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Brain functional networks constructed via regularization has been widely used in
early mild cognitive impairment (eMCI) classification. However, few methods can
properly reflect the similarities and differences of functional connections among
different people. Most methods ignore some topological attributes, such as connection
strength, which may delete strong functional connections in brain functional networks.
To overcome these limitations, we propose a novel method to construct dynamic
functional networks (DFN) based on weighted regularization (WR) and tensor low-
rank approximation (TLA), and apply it to identify eMCI subjects from normal subjects.
First, we introduce the WR term into the DFN construction and obtain WR-based
DFNs (WRDFN). Then, we combine the WRDFNs of all subjects into a third-order
tensor for TLA processing, and obtain the DFN based on WR and TLA (WRTDFN)
of each subject in the tensor. We calculate the weighted-graph local clustering
coefficient of each region in each WRTDFN as the effective feature, and use the
t-test for feature selection. Finally, we train a linear support vector machine (SVM)
classifier to classify the WRTDFNs of all subjects. Experimental results demonstrate
that the proposed method can obtain DFNs with the scale-free property, and that
the classification accuracy (ACC), the sensitivity (SEN), the specificity (SPE), and
the area under curve (AUC) reach 87.0662% ± 0.3202%, 83.4363% ± 0.5076%,
90.6961% ± 0.3250% and 0.9431 ± 0.0023, respectively. We also achieve the
best classification results compared with other comparable methods. This work can
effectively improve the classification performance of DFNs constructed by existing
methods for eMCI and has certain reference value for the early diagnosis of Alzheimer’s
disease (AD).

Keywords: dynamic functional network (DFN), weighted regularization (WR), tensor low-rank approximation
(TLA), early mild cognitive impairment (eMCI), classification
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INTRODUCTION

Alzheimer’s disease (AD) is a typical dementia disease, which
accounts for about 60–70% of patients with dementia diseases
(Atangana et al., 2018). Notably, AD is a neurodegenerative
disease mainly characterized by memory dysfunction and with
an increasing morbidity, mortality, and economic cost (Lu
et al., 2019). However, it is unclear that AD biomarkers are
critical for catching the disease early to allow for preventative
interventions. Mild cognitive impairment (MCI) is a transitional
state between normal senility and AD (Muldoon and Bassett,
2016). Recent researches show that about 10–12% of MCI patients
deteriorate to AD patients every year, while only 1–2% of normal
senilities deteriorate to AD patients every year. MCI patients are
considered to be a high-risk group among AD patients (Jiao et al.,
2014; Zhang et al., 2015b). The brains of patients with early mild
cognitive impairment (eMCI) have very subtle changes compared
with those of normal people, which mainly manifest in abnormal
functional connections between certain regions (Bi et al., 2020a,b;
Tobia et al., 2017). If treatment and intervention can be carried
out in time after eMCI is discovered, we can greatly delay or
prevent the development of eMCI to MCI and AD.

Interestingly, non-genetic AD or MCI biomarkers are
also being extensively explored. With the development of
neuroimaging techniques, data collection technologies and
analysis methods are constantly being improved. Scientists can
directly and non-invasively study the structure and functional
activities of brains, thereby they can reveal the functional
and structural characteristics from the brains. Neuroimaging
techniques have become important tools for humans to explore
and study the brains (Zhang and Raichle, 2010; Zhang et al.,
2016b). Specially, the spatial resolution of functional magnetic
resonance imaging (fMRI) technology can reach the millimeter
level, and fMRI has the characteristics of higher temporal
resolution at the same time. Thus, it has been widely used
in clinical and scientific research. Compared with task-state
fMRI, resting-state fMRI has advantages such as simple and easy
operation, which provides great convenience for the diagnosis of
brain diseases (Du et al., 2012; Zhang et al., 2015a). However,
the spontaneous brain activity and the state of the scanning
instruments are usually random and asynchronous, so it is a big
challenge to identify eMCI patients with resting-state fMRI (Wee
et al., 2016a). Brain functional networks can effectively describe
the way of transmitting information inside the brain, especially
based on resting-state fMRI, have been widely applied to the
study of brain diseases (Zhang et al., 2018a,b; Bi et al., 2021).

Currently, Pearson’s correlation (PC) is one of the most
common methods to construct brain functional networks.
However, brain functional networks constructed by PC are often
dense and with a large number of redundant and false functional
connections (Lee et al., 2011). To solve this problem, one solution
is to set some thresholds (Jiao et al., 2018); another solution
is to use partial correlation method to construct sparse brain
functional networks (Marrelec et al., 2006; Peng et al., 2012; Zhou
et al., 2018). In fact, both methods have drawbacks. There is no
uniform requirement for the setting of threshold in the method
of thresholding processing, while usually a singular solution is

obtained by the partial correlation method which involves the
problem of solving the inverse of the matrix. The regularization
method converts some prior information into regularization
terms, which not only fits the data well but also effectively utilizes
the prior information. It makes the method for constructing
networks scalable (Karen et al., 2018).

The regularization method based on L1-norm has been
successful in the construction of brain functional networks
and in the auxiliary diagnosis of brain diseases. For example,
sparse representation (SR) (Lee et al., 2011) is a regularization
method based on L1-norm to construct brain functional networks
(Liu et al., 2010). But, it has many deficiencies. First, due
to the same penalty constraints, there is a lot of noise in
constructed networks, which may lose some important functional
connections (Li W.K. et al., 2020). Second, this method does
not consider the relationships among different subjects, and
sparsity constraint, when applied at an individual level, will cause
inter-subject variability and reduce classification performance
(Wee et al., 2016b). Wee et al. (2014) used group-constrained
sparse representation (GSR) to overcome these limitations,
and introduced the L2,1-norm regularization term into the
construction model of brain functional networks. GSR makes
brain functional networks of different people share the similar
topological structure, but the group-constraint cannot well reflect
the differences of functional connections among different people.

The data in the brain functional network is high-dimensional
and redundant, and most of the high-dimensional data is
located in a low-dimensional subspace (Meinshausen and
Bühlmann, 2006). Relevant studies have shown that high-
dimensional redundant data can be obtained by calculating
the low-rank approximation of the matrix, so matrix low-
rank approximation (MLA) is a solution to find useful
information from complex data (Halko et al., 2010). Compared
with MLA, tensor low-rank approximation (TLA) can fully
consider the correlation and prior knowledge between the
data, remove the redundant information of the data, and
retain valuable information (Jiang et al., 2019). Jiang et al.
(2019) used TLA to make the brain functional networks have
similar but not necessarily identical topology across subjects.
Although TLA can effectively overcome the limitations of GSR,
it is difficult to well reflect some discriminative functional
connections. This is a very common disadvantage, because some
prior knowledge may be explained by discriminative topology
properties in brain functional networks, and the classification
performance may be determined by some discriminative
functional connections.

