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8-Oxoguanine DNA glycosylase (OGG1) is the major cellular enzyme required for the
excision of 8-oxoguanine DNA base lesions in DNA through the base excision repair
(BER) pathway, and therefore plays a major role in suppressing mutagenesis and in
controlling genome stability. However, the mechanism of regulation of cellular OGG1
protein, particularly in response to oxidative stress, is unclear. We have purified the
major E3 ubiquitin ligase responsible for OGG1 ubiquitylation from human cell extracts,
and identify this as E3 ubiquitin-protein ligase NEDD4-like (NEDD4L). We demonstrate
that recombinant NEDD4L stimulates ubiquitylation of OGG1 in vitro, particularly on
lysine 341, and that NEDD4L and OGG1 interact in U2OS cells. Depletion of NEDD4L
in U2OS cells has no impact on the stability and steady-state protein levels of OGG1,
however, OGG1 stability is enhanced in response to oxidative stress induced by ionizing
radiation. Furthermore, ubiquitylation of OGG1 by NEDD4L in vitro inhibits its DNA
glycosylase/lyase activity. As a consequence of prolonged OGG1 stability and increased
excision activity in the absence of NEDD4L, cells display increased DNA repair capacity
but conversely that this decreases cell survival post-irradiation. This effect can be
reproduced following OGG1 overexpression, suggesting that dysregulation of OGG1
increases the formation of lethal intermediate DNA lesions. Our study therefore highlights
the importance of balancing OGG1 protein levels and BER capacity in maintaining
genome stability.
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INTRODUCTION

Highly reactive oxygen species (ROS) are produced in cells as a consequence of oxidative
metabolism, and in addition to exogenous sources including ionizing radiation (IR), these
are able to attack DNA and disrupt genome integrity. Therefore, the formation of oxidative
DNA base damage, base loss (apurinic/apyrimidinic or AP sites) and DNA strand breaks is
a common occurrence (∼10,000 DNA lesions per cell per day; Lindahl, 1993). If the DNA
damage is not resolved by the cellular DNA repair machinery, this can promote mutagenesis and
lead to development of several human diseases, including premature aging, neurodegenerative
diseases, and cancer. Fortunately, cells are equipped with damage-specific DNA glycosylases that
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excise DNA base modifications (Jacobs and Schar, 2012;Wallace,
2013), as well as other protein members of the base excision
repair (BER) pathway that restore the DNA to its undamaged
form. These proteins include AP endonuclease 1 (APE1) that
incises the AP site formed following DNA glycosylase incision,
DNA polymerase β (Pol β) that inserts the correct nucleotide
and removes the 5′-deoxyribosephosphate moiety, and DNA
ligase IIIα-X-ray repair cross-complementing protein 1 (Lig
IIIα-XRCC1) complex that seals the nick in the DNA backbone
(Parsons and Dianov, 2013).

Proteins within the BER pathway have been shown to
be regulated by a number of post-translational modifications,
including acetylation, phosphorylation and ubiquitylation, that
control the efficiency of the pathway and therefore of the cellular
DNA damage response (Carter and Parsons, 2016). In particular,
ubiquitylation on site-specific lysine residues within BER proteins
catalyzed by E3 ubiquitin ligases have been demonstrated to play
a key role in controlling cellular steady state levels of proteins,
as well as those in response to DNA damage stress (Edmonds
and Parsons, 2014). For example, we have previously identified
that Mcl-1 ubiquitin ligase E3 (Mule) and tripartite motif 26
(TRIM26) target the DNA glycosylase endonuclease VIII-like
protein 1 (NEIL1) for ubiquitylation-dependent degradation
which is important for controlling cell survival in response to
IR (Edmonds et al., 2017). More recently, we have also shown
that TRIM26 controls the cellular protein levels of another DNA
glycosylase, endonuclease III homologue (NTH1), in response
to oxidative stress induced by hydrogen peroxide (Williams and
Parsons, 2018). Therefore, it is clearly evident that BER proteins,
and the pathway itself, is tightly regulated by ubiquitylation in
response to the endogenous levels of DNA damage.

8-Oxoguanine DNA glycosylase (OGG1) is the major DNA
glycosylase that excises 8-oxoguanine lesions from DNA (Boiteux
and Radicella, 2000), which is a well-known premutagenic lesion
contributing to GC to TA transversions. OGG1 knockout mice
have been shown to exhibit accumulation of 8-oxoguanine but
only display moderate, but significant, spontaneous mutation
rates (Klungland et al., 1999; Minowa et al., 2000; Sakumi et al.,
2003), likely due to redundancy with other DNA glycosylases
(e.g., NEIL1). However, reduced OGG1 protein, and thus activity,
has been observed in prostate cancer cells (Trzeciak et al., 2004),
and reduced OGG1 has also been associated with increased risk
of head and neck squamous cell carcinoma (Paz-Elizur et al.,
2006; Kumar et al., 2012) and with an aggressive form of breast
cancer (Karihtala et al., 2012) observed utilizing patient tumor
samples. Conversely, increased OGG1 protein expression and
activity has been observed in colorectal cancer tissues (Kondo
et al., 2000). Interestingly in TK6 lymphoblast cells, depletion
of OGG1 caused reduced sensitivity to IR, whereas OGG1
overexpression enhanced cell death (Yang et al., 2004; Yang et al.,
2006), suggesting that the balance of the protein is critical for
controlling cell survival post-irradiation. Additionally, a well-
characterized single nucleotide polymorphism of OGG1 (serine
326 to cysteine) is associated with a higher risk of developing
a number of different cancers (Karahalil et al., 2012), due
to deficiencies in the repair of 8-oxoguanine (Bravard et al.,
2009; Kershaw and Hodges, 2012). More recently, it has been

demonstrated that OGG1 plays an important role in preventing
accumulation of telomeric 8-oxoguanine, and therefore telomere
loss, vital for promoting cell growth (Fouquerel et al., 2019).
Furthermore, OGG1 has been shown to have a role in controlling
gene expression (Wang et al., 2018), specifically by excising
8-oxoguanine lesions from guanine-rich promotor sequences
leading to promotion of G-quadruplex structures and subsequent
transcriptional activation (Fleming et al., 2017). Collectively, it
is clear that OGG1 is vital in the suppression of the levels of
8-oxoguanine in genomic DNA, and that the protein should be
tightly regulated to prevent genome instability and mutagenesis
that promote disease development. To this effect, it has been
previously demonstrated that OGG1 is subject to ubiquitylation-
dependent degradation by the E3 ubiquitin ligase carboxy
terminus of Hsc70 interacting protein (CHIP), but only under
conditions of mild hyperthermia (Fantini et al., 2013). Therefore,
the specific E3 ubiquitin ligase enzymes and mechanisms that
control the cellular protein levels of OGG1 particularly in
response to oxidative DNA damage, are currently unknown.

