15-deoxy-PGJ2 (1.76); leukotrienes consisting
of LTA4 (leukotriene A4, 1.87), LTB4 (leukotriene B4, 1.75),
and 5(S)-HPETE (1.31); lipoxins consisting of LXB4 (lipoxin
B4, 1.30), hepoxilins consisting of TXA3 (trioxilin A3, 1.43),
and TXB3 (trioxilin B3, 1.21); hydroxyeicostetraenoic acids
consisting of 15-OxoETE (2.23), 12(S)-HPETE (1.52), 15(S)-
HPETE (1.64), 11,12,15-THETA (1.72), and 12-OxoETE (1.06);
and isoprostanes consisting of 8-isoprostane (2.26) (Figure 4,
Supplementary Table 2). Similarly, integrated analysis revealed
transcriptional changes of related enzymes such as Lta4s,
Pgs, and Xbmo, consistent with the alteration in metabolites
(Figure 4, Supplementary Table 3). These data suggested that
the ARA metabolism was up-regulated in gcgr−/− mutant.

Cholesterol metabolism was also influenced (Figure 5).
The perturbed cholesterol metabolism was composed of
steroid hormone biosynthesis pathway and biosynthesis of bile
acid pathway. Through pathway analysis, steroid hormone
biosynthesis was found to be dramatically changed with
18 altered metabolites (Supplementary Table 2). Among
them, progesterone (−0.94) and testosterone (1.24) were
significantly changed. As for bile acid metabolism, the mRNA
levels of cholesterol 7alpha-monooxygenase (Cyp7a1) and
sterol 27-hydroxylase (Cyp27a1) were decreased (Figure 5,
Supplementary Table 3), which were important for bile acid
synthesis. Moreover, the bile acids including taurocholic acid
(−0.67), deoxycholic acid (−0.77), and chenodeoxycholate
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FIGURE 5 | GCGR knockout influenced cholesterol metabolism. Dots represent metabolites, and blocks represent transcripts-encode enzymes. Red: up-regulated,

blue: down-regulated; or green: set substrates mixed with both up-regulated and down-regulated metabolites. The heatmap indicates altered bile acids. Z score

normalized ionic strength for each metabolite was represented by different colors: high (red), low (blue), or average (white).

(−1.55) were all down-regulated, which were consistent with
the alteration of related transcripts. These data suggested
that the synthesis and content of bile acid in gcgr−/−

mutant zebrafish were decreased. Taken together, these
data suggested reprogramming in cholesterol metabolism in
GCGR-deficient zebrafish.

Amino Acid Metabolism Remodeling in
gcgr−/− Mutant Zebrafish
Previous studies have revealed that GCGR blockade decreased
hepatic amino acid catabolism and increased the serum amino
acid level, revealing the important role of GCGR in regulating
amino acid metabolism (Solloway et al., 2015; Dean et al.,
2017; Galsgaard et al., 2018; Winther-Sorensen et al., 2020). In
our study, the KEGG pathway analysis also indicated that 11
pathways were enriched in amino acid metabolism, which was
in the second place of metabolism-related pathways (Figure 2C).

Glucagon pathway was one of the major regulators of
ureagenesis (Morris, 2002). We also found that the ureagenesis
included in amino acid catabolism was perturbed in gcgr−/−

mutant by analyzing the metabolomics and transcriptomics data

(Figure 6). There were five significantly changed metabolites
(Supplementary Table 1) and six significantly altered transcripts
(Supplementary Table 3). Three metabolites were down-
regulated, including L-lysine (−2.07), L-arginine (−2.00), and
L-asparagine (−1.49), whereas L-aspartate (1.45) and fumarate
(1.51) were increased. Several genes encoding the key enzymes
involved in ureagenesis were significantly down-regulated,
including Nags, Cps1, Otc, and Gls. Taken together, these
data may suggest that ureagenesis was down-regulated in
gcgr−/− mutant.