To address above problems, we propose a method for
constructing dynamic functional networks (DFN) via weighted
regularization (WR) and TLA (WRTLA), and apply it to
distinguish eMCI subjects from normal subjects. First, we
formulate PC as an optimization model, and integrate the
connection strength into WR and derive the DFN based on
WR (WRDFN). Then we combine all the WRDFNs of all
subjects into a third-order tensor for TLA processing and
obtain the DFN based on WR and TLA (WRTDFN) of each
subject in the tensor. Next, we calculate the weighted-graph
local clustering coefficient of each brain region as an effective
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feature and use t-test to select features from WRTDFNs. Then,
we train a linear support vector machine (SVM) to classify the
WRTDFNs of all subjects and evaluate the classification results.
Finally, we discuss the classification performance of WRTDFNs
with different regularization parameters, the influence of
window widths and step sizes, and discriminative regions and
functional connections.

MATERIALS AND METHODS

Framework
Figure 1 shows the framework of constructing DFNs via WRTLA
for eMCI classification.

Data Acquisition and Processing
The resting-state fMRI data is derived from the ADNIGo
and ADNI2 datasets1 of the Alzheimer’s disease neuroimaging
initiative (ADNI) project. A total of 60 subjects are selected,
including 30 normal subjects and 30 eMCI subjects. The raw
resting-state fMRI data is preprocessed by using the SPM8
toolbox2 of Matlab R2012a software with further correction and
normalization. The process of preprocessed operations contains
slice timing, realignment, spatial normalization, smoothing,
detrend, filtering, etc. Then, we use the Anatomical Automatic
Labeling (AAL) template in the DPARSF3 toolbox to divide the

1http://adni.loni.ucla.edu
2http://www.fil.ion.ucl.ac.uk
3http://rfmri.org/dparsf

FIGURE 1 | The framework of constructing DFN via WRTLA for eMCI classification, including the following steps: (A) Preprocessing the original resting fMRI data of
normal subjects and eMCI subjects, (B) Extracting the time series containing all brain regions according to the AAL template, (C) Using sliding window method to
divide the entire time series into several overlapping segments, (D) Introducing the WR term into the construction of DFNs to obtain WRDFNs, (E) Stacking all
WRDFNs of subjects into a tensor and optimizing it using TLA and obtaining WRTDFNs, (F) Calculating and extracting the weighted-graph local clustering coefficient
of each brain region in WRTDFNs as the effective feature, and using the t-test to select features, and (G) Training a linear SVM classifier to classify the WRTDFNs of
all subjects and evaluating the classification performance.
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brain into 90 brain regions (45 brain regions for the left and right
brains), and the time series of each brain region are extracted
(Tzourio-Mazoyer et al., 2002). The filtering range is 0.01–
0.08 Hz, the standardized bounding box is [−90, −126, −72; 90,
90, 108], and the voxel size is [3 3 3]. It takes a certain amount of
time for both the machine and the subjects to enter a stable state.
The first 3 time points are removed during preprocessing, and
the remaining 137 time points are used for subsequent analysis.
Subjects’ data with large head movements (translation > 2 mm,
rotation> 2◦) are removed after realigning.

Conventional DFN Construction
Conventional DFNs are constructed by using sliding windows
(Chen et al., 2016, 2017). Suppose X =

[
x1, x2, ..., xp

]
∈ RV×P is

a time series matrix, V is the length of the time series, P is the
number of brain regions, and xi ∈ RV×1 are the time series of the
i-th brain region. Assuming that the window width is N and the
step size is S, the total number of windows K is expressed as K =
V−N
S + 1. Then, we calculate the PC coefficient between time

series in each sliding window. xki ∈ RN,
(
k = 1, ...,K

)
denotes

the time series of the i-th brain region in the k-th window,
and the time series matrix X(k) =

[
xk1, x

k
2, ..., x

k
P

]
∈ RP×N in the

k-th window concatenate xki in series. After centralizing and
normalizing, the correlation coefficient matrix of brain functional
network W(k) in the k-th sliding window is constructed as
follows:

W(k) =
(
X(k)

)T
X(k) (1)

DFN Construction Based on WR
Li et al. (2017) reconstructed the PC method as an optimization
model and introduced WR into the construction of the bbrain
functional networks, while Yu et al. (2017) adopted weighted
sparse representation (WSR) to construct brain functional
networks. We refer the former method, which formulate PC into
an optimized model and add a WR term based on connection
strength. The WR term is used to restrict the strength of each
connection in brain functional networks. On this basis, the
objective function can be formulated as:

min
W

K∑
i=1

‖W(k)−X(k)
T
X
(k)
‖

2

F +λ

n∑
i,j=1

cij
∣∣∣w(k)ij

∣∣∣ (2)

where ‖ · ‖2
F represents the square of the F-norm, and X(k)

represents the time series of the k-th window. λ is a regularization

parameter that controls the degree of sparsity, and w(k)ij
represents the correlation coefficient between the time series of
the i-th region and the time series of the j-th region in the
k-th window. cij represents the weight penalty for the functional
connection between the i-th region and the j-th region, and we
define cij as follows:

cij = exp

−w(k)ij

2

σ

 (3)

where σ is a parameter used to adjust the decay speed of the
weight of the corresponding connection strength. The solution
method is to calculate the standard deviation (STD) of the
absolute value of all elements in the correlation coefficient matrix
of brain functional networks.

In Eq. (2), the fitting term is derivable, but the regularization
term based on L1-norm is a convex function and is non-
differentiable. To solve the non-differentiable objective function,
we use the proximal operator method (Yan et al., 2013) to
optimize and solve the objective function. First, we calculate the
derivative of Eq. (2):

∇W(k) f
(
X(k),W(k)

)
= 2

(
W(k)−X(k)

T
X
(k)
)

(4)

The proximal operator based on L1-norm is obtained with the
expression as follows:

proximalλ‖.‖1
(
W(k)

)
=
[
sgn

(
wij
)
×max

(
abs

(
wij
)
− λ cij

)
, 0
]
N×N (5)

where ‖ · ‖1 represents the L1-norm. After each gradient descent
calculation is completed, the proximal operator can be used to
solve the constraint of W(k).

The correlation coefficient matrices of the WRDFNs
constructed by regularization methods are mostly asymmetric
without constraints. Therefore, we adopt the same strategy in
the study as Elhamifa and Vidal (2013) to perform symmetry

operation on W(k) and obtain W∗ = W(k) +W(k)T

2 to represent
the correlation coefficient matrix of WRDFN.

Tensor Low-Rank Approximation
Jiang et al. (2019) adopted TLA to optimize the tensor composed
of brain functional networks of different subjects via SR. The
specific method is to “assemble” all brain functional networks
of different subjects together to form a third-order tensor and
then use tensor robust principal component analysis (TRPCA)
to optimize the third-order tensor (Lu et al., 2016). Separately, we
stack the WRDFNs of all subjects into a third-order tensor and
then use TLA to process this tensor from which the WRTDFN of
each subject is obtained. The optimization problems in TLA are
as follows:

min
�,E
‖ � ‖∗+γ ‖ E ‖1 s.t.W = �+ E (6)

where � ∈ RN×N×K is the low-rank tensor finally obtained, and
‖ · ‖∗ represents the trace norm. E ∈ RN×N×K is the noise tensor
representing the difference between W ∈ RN×N×K and �. W
is combined by WRDFNs of all subjects, and γ is a percentage
parameter, which is used to remove some weak connections and
can be calculated by 1/

√
N × K .