Here, we have purified and identified E3 ubiquitin-protein
ligase NEDD4-like (NEDD4L) as the major cellular E3 ubiquitin
ligase that catalyzes ubiquitylation of OGG1 in vitro, and that
accurate control of cellular OGG1 protein levels and activity are
required for modulating overall BER capacity but also promoting
cell survival in response to IR.

MATERIALS AND METHODS

Reagents
OGG1 antibodies (ab124741) were from Abcam (Cambridge,
United Kingdom), actin antibodies were from Sigma-Aldrich
(Gillingham, United Kingdom), NEDD4L and TRIM21
antibodies were from Bethyl Laboratories (Montgomery,
United States). HeLa cell pellets for protein fractionation by
column chromatography were from Cilbiotech (Mons, Belgium).
Ubiquitin was purchased from Boston Biochemicals (Cambridge,
United States). Bacterial expression plasmids for E1 (UBE1)
and 9 × E2 enzymes (UBCH2, UBCH3, UBCH5A, UBCH5B,
UBCH5C, UBCH6, UBCH7, UBCH8, and UBCH10), as well
as the mammalian expression plasmid for HA-tagged NEDD4L
were acquired from Addgene (Cambridge, United States). Full
length ogg1 cDNA was re-cloned using ligation independent
cloning (Aslanidis and De Jong, 1990) from a bacterial expression
plasmid (pET28a) for OGG1 and into pCMV-Tag3a vector for
mammalian expression. Conversely nedd4l cDNA was re-cloned
into pET28a vector for bacterial expression. The trim21 cDNA
was also recloned into the same vector, using the mammalian
expression plasmid kindly provided by Prof A. Garcia-Sastre.
Site-directed PCR mutagenesis was used to generate site-specific
mutants within OGG1 and catalytically inactive (C942A)
NEDD4L. His-tagged NEDD4L, OGG1, E1, and E2 enzymes
were overexpressed in Rosetta2(DE3)pLysS bacterial cells
(Merck-Millipore, Watford, United Kingdom) and purified
using HisTrap column chromatography (GE Healthcare, Little
Chalfont, United Kingdom).
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Cell Culture, siRNA Knockdowns and
Clonogenic Assays
U2OS cells (kindly provided by Prof G. Dianov) were cultured
at 37◦C in 5% CO2 in Dulbecco’s Modified Eagle Medium
(DMEM) containing 10% fetal bovine serum, 2 mM L-
glutamine, 1× penicillin–streptomycin and 1× non-essential
amino acids. Cells were routinely tested to ensure absence
of mycoplasma infection. For siRNA knockdowns, cells were
cultured in 35 mm dishes for 24 h to 30–50% confluence and
then treated with 2 µl Lipofectamine RNAiMAX transfection
reagent (Life Technologies, Paisley, United Kingdom) in the
presence of 40 nM Qiagen AllStars Negative Control siRNA
(Qiagen, Southampton, United Kingdom), NEDD4L siRNA#1
(5′-GGAGACAGCAUUCUAUUUA-3′) or NEDD4L siRNA#2
(5′-GAAUAUCGCUGGAGACUCU-3′) for a further 72 h. For
clonogenic assays, cells were irradiated in 35 mm dishes
with the CellRad x-ray irradiator (Faxitron Bioptics, Tucson,
United States), trypsinized, counted and a defined number
seeded in triplicate into six-well plates and incubated at 37◦C
in 5% CO2. Note that double the numbers of cells were seeded
following NEDD4L siRNA, and increasing cell numbers were
used for increasing doses of x-ray irradiation to account for
cellular plating efficiencies. Colonies were allowed to grow for
7–10 days, prior to fixing and staining with 6% glutaraldehyde,
0.5% crystal violet for 30 min. Plates were washed, left to air
dry overnight and colonies counted using the GelCount colony
analyzer (Oxford Optronics, Oxford, United Kingdom). Relative
colony formation (surviving fraction) was expressed as colonies
per treatment level versus colonies that appeared in the untreated
control. Statistical analysis was performed using the CFAssay for
R package (Braselmann et al., 2015).

Whole Cell Extract Preparation, Cell
Fractionation and Immunoprecipitations
Cells were harvested and whole cell extracts prepared as
previously described (Edmonds et al., 2017; Williams and
Parsons, 2018). Cell fractionation generating soluble and
chromatin bound protein fractions was also performed
as previously described (Edmonds et al., 2017). For
immunoprecipitations, Protein A magnetic beads (New
England Biolabs, Hitchin, United Kingdom) were washed three
times with Buffer A [50 mM Tris–HCl (pH 8.0), 1 mM EDTA,
5% glycerol] using a magnetic separation rack and beads (10 µl)
subsequently incubated with 0.5 µg OGG1 antibodies for 3 h
at 4◦C with shaking. OGG1 antibody-beads, along with a beads
only control (mock immunoprecipitation), were washed three
times with Buffer A and then incubated with 100 µg U2OS whole
cell extracts for 2 h at 4◦C with shaking. The immunodepleted
extracts were removed from the beads, and the beads washed
three times with Buffer A containing 150 mM KCl. SDS-PAGE
sample buffer was added to the washed beads and heated for
5 min at 95◦C prior to SDS-PAGE and immunoblotting. Proteins
were separated by 10 % Tris-glycine SDS-PAGE, transferred
onto an Immobilon FL PVDF membrane (Millipore, Watford,
United Kingdom), blocked using Odyssey blocking buffer (Li-cor
Biosciences, Cambridge, United Kingdom) and incubated with

the primary antibody diluted in Odyssey blocking buffer with
0.1% Tween 20 overnight at 4◦C. Membranes were washed
three times with PBS containing 0.1% Tween 20 (5 min washes),
incubated with either Alexa Fluor 680 or IR Dye 800-conjugated
secondary antibodies for 1 h at room temperature and further
washed three times with PBS containing 0.1% Tween 20. After
a final wash with PBS, proteins were visualized and quantified
using the Odyssey image analysis system (Li-cor Biosciences,
Cambridge, United Kingdom).