Among the 11 enriched amino acid metabolism pathways,
the tryptophan metabolism was dramatically affected in
GCGR knockout zebrafish. Interestingly, all eight changed
metabolites in the tryptophan metabolism pathway were
decreased (Figure 7A). Notably, most metabolites involved
in neurotransmitters serotonin and melatonin synthesis
were significantly decreased, including serotonin (log2 FC,
−1.77), n-acetylserotonin (−1.79), melatonin (−1.04), and
6-hydroxymelatonin (−1.85) (Figure 7A). Additionally, the
mRNA levels of most enzymes participating in the tryptophan
metabolism were significantly down-regulated, such as Ido1,
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FIGURE 6 | GCGR knockout influenced ureagenesis. Dots represent metabolites, and blocks represent transcripts-encode enzymes. Red: up-regulated, blue:

down-regulated; or green: set substrates mixed with both up-regulated and down-regulated metabolites. The heatmap indicates altered amino acids. Z score

normalized ionic strength for each metabolite was represented by different colors: high (red), low (blue), or average (white).

Aanat, Asmt, and Nad (Figure 7A, Supplementary Table 3).
Moreover, some other metabolites during tryptophan
metabolism were also down-regulated, including indole-3-
ethanol (−0.75), 3-methyldioxyindole (−1.00), skatole (−0.93),
and formyl-5-hydroxykynurenamine (−1.25).

gcgr−/− Mutant Zebrafish Dampened
Melatonin Diel Rhythmicity and Increased
Locomotor Activity
Melatonin is present in almost all organisms from bacteria
to human, exerting autocrine and paracrine action and has
been demonstrated to be expressed rhythmically, high at night
and low during the day (Falcon et al., 2009; Cipolla-Neto and
Amaral, 2018). Melatonin also plays an important role in the
entrainment of daily and annual physiological and behavioral
rhythms in vertebrates (Falcon et al., 2010; Pevet and Challet,
2011). Our metabolomics data suggested that melatonin was
significantly decreased in gcgr−/− mutant. We then further
study the dynamic changes of melatonin and its influence on
locomotor activity in gcgr−/− mutant zebrafish. The melatonin
level in gcgr−/− zebrafish was higher than WT zebrafish in a
whole cycle of Zeitgeber time (ZT), significantly in ZT3, ZT11,
and ZT23 (Figure 7B). Correspondingly, gcgr−/− zebrafish were

more active, showing significantly enhanced moving distance
(Figure 7C), both at day (Figure 7D) and night (Figure 7E),
compared to WT zebrafish. These data suggested that GCGR
knockout dampened melatonin diel rhythmicity and hence
increased the locomotor activity in zebrafish.

DISCUSSION

Glucagon stimulates hepatic glucose output via activating
GCGR in the liver. Antagonizing GCGR improves glycemic
control in the diabetic state has been confirmed in clinic
trials (Kazda et al., 2016; Scheen et al., 2017; Cheng et al.,
2020). Nevertheless, blockade of GCGR by antagonists was
accompanied by metabolic side effects, which could potentially
limit the clinical application (Guan et al., 2015; Guzman et al.,
2017; Scheen et al., 2017). Hence, a better understanding
of the metabolic remodeling of organisms may provide
useful information for antidiabetic therapies. In order to
study the changes in GCGR-deficient animal, as well as for
screening chemical modifiers to mitigate these side effects,
we generated a GCGR knockout zebrafish model (Li et al.,
2015). Our studies suggested that gcgr−/− mutant zebrafish
displayed phenotypes similar to Gcgr-deficient mice, which
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FIGURE 7 | GCGR knockout influenced the tryptophan metabolism and locomotor activity in zebrafish. (A) Disturbed tryptophan metabolism. Dots represent

metabolites, and blocks represent transcripts-encode enzymes. Red: up-regulated blue: down-regulated; gray: unvaried substrates. (B) Experimental validation of the

melatonin level. (C) Locomotor activities were monitored in gcgr−/− mutants and WT zebrafish larvae under LD condition. (D,E) gcgr−/− mutants showed higher

average moving distances at day (D) and night (E) than WT zebrafish larvae. Student t-test was conducted. *P < 0.05, **P < 0.01, ***P < 0.001.

had lower free glucose content, higher glucagon content, α-
cell hyperplasia, and accentuation of fat in the liver (Li et al.,
2015; Kang et al., 2020). We further analyzed the regulated
metabolic network in transcriptional level by RNA-seq and
found that many genes related to metabolism of carbohydrates,
lipids, and amino acids were dysregulated in gcgr−/− mutant
zebrafish (Kang et al., 2020). To get a more comprehensive
understanding of gcgr-deficient zebrafish, we performed global
metabolomics and lipidomics analysis of gcgr−/− zebrafish and
conducted integrated analysis combining metabolome, lipidome,
and transcriptome in this study. We identified 107 different
metabolites from metabolomics and 87 different metabolites
from lipidomics analysis. We further revealed that many
pathways related to lipid metabolism and amino acid metabolism
were disrupted through pathway analysis.