Since the objective function in Eq. (2) is a convex function, we
adopted the alternating direction method of multipliers (ADMM)
algorithm to solve the objective function (Zhang et al., 2014). The
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augmented Lagrange multiplier is defined as follows:

Lµ (�,E,Y) = ‖ � ‖∗+YT (�+ E−W)

+
µ

2
‖ �+ Ek−W ‖2

F (7)

where Y is the Lagrange multiplier matrix, and µ is the iterative
step size of the dual variable in the augmented Lagrange function.

According to the solution framework of the ADMM
algorithm, each tensor and variable can be solved and updated
as follows:

�k+1 = arg min
�

(
‖ � ‖∗+

µk

2
‖ �+ Ek−W +

Yk
µk
‖

2

F

)
(8)

Ek+1 = arg min
�

(
γ ‖ E ‖1+

µk

2
‖ �k+1+E−W + Yk

µk
‖

2

F

)
(9)

Yk+1 = Yk+µk
(
�k+1+Ek+1−W

)
(10)

µk+1 = min (ρ µk,µmax) (11)

where Yk is the dual matrix in the k-th iteration, µk is the
iteration step size of the k-th dual variable, and ρ is the ratio of
increasing µ in each iteration.

The convergence conditions of the ADMM algorithm are:

‖ �k+1−�k ‖∞ ≤ 10−8, ‖ Ek+1−Ek ‖∞ ≤ 10−8,

‖ �k+1+Ek+1−W ‖∞ ≤ 10−8 (12)

Feature Extraction, Feature Selection,
and Classification
The weighted-graph local clustering coefficient describes the local
connectivity of the network and quantifies the density of the
local structure, which generally decreases with increasing node
degree (Jiao et al., 2019). Assuming that there is a network of N
nodes, the weighted-graph local clustering coefficient of node i is
defined as:

Ci =
2
∑

i,j∈vi

(
ωij
) 1

3

|vi| (|vi| − 1)
(13)

where ωij(i 6= j) represents the weight of the connection between
node i and node j, vi denotes the set of nodes directly connected
to node i, and | vi| represents the number of elements in vi.

SVM has unique advantages in solving small samples, non-
linear and high-dimensional data (Li et al., 2018). The goal
of SVM is to find an optimal hyperplane that maximizes the
separation between each type of sample and the hyperplane, so
as to classify the samples. In this study, we extract the weighted-
graph local clustering coefficients in WRTDFN as features, use
the simplest t-test for feature selection, and finally perform the
linear SVM classifier (C = 1) to classify the WRTDFNs of
different subjects. It should be noted that only the training dataset
participates in the feature selection process. The dimension of
the test dataset is reduced according to the feature index of

the training dataset after feature selection, and then the test
dataset is classified by the trained classifier. To characterize
the classification performance, we use four metrics including
classification accuracy (ACC), sensitivity (SEN), specificity (SPE),
and area under curve (AUC) (Li et al., 2019). Let TP, TN, FP,
and FN denote true positive, true negative, false positive, and
false negative, respectively. Then, ACC, SEN, and SPE can be
respectively defined as:

ACC =
TP+ TN

TP+ TN+ FP+ FN
(14)

SEN =
TP

TP+ FN
(15)

SPE =
TN

TN+ FP
(16)

RESULTS

Visualization of Brain Functional
Networks
Zhang and Wang (2015c) discussed the influence of window
width and step size in the classification of eMCI patients. They
found that the classification results were best when the window
width was set to 70 and the step size was set to 1. The DFNs
constructed by their methods have many parameters, as well as
a large number of samples result from sliding windows. Like
WRTLA, it is difficult to use nested cross-validation to select
optimal parameters. Setting the same window width and step size
facilitates the comparison of classification results with different
methods, as shown in Figure 2. The comparable methods include
PC and SR (Jiang et al., 2019), the PCscale-free method based
on PC and scale-free prior proposed by Li et al. (2017), the
WSR proposed by Yu et al. (2017), the group-constrained sparse
representation (GSR) proposed by Wee et al. (2014), the TLA
method based on sparse representation (SRTLA) and the TLA
method based on PC (PTLA) proposed by Jiang et al. (2019),
the low-rank tensor regularization method based on PC (PLTR)
involved in the study by Gao et al. (2020), and the sparse low-
rank representation method (SLR) based on partial correlation
proposed by Qiao et al. (2016). Table 1 shows the data-fitting
terms and the regularization terms in some aforementioned
methods. It is worth noting that all brain functional networks
constructed by these methods are DFNs. We select a subject
randomly and visualize the brain functional network in the same
time window, as shown in Figure 2.

Since the Hub structure does not have a unified metric, we
refer to the method of Jiang et al. (2019) and design the following
steps. Firstly, we find the top ten nodes with the largest degree
in the brain functional network and calculate the sum of these
ten node degrees. Secondly, we divide the sum of these ten node
degrees by the sum of all node degrees to get a percentage value
representing the Hub score. The higher the Hub score, the more
obvious the Hub structure. We calculate the Hub score of the
brain functional network via WRTLA with that via PCscale-free,
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FIGURE 2 | Visualized results of brain functional networks in the same time
window. The brain functional network in (A) is dense, whereas the brain
functional network in (B) is sparse, and there is a lot of noise in it. The
topologies of brain functional networks in (F,G) are clearer than those in (A,B)
respectively, which indicate that TLA has not changed topologies much but
effectively removed some noise connections to improve qualities of brain
functional networks, which have certain modularity. The brain functional
network in (E) is sparser than that in (F), and the brain functional network in
(H) and (I) is sparser and more modular than those in (A,B) respectively. In
(D,J), some strong functional connections are enhanced, while some weak
functional connections are suppressed, which reflects the effectiveness of
introducing the weight penalty regularization term. In addition, as shown in
(C), we obtain a clearer brain functional network with Hub structure because
of the WR term, but some strong functional connections are also penalized.

TABLE 1 | Data-fitting terms and regularization terms in some
aforementioned methods.

Method Data-fitting term Regularization term

PC (Jiang et al., 2019) ‖ W−XT X ‖
2
F N/A

SR (Jiang et al., 2019) ‖ X−XW ‖2F λ ‖ W ‖1
PCscale-free (Li et al., 2017) ‖ W−XT X ‖

2
F

∑n
i,j=1 γij

∣∣wij
∣∣

WSR (Yu et al., 2017) ‖ X−XW ‖2F λ ‖ C�W ‖1
GSR (Wee et al., 2014) ‖ X−XW ‖2F λ ‖ W ‖2,1
PLTR (Gao et al., 2020) ‖ W−XT X ‖

2
F λ1 ‖ W ‖1 +λ2 ‖ W ‖∗

SLR (Qiao et al., 2016) ‖ X−XW ‖2F λ1 ‖ W ‖1 +λ2 ‖ W ‖∗

and find the former is 15.16% and higher than the latter which is
14.88%. The brain functional network constructed by PCscale-free
has an obvious scale-free characteristic.