Purification of the E3 Ubiquitin Ligase
From HeLa Whole Cell Extracts
HeLa whole cell extracts were prepared from 20 g HeLa cell
pellets, as described above, and were dialyzed against Buffer A
(50 mM Tris-HCl (pH 8.0), 5% glycerol, 1 mM EDTA, 1 mM
DTT and 100 µM PMSF) containing 150 mM KCl. The cell
extract was clarified by centrifugation (25,000 rpm for 20 min),
filtered through 0.45 µm syringe filters, added to a 250 ml
P-11 Phosphocellulose column and the flow-through collected
(designated PC150). The PC150 fraction was diluted two-fold
with Buffer A (achieving a final concentration of 75 mM KCl)
and then added to a 20 ml HiLoad Mono Q Sepharose column
(GE Healthcare, Little Chalfont, United Kingdom). The column
was washed with Buffer A containing 50 mM KCl, proteins
were eluted into 4 ml fractions using a 400 ml linear gradient
from 50 to 1000 mM KCl and active fractions were then pooled
and concentrated using Amicon Ultra-15 centrifugal filter units
(Millipore, Watford, United Kingdom). Proteins were loaded
onto a Superdex 200 HR 10/30 column (GE Healthcare, Little
Chalfont, United Kingdom) in Buffer A containing 150 mM
KCl and 0.5 ml fractions collected. Active fractions were pooled,
concentrated and buffer exchanged using Amicon Ultra-15
centrifugal filter units into Buffer B [5 mM KPO4 (pH 7.0),
5 % glycerol, 1 mM DTT and 100 µM PMSF]. Proteins were
applied to a 1 ml CHT ceramic hydroxyapatite column (Bio-
Rad, Hemel Hempstead, United Kingdom) in Buffer B, and eluted
into 0.5 ml fractions using a linear gradient of 5–500 mM KPO4.
Active fractions were pooled, diluted 10-fold in Buffer A and then
loaded onto a Mono Q 5/50 GL column (GE Healthcare, Little
Chalfont, United Kingdom) in buffer A containing 50 mM KCl
and proteins eluted into 0.5 ml fractions using a linear gradient
of 50–1000 mM KCl. After each chromatography stage, protein
fractions were examined for in vitro OGG1 ubiquitylation activity
and those displaying significant activity were pooled for the next
chromatography step. Proteins present in active fractions from
the final Mono Q chromatography were identified by tandem
mass spectrometry using the Q Exactive instrument operated
in data dependent positive (ESI+) mode, as recently described
(Edmonds et al., 2017).

In vitro Ubiquitylation Assay and
Immunoblotting
Ubiquitylation reactions (typically 15 µl) containing 6 pmol
His-OGG1, 0.7 pmol GST-E1 activating enzyme, 2.5 pmol E2
conjugating enzyme (combination of nine different E2s, unless
otherwise stated) and 0.6 nmol ubiquitin in buffer containing
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25 mM Tris–HCl (pH 8.0), 4 mM ATP, 5 mM MgCl2, 200 µM
CaCl2, and 1 mM DTT were incubated in LoBind protein
tubes (Eppendorf, Stevenage, United Kingdom) for 1 h at
30◦C with agitation. Reactions were halted by the addition
of SDS-PAGE sample buffer [25 mM Tris–HCl (pH 6.8),
2.5% β-mercaptoethanol, 1% SDS, 10% glycerol, 1 mM EDTA,
0.05 mg/ml bromophenol blue] and heated for 5 min at 95◦C
prior to SDS-PAGE and immunoblotting.

Preparation of 8-Oxoguanine DNA
Substrate and in vitro BER Assay
A 5′-fluorescently labeled oligonucleotide containing 8-
oxoguanine at position 20 (5′-IRDYE700-ATCTACCGAGTCC
GTCCGAXCACGCTTATTGGCTACCGA-3′; where X is
equivalent 8-oxoguanine) and the complementary oligo-
nucleotide containing cytosine opposite the 8-oxoguanine
lesion (5′-TCGGTAGCCAATAAGCGTGCTCGGACGGACTCG
GTAGAT-3′; where bold C is equivalent to complementary
cytosine) were annealed in TE buffer containing 200 mM
NaCl by heating at 95◦C for 5 min and slow cooling to room
temperature to generate the 8-oxoguanine:C oligonucleotide
duplex. Reactions (10 µl) contained 50 fmol DNA, 1 µg
acetylated BSA in buffer containing 25 mM Tris–HCl (pH 8.0),
50 mM KCl, 2 mM ATP, 8.5 mM MgCl2, 0.5 mM EDTA, 8.5%
glycerol, and 1 mM DTT, and which were incubated for 20 min
at 37◦C with agitation. Reactions were stopped by the addition
of 10 µl formamide loading dye (95% formamide and 2.5 mg/ml
bromophenol blue). Samples were heated for 5 min at 95◦C prior
to analysis by 10% denaturing PAGE (7 M urea) and substrate
incision quantified using the Odyssey Image Analysis System.

Alkaline Single Cell Gel Electrophoresis
(Comet) Assay
The enzyme-modified comet assay was performed similar to
that recently described (Carter et al., 2018, 2019), but under
alkaline conditions. In brief and following cell lysis, slides were
washed three times with enzyme reaction buffer (40 mM HEPES-
KOH, 100 mM KCl, 0.5 mM EDTA and 0.2 mg/ml BSA,
pH 8.0), and then incubated with either buffer alone (mock
treated) or with buffer containing 5 pmol OGG1 and 0.6 pmol
APE1 for 1 h at 37◦C in a humidified chamber. Slides were
transferred to an electrophoresis tank and incubated in the
dark for 30 min in fresh cold electrophoresis buffer (300 mM
NaOH, 1 mM EDTA, 1 % (v/v) DMSO, pH 13) to allow
the DNA to unwind. Electrophoresis was performed at 25 V,
300 mA for 25 min, slides were neutralized with three 5 min
washes of 0.5 M Tris–HCl (pH 8.0), and allowed to air dry
overnight. Slides were rehydrated for 30 min in water (pH
8.0), stained for 30 min with SYBR Gold (Life Technologies,
Paisley, United Kingdom) diluted 1:20,000 in water (pH 8.0)
and allowed to air dry prior to imaging. Cells (50 per slide, 2
slides per time point) were analyzed using the Komet 6.0 image
analysis software (Andor Technology, Belfast, United Kingdom).
Percentage tail DNA values were averaged from at least three
independent experiments.