GCGR signaling has been demonstrated to play important
roles in the regulation of lipid metabolism in mammals (Charron
and Vuguin, 2015; Galsgaard et al., 2019). Similarly, we also
revealed that many pathways in lipid metabolism were disrupted
at transcriptional level in gcgr-deficient zebrafish, which also
displayed a significant lipid accumulation in the liver (Kang et al.,

2020). Consistently, we revealed that cholesterol metabolism
was impaired after GCGR knockout in this study (Figure 5).
Besides, we found that glycerophospholipid metabolism and
ARA metabolism were reprogramed in gcgr−/− zebrafish.

Glycerophospholipids are the most abundant phospholipids,
which are important lipid components in cellular membranes
(Chauhan et al., 2016). In addition, glycerophospholipids are
a source of physiologically active compounds that participate
in the regulation of many cellular processes (Hishikawa
et al., 2014; Rodriguez-Cuenca et al., 2017). The relationship
between phospholipids metabolites and GCGR signaling has
not been extensively studied. In our study, Most of PCs,
PSs, and PEs were increased after GCGR knockout, and
four of six changed TGs were also increased, whereas the
amount of up-regulated DGs were equal to that of down-
regulated DGs (5 vs. 5). Moreover, all the lyso-derivatives of
glycerophospholipids, LPEs, LPCs, LPAs, and LPI, were down-
regulated (Figures 3A,B). Consistently, the transcript level of
lysophospholipid acyltransferases (Lpeat, Lpcat, Gapt, Lpiat) all
declined (Figure 3A, Supplementary Table 3). Previous studies
have shown that TGs and DGs were increased in obesity and
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FIGURE 8 | Summary of the experimental workflow and findings. Global metabolomics and lipidomics analysis were performed to study the metabolic change of

gcgr−/− mutant zebrafish. One hundred seven significantly different metabolites were found by metabolomics, and most of these metabolites were lipid and lipid-like

molecules. Eighty-seven significantly different lipids were found by lipidomics. Integration analyses of metabolomics, lipidomics, and transcriptomics were then

performed. Based on the analysis, we found that gcgr−/− zebrafish displayed some similar metabolic changes to other studies. Importantly, we found that knockout of

GCGR in zebrafish resulted in down-regulated tryptophan metabolism, up-regulated arachidonic acid metabolism, and disruption of glycerophospholipid metabolism.

T2D (Bitzur et al., 2009; Erion and Shulman, 2010; Markgraf
et al., 2016), and PC levels were reduced in obese or insulin-
resistant subjects (Razquin et al., 2018). Moreover, glucagon has
been shown to stimulate hepatocyte TG secretion, and glucagon
administration resulted in decreased TG plasma concentrations,
as well as reduced hepatic TG content and secretion (Guettet
et al., 1988; Bobe et al., 2003). However, how GCGR signaling
regulates the glycerophospholipid metabolism remains to be
further elucidated.

ARA metabolism was increased in GCGR knockout zebrafish
(Figure 5), with 33 different metabolites involved in this
pathway. Except for the ARA and PC set, all other 17
metabolites from this pathway were increased. These metabolites
covering six classes of eicosanoids, including prostaglandins
(PGG2, PGE2, 6-Keto-PGF1a, 6-keto-PGE1, 15-deoxy-PGJ2),
leukotrienes (LTA4, LTB4, and 5(S)-HPETE), lipoxins (LXB4),
hepoxilins (TXA3 and TXB3), hydroxyeicostetraenoic acids
(15-OxoETE, 12(S)-HPETE, 15(S)-HPETE, 11,12,15-THETA,
and 12-OxoETE), and isoprostanes (8-isoprostane). Metabolites