Classification Results
We calculate the weighted-graph local clustering coefficient of
each region as the effective feature, and use t-test to select the
feature, with the significance level of 0.05. Then, we employ
a SVM with a linear kernel to classify all subjects, which is
implemented by using LIBSVM toolbox (Chang and Lin, 2011).
The eMCI subjects are treated as positive samples and normal
subjects as negative samples. We use ACC, SEN, SPE, and AUC
at the end of each classification to evaluate the effectiveness of
different methods, and verify the classification results by 10-fold
cross-validation (Friston et al., 2003). Specifically, all features
are divided into 10 parts, of which 1 part is left for testing in
each cross-validation, and the remaining 9 parts are used for
training. The regularization parameter is λ = 0.2. The process
is repeated 10 times independently, and the average value of each
classification after 10 times of 10-fold cross-validation is taken as
the final result. Table 2 shows the classification results of different
methods with their STD, where the highlighted results indicate
the best classification performance.

As shown in Table 2, the classification performance of
WRTLA is better than other methods. In particular, its ACC, SEN,
SPE, and AUC are 87.0662% ± 0.3202%, 83.4363% ± 0.5076%,
90.6961% ± 0.3250% and 0.9431 ± 0.0023, respectively.
PCscale-free achieves the classification performance second
only to WRTLA, and its ACC, SEN, SPE, and AUC are
86.7034%± 0.3064%, 83.4951%± 0.5754%, 89.9118%± 0.3526%
and 0.9413 ± 0.0025, respectively. In addition, the ACC of PLTA
is higher than that of PC method, but the ACC of SRTLA is
not as high as that of SR. It means that TLA can effectively
remove noise connections to improve the quality of DFNs and
improve the ACC, but it is not ideal for the SR. The classification
performance of WSR and GSR are better than that of SR, which
shows that the WR term and the L2,1-norm regularization term
are conducive to constructing a more biologically meaningful
DFN, and can improve the classification performance of brain
diseases. In addition, WRTLA has a higher ACC compared with
PLTR and SLR. WRTLA, PLTR and SLR all introduce modularity
priors. The classification accuracy of WRTLA and PLTR are
higher than PC, but the classification accuracy of SLR is not as
good as SR. It indicates that the introduction of modularity priors
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TABLE 2 | Classification results of different methods.

Method ACC (%) ± STD SEN (%) ± STD SPE (%) ± STD AUC ± STD

SRTLA (Jiang et al., 2019) 47.9853 ± 0.2863 51.7647 ± 8.1956 44.2059 ± 8.1071 0.5530 ± 0.0120

SLR (Qiao et al., 2016) 48.7990 ± 0.3749 50.5833 ± 10.7991 47.0147 ± 10.7029 0.6210 ± 0.0149

SR (Jiang et al., 2019) 54.9559 ± 0.4476 65.7353 ± 1.4451 44.1765 ± 1.8784 0.5665 ± 0.0038

GSR (Wee et al., 2014) 65.4730 ± 0.0722 64.7206 ± 0.1267 66.2255 ± 0.1498 0.7006 ± 0.0003

WSR (Yu et al., 2017) 73.4975 ± 0.3749 73.5343 ± 0.3758 73.4608 ± 0.5484 0.8125 ± 0.0019

PC (Jiang et al., 2019) 85.7070 ± 0.2840 82.5980 ± 0.3365 89.8529 ± 0.2806 0.9373 ± 0.0019

PLTR (Gao et al., 2020) 85.7672 ± 0.2064 83.0931 ± 0.3842 88.4412 ± 0.3167 0.9176 ± 0.0009

PTLA (Jiang et al., 2019) 86.7623 ± 0.1684 82.9069 ± 0.4108 90.6176 ± 0.1964 0.9410 ± 0.0011

PCscale-free (Li et al., 2017) 86.7034 ± 0.3064 83.4951 ± 0.5754 89.9118 ± 0.3526 0.9413 ± 0.0025

WRTLA 87.0662 ± 0.3202 83.4363 ± 0.5076 90.6961 ± 0.3250 0.9431 ± 0.0023

in the construction of DFN based on PC is beneficial to improve
the classification performance, but the introduction of modular
priors in the construction of DFN based on SR may not improve
classification performance well.

In WRTLA, the purpose of L1-norm regularization term is
mainly to remove redundant features and improve generalization
performance of the model. The regularization parameter λ is used
to adjust the complexity of the model. We test the classification
performance between normal subjects and eMCI subjects with
different regularization parameters. Figure 3 shows the specific
results, where the range of λ is [2−4, 2−3, 2−2, 2−1] (Li
et al., 2019; Xu et al., 2020). As can be seen, the classification
performance iterating through four parameters just changes a
little, but it still has differences. Specifically, the best classification
performance is achieved when λ = 0.2, and ACC, SEN, SPE,
and AUC are 87.0662% ± 0.3202%, 83.4363% ± 0.5076%,
90.6961% ± 0.3250%, 0.9431 ± 0.0023, respectively. With the
changes of λ, the range of the classification performance is
not very obvious but shows a downward trend. The reason for
this situation may be: as the λ decreases, the features that are
useful for classification are also less and less likely to be selected,
which ultimately leads to the fitting ability of the classification
model worse.

Since the number of samples is very big, all subjects are
repeatedly classified to find the optimal combination of window
width and step size. Table 3 shows the classification results
by different combinations of window widths and step sizes,
where the highlighted results indicate the best classification
performance. Among them, the step sizes vary from 1 to 4,
the window widths vary from 50 to 80, and the regularization
parameter λ = 0.2.

From Table 3, we can find that the classification rsults is
best when the window width is set to 60 and the step size is
set to 2. When the step size is set to 1∼3, the classification
performance is higher when the window width is 70. As the step
size increases, the classification performance shows a downward
trend. This is consistent with the conclusion of Jiao et al.
(2019). The season is that a larger step size tends to ignore the
part of the dynamic information of the functional connection
between regions that changes over time, and the classification
performance gradually decreases.

Discriminative Brain Regions and
Functional Connections
The selected features in each 10-fold cross-validation are
different, namely, the selected weighted-graph local clustering

FIGURE 3 | Classification performance of WRTLA with different regularization parameters.
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TABLE 3 | Classification results by different combinations of window widths and step sizes.