RESULTS

Purification of the Major E3 Ubiquitin
Ligase Promoting OGG1 Ubiquitylation
Given the vital role of OGG1 in prevention of mutagenesis
and genome instability through excising 8-oxoguanine lesions
in DNA, we hypothesized that cellular protein levels of OGG1
are tightly regulated by ubiquitylation. Therefore to identify
the E3 ubiquitin ligase in human cells that promoted OGG1
ubiquitylation, we utilized our previously successful and unbiased
approach (Parsons et al., 2008; Parsons et al., 2009; Edmonds
et al., 2017; Williams and Parsons, 2018). This methodology
involves the utilization of column chromatography to separate
proteins present within HeLa cell extracts (Figure 1A), and
then to examine the E3 ubiquitin ligase activity of protein
fractions using OGG1 protein as a substrate, along with factors
that promote ubiquitylation (one E1 activating enzyme, nine
E2 conjugating enzymes and ubiquitin). From the first stage
using Phosphocellulose chromatography, there was evidence of
a monoubiquitylation activity targeting OGG1 present in the
low salt elution fraction (PC150), as demonstrated by protein
bands just below 50 kDa (equivalent to the size of 38.8 kDa
OGG1 plus addition of 8 kDa ubiquitin) which were higher in
intensity than the control reaction without any protein fraction
(Figure 1B; compare lanes 1 and 2–5 and Supplementary
Figure 1A). A much weaker ubiquitylation activity was present
in the high salt elution fraction (PC1000) (Figure 1B; compare
lanes 1 and 6–10). We subsequently focused on the activity
present within PC150, which was then separated by ion exchange
(Mono Q) chromatography (Supplementary Figure 2). This
stage of the protein separation process revealed the presence
of two E3 ubiquitin ligase activities targeting OGG1, with one
promoting polyubiquitylation as revealed by multiple OGG1
protein band shifts (Figure 1C; OGG1-E31, fractions 20–28
and Supplementary Figure 1B) and the other, much weaker
activity, promoting OGG1 monoubiquitylation (OGG1-E32,
fractions 56–58).

After the Mono Q chromatography stage, we again focused
on the most significant ubiquitylation activity targeting OGG1
(OGG1-E31), which was separated by size exclusion (Superdex
200) chromatography. The E3 ubiquitin ligase activity of these
protein fractions demonstrated significant stimulation of OGG1
polyubiquitylation, but furthermore suggested that the activity
corresponded to a protein or protein complex equivalent to a
molecular weight of ∼66–200 kDa in size (Figure 2A; fractions
6–9 and Supplementary Figure 3A). Fractions containing
this activity were subsequently separated by hydroxyapatite
chromatography, and also by a final ion exchange (Mono Q)
chromatography, and whilst the E3 ubiquitin ligase activity
targeting OGG1 had reduced in intensity, this was still clearly
visible (Figure 2B; fractions 4–6 and Supplementary Figure 3D).
These purified fractions were subject to analysis by nanoLC-
MS/MS tandem mass spectrometry which revealed the presence
of proteins associated with protein ubiquitylation but more
importantly three E3 ubiquitin ligases, NEDD4L, tripartite
motif-containing protein 21 (TRIM21) and E3 ubiquitin-protein
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FIGURE 1 | Purification of the major cellular E3 ubiquitin ligase for OGG1. (A) Scheme for the purification of the E3 ubiquitin ligase for OGG1 from HeLa cell extracts.
(B) In vitro ubiquitylation of His-tagged OGG1 by low-salt (PC150) and high salt elution (PC1000) protein fractions generated from Phosphocellulose chromatography
of HeLa whole cell extract. A control reaction (C) in the absence of any fraction is in the first lane, and increasing amounts (1, 2, 5, and 10 µg) of fraction were used.
(C) In vitro ubiquitylation of His-tagged OGG1 using fractions from the first ion exchange (Mono Q) chromatography. Reactions were analyzed by SDS-PAGE and
immunoblotting using OGG1 antibodies. Molecular weight markers are indicated on the left-hand side of the immunoblots, and the positions of unmodified and
ubiquitylated OGG1 (OGG1ub) are displayed. Fractions containing E3 ubiquitin ligase activity for OGG1 (OGG1-E11 and OGG1-E2) are indicated.

ligase NEDD4 (Table 1). NEDD4L, which displayed the highest
Mascot score of these candidate E3 ubiquitin ligases, had a
protein sequence coverage of 10% (Figure 2C). We therefore
analyzed protein fractions purified from the size exclusion
chromatography stage for the presence of NEDD4L and TRIM21,
which both demonstrated a good alignment with OGG1
ubiquitylation activity (Figure 2A; lanes 5–9 and Supplementary
Figures 3B,C). However, following the final ion exchange (Mono
Q) chromatography, these proteins eluted differently and the E3
ubiquitin ligase activity targeting OGG1 demonstrated a more
accurate alignment with the presence of NEDD4L (Figure 2B;
lanes 4–7 and Supplementary Figures 3E,F).