derived from ARA metabolism have been implicated in immune
surveillance, inflammation response, glucose metabolism, and
lipid metabolism (Hartl and Wolfe, 1990; Tallima and El
Ridi, 2018). And the metabolites of eicosanoids derived from
ARA were involved in the regulation of pancreatic β-cell
function, participating in the pathogenesis of diabetes and
its complications (Luo and Wang, 2011; Sonnweber et al.,
2018). Moreover, hyperglucagonemia caused by glucagonoma
increased the levels of ARA, prostaglandins, and leukotrienes in
patients (John and Schwartz, 2016). On the other hand, in vitro
studies suggested that some of the prostaglandins can increase
both basal and stimulated glucagon release (Giugliano et al.,
1981; Walsh and Pek, 1984). However, how GCGR signaling
participates in the regulation of ARA metabolism is yet to
be explored.

GCGR blockade–induced hyperaminoacidemia has also been
documented in mammals, from mice, monkey, to human
patients (Okamoto et al., 2015; Larger et al., 2016; Galsgaard
et al., 2018; Li et al., 2018). Studies further revealed that
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plasma hyperaminoacidemia was due to the decreased liver
amino acid catabolism after GCGR inhibition (Solloway et al.,
2015; Kim et al., 2017; Winther-Sorensen et al., 2020). High
levels of plasma amino acids in turn stimulated the pancreatic
α-cell hyperplasia, which has been defined as the liver-α
cell axis (Dean et al., 2017; Galsgaard et al., 2018; Wewer
Albrechtsen et al., 2018a). Similar to other studies, we found
that the amino acid catabolism and ureagenesis were also
downregulated in gcgr−/− zebrafish (Figure 6) (Kang et al., 2020;
and this study), and the gcgr−/− zebrafish also displayed α-cell
hyperplasia, suggesting that the liver-α cell axis is also conserved
in zebrafish. Strikingly, several metabolites in the tryptophan
metabolism pathway were dramatically down-regulated in
gcgr−/− zebrafish (Figure 7A). Tryptophan and its metabolites
play many key roles in different physiological processes,
including cell growth, immune response, neurotransmission,
and enteroendocrine cell metabolism (Martin et al., 2019;
Platten et al., 2019). Although the kynurenine pathway
of tryptophan degradation did not change, the serotonin,
melatonin, and three indole metabolites (indole-3-ethanol, 3-
methyldioxyindole, and skatole) were significantly decreased.
As melatonin functions as an important modulator of sleep
and circadian regulation, as well as pancreatic hormone
secretion (Yabut et al., 2019; Garaulet et al., 2020), we then
measured the melatonin contents and locomotor activity in
a whole cycle of ZT. Our results indicated that melatonin
diel rhythmicity was dampened in gcgr−/−, which resulted
in increased locomotor activity. Studies have demonstrated
that increase in melatonin levels leads to enhanced α cells
glucagon secretion both in vitro and in vivo (Ramracheya
et al., 2008; Bahr et al., 2011, 2012). Moreover, knockouts of
melatonin receptor 1 (MT1), melatonin receptor 2 (MT2), or
both significantly elevated GCGR mRNA levels in the liver (Bahr
et al., 2011). And pinealectomized diabetic rats (melatonin is
predominantly secreted by the pineal) displayed an enhanced
number of GCGRs and increased glucagon-binding activities
in the liver (Mellado et al., 1989). All these data suggested
that melatonin is highly associated with glucagon pathway.
However, further studies need to be conducted to investigate
the detail mechanism of how they interact and regulate the
circadian rhythm.

In summary, we performed a global metabolomics and
lipidomics study of gcgr−/− mutant zebrafish, conducted
the integrated analysis with global transcriptomics, and
validated some findings in the model. We found that lipid
metabolism and amino acid metabolism were remodeled
in GCGR knockout. Consistent with GCGR studies in
mammals, we also found that gcgr−/− zebrafish showed
decreased ureagenesis and impaired cholesterol metabolism.
Beyond these, we also found that the glycerophospholipid
metabolism was disrupted, the ARA metabolism was up-
regulated, and the tryptophan metabolism pathway was
down-regulated (Figure 8). These global omics data provide
us a better understanding of GCGR in the metabolism
remodeling and may provide useful information for GCGR
antagonism therapies.
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