Method ACC (%) ± STD SEN (%) ± STD SPE (%) ± STD AUC ± STD

S = 1,V = 50 83.3598 ± 0.3866 78.3068 ± 0.6416 88.4129 ± 0.4572 0.9153 ± 0.0032

S = 2,V = 50 88.2852 ± 0.2457 88.7704 ± 0.4030 87.8000 ± 0.2881 0.9409 ± 0.0009

S = 3,V = 50 80.2386 ± 0.2732 71.5303 ± 0.4681 88.9470 ± 0.3183 0.8822 ± 0.0025

S = 4,V = 50 79.7609 ± 0.6082 78.9855 ± 0.7358 80.5362 ± 1.1715 0.8981 ± 0.0036

S = 1,V = 60 84.9487 ± 0.3173 80.4060 ± 0.5459 89.4915 ± 0.2446 0.9288 ± 0.0019

S = 2,V = 60 90.0208 ± 0.3655 88.5250 ± 0.6074 91.5167 ± 0.2570 0.9504 ± 0.0007

S = 3,V = 60 87.8025 ± 0.1845 89.8272 ± 0.5466 85.7778 ± 0.5033 0.9462 ± 0.0016

S = 4,V = 60 81.3750 ± 0.4552 81.2333 ± 0.6992 81.5767 ± 0.7305 0.9132 ± 0.0020

S = 1,V = 70 86.9975 ± 0.2910 83.3235 ± 0.5850 90.6716 ± 0.3126 0.9429 ± 0.0020

S = 2,V = 70 87.0797 ± 0.6694 85.6377 ± 1.4025 88.5217 ± 0.8078 0.9351 ± 0.0034

S = 3,V = 70 87.2464 ± 0.6832 86.1304 ± 0.9831 88.3623 ± 0.8987 0.9343 ± 0.0027

S = 4,V = 70 83.9259 ± 0.7332 82.1481 ± 1.2103 85.7037 ± 0.4434 0.9204 ± 0.0023

S = 1,V = 80 87.6782 ± 0.2204 84.7184 ± 0.3256 90.6379 ± 0.3599 0.9448 ± 0.0015

S = 2,V = 80 87.3222 ± 0.7346 85.1889 ± 1.1536 89.4556 ± 0.6141 0.9310 ± 0.0035

S = 3,V = 80 81.8083 ± 1.1091 76.3833 ± 2.5471 87.2333 ± 0.8791 0.9093 ± 0.0045

S = 4,V = 80 75.9111 ± 1.4438 65.4444 ± 2.7542 86.3778 ± 1.2067 0.8781 ± 0.0066

coefficients are different, so we count the features that have
been selected more times in ten times of 10-fold-cross-validation.
These features correspond to 24 brain regions, known as
discriminative brain regions. Table 4 shows the discriminative
brain regions, which are visualized by using BrainNet Viewer
toolbox4 (Xia et al., 2013). Figure 4 shows the visualization results
of these discriminative brain regions on the Jet template, where
each node corresponds to a brain region.

In Table 4, we find that some regions corresponding to
features in the default mode network (DMN) are selected, such as
left posterior cingulate gyrus (PCG.L), right posterior cingulate
gyrus (PCG.R), left hippocampus (HIP.L), left inferior parietal,
supramarginal and angular gyri (IPL.L), right inferior parietal,
supramarginal and angular gyri (IPL.R), right angular gyrus
(ANG.R), left precuneus (PCUN.L), right precuneus (PCUN.R),
left inferior temporal gyrus (ITG.L), and right inferior temporal
gyrus (ITG.R), etc. Most of the selected brain regions have been
widely considered to be related to AD. Taking left hippocampus
(HIP.L) as an example, the hippocampus structure is considered
to play an important role in memory, spatial navigation, and
attention control, and the hippocampus structure is also the
first part to lose the memory and disorientation damage. It was
found that the hippocampus structure of AD patients has been
severely damaged. The left hippocampus (HIP.L) is selected,
indicating that eMCI patients already have a chance to transition
to AD, and it also shows that DMN plays an important role
in cognitive function (Jiao et al., 2017a,b,c). In addition, some
brain regions belong to the frontal lobe are extracted, such as
left superior frontal gyrus, orbital part (ORBsup.L), left middle
frontal gyrus, orbital part (ORBmid.L), right inferior frontal
gyrus, opercular part (IFGoperc.R), right inferior frontal gyrus,
triangular part (IFGtriang.R), right inferior frontal gyrus, orbital
part (ORBinf.R), right olfactory cortex (OLF.R), and right gyrus
rectus (REC.R), etc. It demonstrates that the language and mental

4https://www.nitrc.org/projects/bnv/

TABLE 4 | Discriminative brain regions.

MNI coordinates
Abbreviations

ID (L: left, R: right) X (mm) Y (mm) Z (mm) References

1 PreCG.L −38.65 −5.68 50.94

2 PreCG.R 41.37 −8.21 52.09 Zhang et al., 2016a

5 ORBsup.L −16.56 47.32 −13.31 Xu et al., 2016

9 ORBmid.L −30.65 50.43 −9.62 Zhang et al., 2018

12 IFGoperc.R 50.20 14.98 21.41 Chen et al., 2016

14 IFGtriang.R 50.33 30.16 14.17 Salvatore et al., 2015

16 ORBinf.R 41.22 32.23 −11.91 Salvatore et al., 2015

22 OLF.R 10.43 15.91 −11.26 Sun et al., 2012

28 REC.R 8.35 35.64 −18.04

35 PCG.L −4.85 −42.92 24.67 Zhang et al., 2018

36 PCG.R 7.44 −41.81 21.87 Wee et al., 2012

37 HIP.L −25.03 −20.74 −10.13 Salvatore et al., 2015

43 CAL.L −7.14 −78.67 6.44 Xu et al., 2016

44 CAL.R 15.99 −73.15 9.40

47 LING.L −14.62 −67.56 −4.63

57 PoCG.L −31.16 −40.30 −20.23 Xu et al., 2016

61 IPL.L −42.80 −45.82 46.74

62 IPL.R 46.46 −46.29 49.54 Salvatore et al., 2015

66 ANG.R 45.51 −59.98 38.63 Xu et al., 2016

67 PCUN.L −7.24 −56.07 48.01

68 PCUN.R 9.98 −56.05 43.77

71 CAU.L −11.46 11.00 9.24 Salvatore et al., 2015

89 ITG.L −49.77 −28.05 −23.17 Zhang et al., 2018

90 ITG.R 53.69 −31.07 −22.32

activities of eMCI patients have changed a lot compared with
normal people (Wee et al., 2011).

In order to explore the relationships between discriminative
brain regions, we first sum all WRTDFNs of each type of
subjects and then average them to obtain their average functional
network (AFN), respectively. As there are many functional
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FIGURE 4 | Visualization of discriminative brain regions. (A) Cornal plane. (B) Axis plane. (C) Sagittal plane.

connections in AFN, the effect is not obvious after all of
them are visualized, and a specific number of functional
connections are selected for visualization. Related studies have
shown that it is more obvious to select a specific number of
functional connections with the highest correlation coefficient
as significant functional connections (Ou et al., 2015; Jiao
et al., 2020). Accordingly, we select the top 100 functional
connections with the highest correlation coefficients as the
significant functional connections for visualization. On this basis,
we also find the functional connections between discriminative
brain regions for further analyzing the physiological significance
of DFN. Figures 5A,B, respectively, show the top 100 functional
connections with the highest correlation coefficients in the AFNs
of the two types of subjects. Figures 5B, 6A, respectively,
show the functional connections between discriminative brain
regions of the two types of subjects, where the width of
the arc represents the connection strength between two
brain regions.