Characterization of NEDD4L as an E3
Ubiquitin Ligase for OGG1
Given that we had identified TRIM21 and NEDD4L as two
candidate enzymes purified from HeLa cell extracts that have
the potential to target OGG1 for ubiquitylation, in order to
confirm which enzyme catalyzes this activity, we cloned trim21
and nedd4l cDNA into a bacterial expression plasmid and then
purified the recombinant proteins following overexpression. We
were able to purify the full length recombinant E3 ubiquitin
ligase proteins to a similar level of purity (Supplementary
Figures 4A,B; see protein staining), although NEDD4L (112 kDa)

was quite unstable and a certain degree of degradation
was revealed by immunoblotting, in comparison to TRIM21
(54 kDa). Nevertheless, we examined the E3 ubiquitin ligase
activity of both enzymes using OGG1 as a substrate, and
demonstrated that only NEDD4L was capable of catalyzing
OGG1 ubiquitylation (Figure 3A; lanes 5–7) and not TRIM21
(Figure 3A; lanes 1–4 and Supplementary Figure 5A). In
addition, we created an enzymatically inactive form of NEDD4L
protein with a mutation in the cysteine residue (C942A)
present within the active site. Following overexpression and
purification of recombinant NEDD4L-C942A from bacterial
cells, we demonstrated that catalytically inactive NEDD4L-
C942A was unable to ubiquitylate OGG1 in vitro when compared
to wild-type NEDD4L (Figure 3B; compare lanes 2–3 to 4–5
and Supplementary Figure 5B). We consequently examined the
specificity of NEDD4L for the E2 conjugation enzyme promoting
OGG1 ubiquitylation, and show that it displays preference for
the H5a and H5b E2 enzymes, and to a lesser extent H5c, H6,
and H7 (Figure 3C and Supplementary Figure 5C). This E2
enzyme specificity was similar to that shown by the E3 ubiquitin
ligase activity purified from HeLa cell extracts (Figure 3D and
Supplementary Figure 5D), suggesting that the enzyme is most
likely NEDD4L. In an attempt to identify the site of OGG1
ubiquitylation by NEDD4L, we generated a series of single
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FIGURE 2 | NEDD4L is an E3 ubiquitin ligase for OGG1 purified from human cell extracts. (A) In vitro ubiquitylation of His-tagged OGG1 by fractions generated from
size exclusion (Superdex 200) chromatography. Above the figure are the positions of elution of known protein molecular weight standards. (B) In vitro ubiquitylation
of His-tagged OGG1 by fractions obtained from the final ion exchange (Mono Q) chromatography. (A,B) contain immunoblotting of the appropriate fractions for the
E3 ubiquitin ligases NEDD4L and TRIM21. (C) Protein sequence of NEDD4L with the peptides detected by mass spectrometry highlighted in red.

TABLE 1 | Mass spectrometry analysis of purified fractions containing OGG1-E31.

Accession Description Mascot Score

P22314 Ubiquitin-like modifier activating enzyme 1 2510

P08107 Heat shock 70 kDa protein 1031

Q9Y3F4 Serine-threonine kinase receptor-associated protein 560

Q04323 UBX domain-containing protein 1 245

Q95155 Ubiquitin conjugation factor E4 B 390

Q94888 UBX domain-containing protein 7 326

Q9NZL4 Hsp70-binding protein 1 305

Q96PU5 E3 ubiquitin-protein ligase NEDD4-like 200

Q6PID6 Tetratricopeptide repeat protein 33 190

P19474 E3 ubiquitin-protein ligase TRIM21 178

Q9GZS3 WD repeat-containing protein 61 158

P46934 E3 ubiquitin-protein ligase NEDD4 151

Candidate E3 ubiquitin ligases are highlighted in bold.

point mutations at the 12 lysine residues present within OGG1
(Figure 3E). Following overexpression and purification of the
proteins from bacterial cells, we subsequently discovered that
mutation of lysine 341 to arginine (K341R) at the C-terminal
end of the OGG1 protein completely suppressed ubiquitylation
by NEDD4L in vitro (Figure 3F; compare lanes 2–3 and 8–9 and
Supplementary Figure 5E), suggesting that this lysine residue
is the specific target for NEDD4L-dependent ubiquitylation.
In comparison, and as an example, mutation of lysine 82 to
arginine at the N-terminal end of the OGG1 protein did not

inhibit ubiquitylation by NEDD4L (Figure 3F; compare lanes
2–3 and 5–6).

Cellular Steady-State Protein Levels of
OGG1 Are Predominantly Unaffected by
Absence of NEDD4L
To confirm that OGG1 and NEDD4L interact in human cells,
we immunoprecipitated endogenous OGG1 from U2OS whole
cell extracts. Indeed, we were able to show that a small
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FIGURE 3 | NEDD4L ubiquitylates OGG1 in vitro on lysine 341. (A) In vitro ubiquitylation of His-tagged OGG1 by His-tagged TRIM21 and His-tagged NEDD4L.
Increasing amounts of TRIM21 (1.9, 3.7, and 7.4 pmol) and NEDD4L (1, 2.1 and 4.2 pmol) were used. (B) In vitro ubiquitylation of His-tagged OGG1 by His-tagged
wild type and C942A NEDD4L (1 and 2.1 pmol). A control reaction (C) in the absence of any E3 ubiquitin ligase protein is in the first lane. In vitro ubiquitylation of
OGG1 by (C) His-tagged NEDD4L (2 pmol) in the presence of individual E2 conjugating enzymes, or (D) an active fraction containing E3 ubiquitin ligase activity for
OGG1 (OGG1-E31) purified from HeLa whole cell extracts. Control reactions in the absence (C-) or presence (C+) of all E2 enzymes are in the first lane(s). (E) Protein
sequence of OGG1 with the lysine residues highlighted in red, and lysine 341 the target for NEDD4L-ubiquitylation underlined in red. (F) In vitro ubiquitylation of
His-tagged wild type (WT), K82R and K341R mutants of OGG1 by His-tagged NEDD4L. A control reaction (C) in the absence of NEDD4L is in lanes 1, 4 and 7, and
increasing amounts of NEDD4L (1 and 2.1 pmol) were used. All in vitro ubiquitylation reactions were analyzed by SDS-PAGE and immunoblotting using OGG1
antibodies. Molecular weight markers are indicated on the left-hand side of in vitro ubiquitylation reactions and the positions of unmodified and ubiquitylated OGG1
(OGG1ub) are displayed.