As shown in Figure 5, there are some Hub nodes in
the AFN of normal subjects and eMCI subjects, and the
Hub nodes are only a small proportion of the whole brain
regions, illustrating the scale-free property of the AFN. The
Hub nodes of the normal subjects are left precental gyrus
(PreCG.L), right precental gyrus (PreCG.R), left superior frontal
gyrus, dorsolateral (SFGdor.L), right superior frontal gyrus,
dorsolateral (SFGdor.R), left postcentral gyrus (PoCG.L),
left calcarine fissure and surrounding cortex (CAL.L),
right calcarine fissure and surrounding cortex (CAL.R),
right cuneus (CUN.R), and left precuneus (PCUN.L). The
Hub nodes of the eMCI subjects are left precental gyrus

(PreCG.L), right precental gyrus (PreCG.R), left superior frontal
gyrus, dorsolateral (SFGdor.L), right superior frontal gyrus,
dorsolateral (SFGdor.R), right postcentral gyrus (PoCG.R), and
right rolandic operculum (ROL.R). These nodes are mainly
concentrated in the prefrontal lobe, which shows that these
parts of normal subjects and eMCI subjects are relatively
active, involving some complex cognition, such as memory,
judgment, analysis, thinking, and manipulation. Comparatively,
functional connections have changed in the prefrontal lobe
of eMCI subjects. While in Figure 6, the same functional
connectivity between the discriminative regions in two types
of subjects are PCUN.L-PUCN.R, IPL.L-IPL.R, PreCG.L-
PoCG.L, ORBsup.L-ORBmid.L, IFGoperc.R-IFGtriang.R,
PCG.L-PCG.R, LING.L-CAL.L, and LING.L-CAL.R, among
which IFGoperc.R-IFGtriang.R and ORBsup.L-ORBmid.L are
consistent with previous studies (Jiao et al., 2019; Li et al.,
2020). Moreover, compared with the normal subjects, eMCI
subjects have different functional connections between the
discriminative brain regions, such as PreCG.R-PoCG.L and
PreCG.L-PreCG.R, which may be of great significance to the
diagnosis of eMCI.

DISCUSSION

We propose a method for constructing DFNs based on
WR and TLA and apply it to eMCI classification. First, we
formulate the DFN construction method based on PC into
an optimization model, and add a WR term to obtain a
WRDFN, and then concatenate the WRDFNs of all subjects
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FIGURE 5 | Top 100 functional connections with the highest correlation coefficients in AFN. (A) Normal subjects. (B) eMCI subjects.

FIGURE 6 | Functional connections between discriminative regions in AFN. (A) Normal subjects. (B) eMCI subjects.

into a tensor for TLA processing. The DFN of each subject
in the tensor after TLA is its WRTDFN. Finally, the obtained
WRTDFNs are used to classify eMCI subjects and normal
subjects, and the classification performance is better than the
comparable methods.

By the results above, we find that PC method with
a regularization term has generally better classification
performance for eMCI than the SR method with a regularization
term. The reason is mentioned in the research by Li et al.
(2017) and Qiao et al. (2016). Since SR involves the inverse
operation of the covariance matrix, there may be an ill-posed
problem (Michel and Telschow, 2016). It means that the
singularity of the covariance matrix makes it impossible to
directly inverse the covariance matrix. PC does not involve
inverse operations, thus adding a regularization term can
better construct DFNs. In addition, WRTLA achieves better

classification performance than PCscale-free, although both of
them all involve WR. One of the important reasons is that
PCscale-free has the function of modeling Hub nodes in brain
functional networks, which can cover functional connections
closely related to neural disorders. We develop WRTLA
to construct DFNs through a unified learning framework
that integrates functional connection strength, sparsity, and
group constraints, and the obtained DFNs are also more
biologically meaningful.

However, WRTLA also has some limitations, which need to be
improved in our future work. First, the topological properties of
brain functional networks are far more than sparsity, low-rank
property, and scale-free property. How to use other topology
properties of complex networks as prior information to construct
the optimal brain functional network is a worthy problem.
In addition, we focus on construction of DFN, and we apply
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the t-test for feature selection. The improvement strategies
are as follows: simply improving the feature selection and
combining the test dataset on the training dataset to select
features iteratively, and gradually select the features that improve
the classification performance.

In conclusion, WRTLA utilizes some functional connections
between discriminative regions to construct DFNs. The
innovation of WRTLA is that, it solved the problems that most
methods cannot properly reflect the similarities and differences
of functional connections among different people in constructing
brain functional networks. We apply WRTDFNs to classify
eMCI subjects and normal subjects, and the experimental results
show that the classification performance of this method is
better than other methods. Our work can effectively improve
the classification performance of DFN constructed by existing
methods for eMCI, and has certain reference value for the early
diagnosis of AD. Additionally, the above work will provide some
enlightenment for us to carry out other auxiliary diagnosis of
cognitive disorders in the future.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Biomedical Ethics Committee of the Changzhou
University. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

ZJ: methodology and writing. YJ: writing and visualization.
JZ: data processing. HS: data processing and verification. CW:
methodology and modification. All authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science
Foundation of China under Grant No. 51877013, the Natural
Science Foundation of Jiangsu Province under Grant No.
BK20181463, the Science and Technology Project of Changzhou
City under Grant No. CE20205056, and the Natural Science
Funds for Distinguished Young Scholar of Zhejiang under Grant
No. LR20H090001. This work was also sponsored by Qing Lan
Project of Jiangsu Province.

REFERENCES
Atangana, A., Liu, A. J., and Lu, Z. Y. (2018). Application of stationary Wavelet

entropy in pathological brain detection. Multimed. Tools Applic. 77, 3701–3714.
doi: 10.1007/s11042-016-3401-7

Bi, X. A., Hu, X., Wu, H., and Wang, Y. (2020a). Multimodal data analysis of
Alzheimer’s disease based on clustering evolutionary random forest. IEEE J.
Biomed. Health Inform. 24: 2973–2983. doi: 10.1109/JBHI.2020.2973324

Bi, X. A., Liu, Y. C., Xie, Y. M, Hu, X., and Jiang, Q. H. (2020b). Morbigenous
brain region and gene detection with a genetically evolved random neural
network cluster approach in late mild cognitive impairment. Bioinformatics 36:
2561–2568. doi: 10.1093/bioinformatics/btz967

Bi, X. A., Hu, X, Xie, Y. M., and Wu, H. (2021). A novel CERNNE approach
for predicting Parkinson’s Disease-associated genes and brain regions based on
multimodal imaging genetics data. Med. Image Anal. 67:101830. doi: 10.1016/j.
media.2020.101830

Chang, C. C., and Lin, C. J. L. I. B. S. V. M. (2011). A library for support vector
machines. ACM Transact. Int. Syst. Technol. 2, 389–396.

Chen, X. B., Zhang, H., Gao, Y., Wee, C. Y., Li, G., and Shen, D. G. (2016).
High-order resting-state functional connectivity network for MCI classification.
Hum. Brain Map. 37, 3282–3296. doi: 10.1002/hbm.23240

Chen, X. B., Zhang, H., Lee, S. W., and Shen, D. G. (2017). Hierarchical
high-order functional connectivity networks and selective feature fusion for
MCI classification. Neuroinformatics 15, 271–284. doi: 10.1007/s12021-017-
9330-4

Du, W., Calhoun, V. D., Li, H. L., Ma, S., Eichele, T., and Kiehl, K. A. (2012). High
classification accuracy for schizophrenia with rest and task fMRI data. Front.
Hum. Neurosci. 6:145.doi: 10.3389/fnhum.2012.00145

Elhamifar, E., and Vidal, R. (2013). Sparse subspace clustering: algorithm, theory,
and applications. IEEE Transact. Pattern Anal. Machine Int. 35, 2765–2781.
doi: 10.1109/tpami.2013.57

Friston, K. J., Harrison, L. M., and Penny, W. D. (2003). Dynamic causal modeling.
NeuroImage 19, 1273–1302.

Gao, X., Xu, X., Hua, X. W., Hua, X. Y., Wang, P. J., Li, W. K., et al. (2020). Group
similarity constraint functional brain network estimation for Mild Cognitive

Impairment classification. Front. Neurosci. 14:165. doi: 10.3389/fnins.2020.
00165

Halko, N., Martinsson, P. G., and Tropp, J. A. (2010). Finding structure
with randomness: probabilistic algorithms for constructing approximate
matrix decompositions. Siam Rev. 53, 217–288. doi: 10.1137/0907
71806

Jiang, X., Zhang, L. M., Qiao, L. S., and Shen, D. G. (2019). Estimating functional
connectivity networks via low-rank tensor approximation with applications to
MCI identification. IEEE Transact. Biomed. Eng. 99, 1–1. doi: 10.1109/TBME.
2019.2950712

Jiao, Z. Q., Ji, Y. X., Jiao, T. X., and Wang, S. H. (2020). Extracting sub-networks
from brain functional network using graph regularized nonnegative matrix
factorization. Comput. Model. Eng. Sci. 123, 845–871. doi: 10.32604/cmes.2020.
08999

Jiao, Z. Q., Ma, K., Zou, L., and Xiang, J. B. (2017a). Functional connectivity
analysis of brain default mode networks using Hamiltonian path.CNSNeurolog.
Dis. Drug Targ. 16, 44–50. doi: 10.2174/1871527314666161124120040

Jiao, Z. Q., Wang, H., Ma, K., Zou, L., and Xiang, J. B. (2017b). Directed
connectivity of brain default networks in resting state using GCA and motif.
Front. Biosci. 22:1634–1643. doi: 10.2741/4562

Jiao, Z. Q., Wang, H., Ma, K., Zou, L., Xiang, J. B., and Wang, S. H. (2017c).
Effective connectivity in the default network using Granger causal analysis.
J. Med. Imag. Health Inform. 7, 407–415. doi: 10.1166/jmihi.2017.2029

Jiao, Z. Q., Xia, Z. W., Cai, M., and Zou, L. (2018). Hub recognition for brain
functional networks by using multiple-feature combination. Comput. Electric.
Eng. 69, 740–752. doi: 10.1016/j.compeleceng.2018.01.010

Jiao, Z. Q., Xia, Z. W., Ming, X. L., Cheng, C., and Wang, S. H. (2019). Multi-scale
feature combination of brain functional network for eMCI classification. IEEE
Access 7, 74263–74273. doi: 10.1109/access.2019.2920978

Jiao, Z. Q., Zou, L., Cao, Y., Qian, N., and Ma, Z. H. (2014). Effective connectivity
analysis of fMRI data based on network motifs. J. Supercomput. 67, 809–819.

Karen, C., Romain, D., Alexander, L., Hadi, H., Peter, H. W., Debby, K., et al. (2018).
Accelerated intermittent theta burst stimulation in major depression induces
decreases in modularity: A connectome analysis. Net. Neurosci. 3, 157–172.
doi: 10.1162/netn_a_00060

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 January 2021 | Volume 8 | Article 610569

https://doi.org/10.1007/s11042-016-3401-7
https://doi.org/10.1109/JBHI.2020.2973324
https://doi.org/10.1093/bioinformatics/btz967
https://doi.org/10.1016/j.media.2020.101830
https://doi.org/10.1016/j.media.2020.101830
https://doi.org/10.1002/hbm.23240
https://doi.org/10.1007/s12021-017-9330-4
https://doi.org/10.1007/s12021-017-9330-4
https://doi.org/10.3389/fnhum.2012.00145
https://doi.org/10.1109/tpami.2013.57
https://doi.org/10.3389/fnins.2020.00165
https://doi.org/10.3389/fnins.2020.00165
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1109/TBME.2019.2950712
https://doi.org/10.1109/TBME.2019.2950712
https://doi.org/10.32604/cmes.2020.08999
https://doi.org/10.32604/cmes.2020.08999
https://doi.org/10.2174/1871527314666161124120040
https://doi.org/10.2741/4562
https://doi.org/10.1166/jmihi.2017.2029
https://doi.org/10.1016/j.compeleceng.2018.01.010
https://doi.org/10.1109/access.2019.2920978
https://doi.org/10.1162/netn_a_00060
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-610569 December 28, 2020 Time: 17:20 # 12

Jiao et al. Constructing DFNs for eMCI Classification

Lee, H. Y., Lee, D. S., Kang, H. J., Kim, B. N., and Chung, M. K. (2011). Sparse
brain network recovery under compressed sensing. IEEE Transact. Med. Imag.
30, 1154–1165. doi: 10.1109/tmi.2011.2140380

Li, W. K., Qiao, L. S., and Shen, D. G. (2020). Towards a better estimation of
functional brain network for MCI identification: A transfer learning view. IEEE
J. Biomed. Health Inform. 24, 1160–1168. doi: 10.1109/jbhi.2019.2934230

Li, W. K., Wang, Z. X., Qiao, L. S., and Shen, D. G. (2019). Functional brain network
estimation with time series self-scrubbing. IEEE J. Biomed. Health Inform. 23,
2494–2504. doi: 10.1109/jbhi.2019.2893880

Li, W. K., Wang, Z. X., Zhang, L. M., Qiao, L. S., and Shen, D. G. (2017).
Remodeling pearson’s correlation for functional brain network estimation and
autism spectrum disorder identification. Front. Neuroinform. 11:55. doi: 10.
3389/fninf.2017.00055

Li, Y., Liu, J. Y., Gao, X. Q., Jie, B., Minjeong, K., Pew-Thian, Y., et al. (2018).
Multimodal hyper-connectivity of functional networks using functionally-
weighted LASSO for MCI classification. Med. Image Anal.52, 80–96. doi: 10.
1016/j.media.2018.11.006

Li, Y., Liu, J. Y., Peng, Z. W., Sheng, C., Kim, M. J., Yap, P. T., et al. (2020). Fusion
of ULS group constrained high- and low-order sparse functional connectivity
networks for MCI classification. Neuroinformatics 18, 1–24. doi: 10.1007/
s12021-019-09418-x

Liu, G. C., Lin, Z. C., Yan, S. C., Sun, J., Yu, Y., and Ma, Y. (2010). Robust recovery
of subspace structures by low-rank representation. IEEE Transact. Pattern Anal.
Machine Intel. 35, 171–184. doi: 10.1109/tpami.2012.88

Lu, C. Y., Feng, J. S., Chen, Y. D., Liu, W., Lin, Z. C., and Yan, S. C. (2016).
“Tensor robust principal component analysis: exact recovery of corrupted low-
rank tensors via convex optimization,” in Proceeding of the IEEE Conference on
Computer Vision and Pattern Recogniton, (Las Vegas, NV), 5249–5257.