proportion of NEDD4L can be found in association with OGG1,
compared to the mock immunoprecipitation, even in the absence
of any exogenous stress (Figure 4A; compare lanes 4 and 5
and Supplementary Figure 6A). We subsequently analyzed the
cellular steady-state protein levels of OGG1 following depletion
of nedd4l using two individual siRNA sequences that were
effective (>85%) in suppressing the protein levels of NEDD4L
versus the non-targeting (NT) control siRNA (Figures 4B,C
and Supplementary Figures 6B–D). This revealed that OGG1
protein levels increased by 35 and 32%, respectively although
the data was not statistically significant. We therefore separated
cellular proteins by biochemical fractionation into soluble and
chromatin bound fractions. This demonstrated that the majority
of NEDD4L protein was present in the soluble fraction and
not associated with chromatin, whereas OGG1 was equally
distributed between both fractions (Figure 4D; compare lanes 1
and 2 and Supplementary Figures 6E–H). Following NEDD4L
siRNA, OGG1 stability in the soluble, NEDD4L-containing

fraction did not increase in comparison to the NT control
siRNA (Figure 4D; compare lanes 1 and 3 and Figure 4E).
No significant changes in the levels of OGG1 in the chromatin
bound fractions were also observed (Figure 4D; compare lanes
2 and 4), demonstrating that NEDD4L has no dramatic impact
on the steady state regulation of OGG1 protein levels. Since
we determined that lysine 341 is the major ubiquitylation site
within OGG1 catalyzed by NEDD4L in vitro (Figure 3F),
we also examined the comparative stability of wild type and
K341R OGG1 proteins following expression in U2OS cells
(Figure 4F and Supplementary Figures 6I,J). We found that
there was only a modest (∼15%) increase in stability of the
K341R mutant versus the wild type protein, which was not
statistically significant (Figure 4G). Note that a triplet of bands
was observed for both expressed OGG1 proteins due to sequential
loss of the 3xFLAG-tags (e.g., during expression, purification
or SDS-PAGE analysis), but that these displayed no differences
in intensity or stability, suggesting that ubiquitylation of OGG1
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FIGURE 4 | NEDD4L interacts with cellular OGG1 but does not control steady-state OGG1 protein levels. (A) Interaction of NEDD4L with OGG1 in U2OS cells
following incubation of whole cell extracts (WCE) with OGG1 antibodies (OGG1 IP) or with magnetic beads only (Mock IP). WCE (20 µg) and proteins bound to the
beads were analyzed by SDS-PAGE and immunoblotting with OGG1 and NEDD4L antibodies. (B–E) Analysis of OGG1 protein stability in the presence of
non-targeting (NT) control siRNA or NEDD4L siRNA (siRNA#1 and siRNA#2) for 72 h. (B) WCE was analyzed by SDS-PAGE and immunoblotting. (C) Protein levels
of OGG1 and NEDD4L relative to tubulin (mean ± SE) were quantified and normalized relative to the NT siRNA transfected cells which was set to 1.0. (D) Soluble (S)
and chromatin bound (CB) fractions were analyzed by SDS-PAGE and immunoblotting. (E) Protein levels of OGG1 relative to tubulin (mean ± SD) in the soluble
fraction were quantified and normalized relative to the NT siRNA transfected cells which was set to 1.0. (F) Analysis of the stability of wild type (WT) and OGG1
mutant (K341R) proteins in U2OS cells by SDS-PAGE and immunoblotting of WCE. (G) Levels of Flag-tagged WT and K341R OGG1 proteins relative to tubulin
(mean ± SD) were quantified and normalized relative to the WT-OGG1 transfected cells which was set to 1.0. All data was acquired from at least three independent
experiments.

at lysine 341 has no dramatic impact on stability of newly
synthesized OGG1 protein.

DNA Damage-Inducible Protein Levels of
OGG1 Are Modulated by NEDD4L, Which
Also Controls OGG1 Activity
To analyze dependence of NEDD4L on regulating the cellular
levels of OGG1 in response to oxidative DNA damage, we treated
U2OS cells with x-ray irradiation and monitored stability of
OGG1 at several time points post-IR in the absence versus
the presence of NEDD4L siRNA. In cells treated with NT
control siRNA, the stability of OGG1 increased immediately
post-IR and was maximal at 1 h post-IR where the levels were
∼1.45-fold higher than unirradiated cells (Figures 5A,C and
Supplementary Figures 7A,B). In contrast in the presence of
NEDD4L siRNA, the stability of OGG1 was prolonged from 2
to 6 h post-IR where they were statistically significantly higher
than NT control siRNA cells (Figures 5B,C and Supplementary
Figures 7C,D). To also investigate whether NEDD4L had any

impact on OGG1 DNA glycosylase activity, we examined excision
of a fluorescently labeled 8-oxoguanine containing duplex
oligonucleotide using NEDD4L-ubiquitylated OGG1 protein
prepared in vitro, compared to non-ubiquitylated OGG1 protein.
We found that the 8-oxoguanine substrate was 1.4–1.7-fold less
efficiently cleaved by ubiquitylated OGG1 compared to non-
ubiquitylated OGG1 (Figure 5D; compare lanes 2–4 and 5–7 and
Figure 5E). This difference in activity is observable even though
only ∼20 % of the OGG1 can be ubiquitylated by NEDD4L
in vitro (Figure 3A), but which nevertheless demonstrates that
NEDD4L-dependent ubiquitylation of OGG1 controls its DNA
glycosylase/lyase activity.

NEDD4L Regulates DNA Damage Repair
and Cell Survival in Response to IR
In order to examine the impact of the enhanced lifetime of
OGG1 post-IR in the absence of NEDD4L, but also the increased
activity of OGG1 under these conditions, we analyzed overall cell
survival in cells treated with NEDD4L siRNA. Additionally, we
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FIGURE 5 | NEDD4L controls OGG1 protein levels in response to DNA damage. (A–C) U2OS cells treated with (A) non-targeting (NT) control siRNA or (B) NEDD4L
siRNA, were either unirradiated (C) or treated with x-ray irradiation (10 Gy) and harvested at the indicated time points post-treatment. Whole cell extracts were
prepared and analyzed by SDS-PAGE and immunoblotting. (C) Protein levels of OGG1 protein relative to actin (mean ± SD) were quantified from at least three
independent experiments, and were normalized relative to the respective unirradiated cells which was set to 1.0. ∗p < 0.05 as analyzed by a two sample t-test.
(D–E) Incision of 8-oxoguanine duplex oligonucleotide substrate in the presence of increasing amounts of OGG1 or ubiquitylated OGG1 (170, 340, or 680 fmol).
In vitro ubiquitylation of OGG1 was performed prior to the incision assay in the presence of either His-tagged NEDD4L or heat-denatured His-tagged NEDD4L
(4.2 pmol). (E) Shown is the mean percentage substrate incision ± SD from at least three independent experiments. ∗p < 0.05, as analyzed by a one sample t-test.

included cells containing OGG1 overexpression (Figure 6A and
Supplementary Figures 8A–C), which would mimic the impact
of NEDD4L loss. We demonstrated that NEDD4L depleted
cells displayed significantly (p < 0.001) reduced cell survival in
response to x-ray irradiation compared to the NT control siRNA
treated cells (Figures 6B,C). Furthermore, this phenotype could
be reproduced following overexpression of OGG1 (p < 0.005
compared to NT siRNA treated cells), demonstrating that
increased levels and thus activity of OGG1 directly enhances the
cell killing effects of IR (Figure 6B). We subsequently analyzed
the impact of this increased stability of OGG1 post-IR, on the
kinetics of DNA damage repair in cells treated with NEDD4L
siRNA. Alkaline comet assays were used to measure the kinetics
of DNA single strand breaks and alkali-labile sites generated
directly but also as intermediates of BER. Post-IR, we observed
that DNA damage was gradually resolved in NT control siRNA
treated cells from 0 to 120 min post-irradiation (Figures 6D,E,
dark blue bars). In contrast in NEDD4L siRNA treated cells,
the levels of DNA damage were persistently higher, and were
statistically significant at 10–120 min post-irradiation than the
NT control siRNA treated cells (Figures 6D,E, compare dark

blue and red bars). We hypothesized that this increased DNA
damage in NEDD4L depleted cells was caused through increased
OGG1-mediated BER. Therefore, we utilized a modified version
of the comet assay, employing recombinant OGG1 and APE1
(to increase OGG1 processivity) to incise any residual oxidative
DNA damage at the various time-points post-irradiation. This
revealed elevated levels of DNA damage in NT control siRNA
treated cells from 20 to 120 min post-IR compared with the
same cells analyzed under the standard alkaline comet assay
conditions (Figures 6D,E, compare dark blue and light blue bars).
This demonstrated the presence of unrepaired oxidative DNA
damage during these time points, which have slower kinetics of
repair than directly induced DNA single strand breaks and alkali-
labile sites. However, in NEDD4L siRNA treated cells, there was
no impact of the enzyme-modified conditions on the levels of
DNA damage (Figures 6D,E, compare red and orange bars).
This suggests that oxidative DNA damage sites have been more
readily incised by the increased levels and activity of OGG1
in the absence of NEDD4L, resulting in an overall elevation
in BER intermediates which likely contribute to decreased cell
survival post-IR.
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FIGURE 6 | NEDD4L is required to control DNA damage repair and cell survival in response to IR. (A) WCE from U2OS cells treated with NT control siRNA, NEDD4L
siRNA, or following OGG1 overexpression were prepared and analyzed by SDS-PAGE and immunoblotting. (B–C) Clonogenic survival of cells was analyzed
following treatment with increasing doses of x-ray irradiation (0-4 Gy). Shown is the mean surviving fraction with standard errors from at least three independent
experiments, as well as respective images from the colonies formed. (D,E) Cells were irradiated with x-ray irradiation (1.5 Gy) and DNA damage measured at various
time points post-IR by the enzyme modified alkaline comet assay following incubation in the absence or presence (revealing residual oxidative DNA damage; as
indicated by mod) of the recombinant enzymes APE1 and OGG1. Shown is the mean % tail DNA ± SD. *p < 0.05, **p < 0.005, ***p < 0.001 as analyzed by a one
sample t-test. Also shown are respective images of the comets formed.

DISCUSSION

The BER pathway is the major DNA repair pathway which co-
ordinates the repair of oxidative DNA base damage and therefore
prevents the build-up of premutagenic lesions that can threaten
genome stability. OGG1 plays a specific role in the repair of
8-oxoguanine lesions that are well known and established to
promote GC to TA transversions in DNA. Whilst mice deficient
in OGG1 only display moderate increases in spontaneous
mutation rates associated with accumulation of 8-oxoguanine
(Klungland et al., 1999; Minowa et al., 2000; Sakumi et al., 2003),
altered OGG1 protein expression and activity has been observed
in a number of different cancer cell types, including prostate, head
and neck squamous cell carcinoma and colorectal cancer (Kondo
et al., 2000; Trzeciak et al., 2004; Paz-Elizur et al., 2006; Kumar
et al., 2012). Furthermore, a well-characterized single nucleotide
polymorphism of OGG1 (serine 326 to cysteine) exists that lacks
efficient repair of 8-oxoguanine and is associated with a higher

risk of cancer development (Karahalil et al., 2012). In this study,
and utilizing an unbiased approach for identifying E3 ubiquitin
ligase activities present within human cell extracts, we have now
identified NEDD4L that targets OGG1 for ubiquitylation on
lysine 341 in vitro and which reduces its DNA glycosylase/lyase
activity. Furthermore, we have shown that whilst depletion of
NEDD4L using siRNA had no impact on the cellular steady-state
protein levels of OGG1 protein, in response to oxidative DNA
damage caused by x-ray irradiation OGG1 displayed a prolonged
stability. As a consequence of this increased stability and incision
activity of OGG1 in the absence of NEDD4L, we demonstrate
that this caused enhanced DNA damage repair capacity but led to
formation of BER intermediates that contributed to an increase
in IR-induced cell killing.

NEDD4L is one of the nine members of the NEDD4 family of
E3 ubiquitin ligases, which share a similar structural architecture
consisting of an N-terminal calcium and phospholipid
binding domain, two-four central WW domains for substrate
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recognition, and a C-terminal HECT domain for catalytic
activity (Escobedo et al., 2014; Sluimer and Distel, 2018).
NEDD4L was originally identified as an E3 ubiquitin ligase
that ubiquitylates and degrades epithelial sodium channels
in the regulation of hypertension (Rizzo and Staub, 2015).
However, NEDD4L has also been recognized to target other
proteins including transforming growth factor β (TGF-β),
Smad2/3 and Dishevelled2 (Goel et al., 2015), which are vital
in cell signaling processes required for normal cell physiology.
This is reflected in the multiple pathologies that are observed
in NEDD4L knockout mice (Manning and Kumar, 2018).
We now add to this evidence by demonstrating that purified
and recombinant NEDD4L can target OGG1 and regulate its
DNA glycosylase/lyase activity in vitro, and controls OGG1
protein levels in cultured cells particularly in response to
DNA damage stress. Interestingly, the NEDD4 family has
previously been demonstrated to play a role in the DNA damage
response, particularly by controlling the ubiquitylation and
nuclear localization of BRCA1-associated ATM Activator 1
(BRAT1) that maintains ATM phosphorylation status (Low
et al., 2015). Also DNA damage binding protein 2 (DDB2),
which is well known to play a role in nucleotide excision repair
but also acts as a transcriptional regulator, has been shown to
downregulate NEDD4L expression (Zhao et al., 2015). Given
these major roles of NEDD4L in cell signaling and the cellular
DNA damage response, it is not surprising that absence of
NEDD4L is associated with disease development, particularly
cancer. Indeed, NEDD4L is significantly downregulated at
the gene and protein level in colorectal cancer (Eide et al.,
2013; Tanksley et al., 2013), non-small cell lung cancer and
breast cancer (Guarnieri et al., 2018) amongst others, and is
associated with a poor prognosis. Therefore, NEDD4L has been
identified as having a tumor suppressor role. An interesting
question is whether there is a backup E3 ubiquitin ligase
for OGG1 in cells, which may compensate for absence of
NEDD4L or mutations causing loss of function. Our results
demonstrated that there are additional activities for OGG1
present in fractionated extracts (e.g., OGG1-E12 promoting
monoubiquitylation) that may perform such a role. However,
these E3 ubiquitin ligase enzymes need to be identified
and fully characterized in terms of their impact on OGG1
activity and protein levels, as well as the site of ubiquitylation
relative to NEDD4L.

It is noteworthy that we observed that NEDD4L is
predominantly present within the soluble and cytosolic cell
compartment upon biochemical fractionation, and that the
enzyme most likely regulates the OGG1 protein present within
this fraction in response to oxidative stress, and not the
protein bound to chromatin. This is consistent with our
other previous studies, including those on Pol β and PNKP
(Parsons et al., 2008; Parsons et al., 2009; Parsons et al., 2012;
Carter and Parsons, 2016), demonstrating that ubiquitylation-
dependent regulation of BER protein levels occurs within the
cytosol and that this is a mechanism for allowing increases
in protein that can then be transported to the nucleus to
promote DNA damage repair. We found that the elevation
in OGG1 protein levels are relatively moderate post-IR (up

to 1.45-fold), although again this is consistent with our
previously reported evidence and which shows that BER is
finely tuned according to the levels of DNA damage stress.
However, predictably there should exist another E3 ubiquitin
ligase(s) that specifically regulates the nuclear protein levels
of OGG1 and/or its association with chromatin. Indeed, in
the initial chromatography fractionation of HeLa cell extracts
we demonstrated that another, albeit weaker, ubiquitylation
activity exists in the PC1000 fraction which largely contains
proteins that have an affinity for DNA. This enzymatic activity
needs to be purified and identified for subsequent detailed
analysis. Another question that needs to be resolved is the
sensing mechanism that modulates the E3 ubiquitin ligase
activity of NEDD4L towards OGG1 in response to oxidative
stress. This could occur either at the transcriptional level,
and speculatively may involve DDB2 as described above, or
could involve regulation of enzymatic activity through post-
translational modifications. Indeed, the C-terminus of OGG1
containing the lysine 341 ubiquitylation site discovered here,
has been shown to be subjected to a number of different
post-translational modifications, including phosphorylation and
acetylation (Carter and Parsons, 2016). Interestingly, lysine 341
and additionally lysine 338, have been shown to be targets
for acetylation by the acetyltransferase, p300 (Bhakat et al.,
2006). It was discovered that following oxidative stress, the
level of acetylated OGG1 increased and enhanced enzymatic
turnover. It is therefore tempting to suggest a model that
NEDD4L and p300 act as molecular switches to either inhibit
or activate, respectively the activity of OGG1 in response
to DNA damage by targeting lysine 341. This could be a
mechanism through which the BER pathway efficiently responds
to cellular oxidative DNA damage and helps promote genome
stability. The potential cross-talk between ubiquitylation and
acetylation (and other PTMs) of OGG1 though, requires
further investigation.

Interestingly, we demonstrated that prolonged stability of
OGG1 in response to DNA damage in cells treated with NEDD4L
siRNA led to enhanced capacity for BER, as demonstrated
by increases in DNA repair intermediates post-IR, but which
lead to elevated cell killing in response to IR. We also
demonstrated that NEDD4L regulates the efficiency of OGG1
DNA glycosylase/lyase activity in addition to protein stability,
which most likely contributes to the observed elevations in BER
intermediates. Our data correlates with previous observations
in TK6 lymphoblast cells demonstrating that overexpression
of OGG1 enhanced IR-induced cell death (Yang et al., 2004;
Yang et al., 2006). This suggests that the balance of the levels
and activity of the protein are critical for controlling cell
survival post-IR by preventing the formation of toxic DNA
repair intermediates, such as DNA single strand breaks that
can potentially lead to DNA double strand breaks following
DNA replication. One of these studies further demonstrated that
overexpression of OGG1 conversely led to increased resistance
to hydrogen peroxide-induced DNA damage, and suggested that
the differences in these phenotypes were caused by increased
processing of complex/clustered DNA damage sites generated
by IR that led to elevated formation of lethal DNA double
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strand breaks (Yang et al., 2006). Whilst this is an interesting
hypothesis which requires validation, it should be noted that the
frequency of these complex DNA lesions are likely to be very low
using x-ray and γ-irradiation due to their low ionization density.
Nevertheless, it will be important going forward to comparatively
analyze the impact of NEDD4L depletion on the cellular response
to hydrogen peroxide-induced DNA damage compared to those
obtained herein using x-ray irradiation utilizing multiple cell line
model systems, and to specifically monitor DNA damage repair
kinetics and the links with cell survival.
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