Lu, S. Y., Lu, Z. H., and Zhang, Y. D. (2019). Pathological brain detection based
on AlexNet and transfer learning. J. Comput. Sci. 30, 41–47. doi: 10.1016/j.jocs.
2018.11.008

Marrelec, G., Krainik, A., Duffau, H., Pelegrini-Issac, M., Lehericy, S., Doyon, J.,
et al. (2006). Partial correlation for functional brain interactivity investigation
in functional MRI. NeuroImage 32, 228–237. doi: 10.1016/j.neuroimage.2005.
12.057

Meinshausen, N., and Bühlmann, P. (2006). High-dimensional graphs and
variable selection with the lasso. Ann. Stat. 34, 1436–1462. doi: 10.1214/
009053606000000281

Michel, V., and Telschow, R. (2016). The regularized orthogonal functional
matching pursuit for ill-posed inverse problems. Siam J. Numeric. Anal. 54,
262–287. doi: 10.1137/141000695

Muldoon, S. F., and Bassett, D. S. (2016). Network and multilayer network
approaches to understanding human brain dynamics. Philosophy. Sci. 83, 710–
720. doi: 10.1086/687857

Ou, J. L., Xie, L., Li, X., Zhu, D. J., Terry, D. P., Puente, A. N., et al. (2015).
Atomic connectiomics signatures for characterization and differentiation of
mild cognitive impairment. Brain Imag. Behav. 9, 663–677. doi: 10.1007/
s11682-014-9320-1

Peng, J., Wang, P., Zhou, N. F., and Zhu, J. (2012). Partial correlation estimation
by joint sparse regression models. J. Am. Statist. Assoc. 104, 735–746. doi:
10.1198/jasa.2009.0126

Qiao, L. S., Zhang, H., Kim, M. J., Teng, S. H., Zhang, L. M., and Shen, D. G.
(2016). Estimating functional brain networks by incorporating a modularity
prior. Neuroimage 141, 399–407. doi: 10.1016/j.neuroimage.2016.07.058

Salvatore, C., Cerasa, A., Battista, P., Gilardi, M. C., Quattrone, A., and Castiglioni,
I. (2015). Magnetic resonance imaging biomarkers for the early diagnosis of
Alzheimer’s disease: a machine learning approach. Front. Neurosci. 9:307. doi:
10.3389/fnins.2015.00307

Sun, G. H., Raji, C. A., MacEachern, M. P., and Burke, J. F. (2012). Olfactory
identification testing as a predictor of the development of Alzheimer’s dementia:
A systematic review. Laryngoscope 122, 1455–1462. doi: 10.1002/lary.23365

Tobia, M. J., Hayashi, K., Ballard, G., Gotlib, I. H., and Waugh, C. E. (2017).
Dynamic functional connectivity and individual differences in emotions during
social stress. Hum. Brain Map. 38, 6185–6205. doi: 10.1002/hbm.23821

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject
brain. NeuroImage 15, 273–289. doi: 10.1006/nimg.2001.0978

Wee, C. Y., Yang, S., Yap, P. T., and Shen, D. G. (2016a). Sparse temporally dynamic
resting-state functional connectivity networks for early MCI identification.
Brain Imag. Behav. 10, 342–356. doi: 10.1007/s11682-015-9408-2

Wee, C. Y., Yap, P. T., and Shen, D. G. (2016b). Diagnosis of autism spectrum
disorders using temporally distinct resting-state functional connectivity
networks. Cns Neurosci. Ther. 22, 212–219. doi: 10.1111/cns.12499

Wee, C. Y., Yap, P. T., Li, W. B., Kevin, D., Jeffrey, N. B., Guy, G. P., et al.
(2011). Enriched white matter connectivity networks for accurate identification
of MCI patients. Neuroimage 54, 1812–1822. doi: 10.1016/j.neuroimage.2010.
10.026

Wee, C. Y., Yap, P. T., Zhang, D. Q., Denny, K., Browndyke, J. N., Potter, G. G.,
et al. (2012). Identification of MCI individuals using structural and functional
connectivity networks. Neuroimage 59, 2045–2056. doi: 10.1016/j.neuroimage.
2011.10.015

Wee, C. Y., Yap, P. T., Zhang, D. Q., Wang, L. H., and Shen, D. G. (2014). Group-
constrained sparse fMRI connectivity modeling for mild cognitive impairment
identification. Brain Struct. Funct. 219, 641–656. doi: 10.1007/s00429-013-
0524-8

Xia, M. R., Wang, J. H., and He, Y. (2013). BrainNet Viewer: A network
visualization tool for human brain connectomics. PLoS One 8:e68910. doi:
10.1371/journal.pone.0068910

Xu, L. L., Wu, X., Li, R., Chen, K. W., Long, Z. Y., Zhang, J. C., et al.
(2016). Prediction of Progressive Mild Cognitive Impairment by multi-modal
neuroimaging biomarkers. J. Alzhmers Dis. 51, 1045–1056. doi: 10.3233/jad-
151010

Xu, X. W., Li, W. K., Mei, J., Tao, M. L., Wang, X. B., Zhao, Q. H., et al. (2020).
Feature selection and combination of information in the functional brain
connectome for discrimination of Mild Cognitive Impairment and analysis of
altered brain patterns. Front. Aging Neurosci. 12:1–14. doi: 10.3389/fnagi.2020.
00028

Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Cameron Craddock, R., Martino,
A. D., et al. (2013). comprehensive assessment of regional variation in the
impact of head micromovements on functional connectomics. Neuroimage 76,
183–201. doi: 10.1016/j.neuroimage.2013.03.004

Yu, R. P., Zhang, H., An, L., Wei, Z. H., and Shen, D. G. (2017).
Connectivity strength-weighted sparse group representation-based brain
network construction for MCI classification. Hum. Brain Map. 38, 2370–2383.
doi: 10.1002/hbm.23524

Zhang, D., and Raichle, M. E. (2010). Disease and the brain’s dark energy. Nat. Rev.
Neurol. 6, 15–28.

Zhang, H., Chen, X. B., Shi, F., Gang, L., Kim, M. J., Giannakopoulos, P., et al.
(2016a). Topographical information-based high-order functional connectivity
and its application in abnormality detection for Mild Cognitive Impairment.
J. Alzheimers Dis. 54, 1095–1112. doi: 10.3233/jad-160092

Zhang, Y. D., and Wang, S. H. (2015c). Detection of Alzheimer’s disease by
displacement field and machine learning. PeerJ. 3:e1251. doi: 10.7717/peerj.
1251

Zhang, Y. D., Dong, Z. C., Ji, G. L., and Wang, S. H. (2015a). Effect of spider-
web-plot in MR brain image classification. Pattern Recog. Lett. 62, 14–16. doi:
10.1016/j.patrec.2015.04.016

Zhang, Y. D., Dong, Z. C., Liu, A. J., Wang, S. H., and Ji, G. L. (2015b). Magnetic
resonance brain image classification via stationary wavelet transform and
generalized eigenvalue proximal support vector machine. Med. Imag. Health
Inform. 5, 1395–1403. doi: 10.1166/jmihi.2015.1542

Zhang, Y. D., Wang, S. H., and Sui, Y. X. (2018a). Multivariate approach for
Alzheimer’s disease detection using stationary wavelet entropy and predator-
prey particle swarm optimization. J. Alzheimer’s Dis. 65, 855–869. doi: 10.3233/
jad-170069

Zhang, Y. D., Wang, S. H., Phillips, P., Yang, J., and Yuan, T. F. (2016b). Three-
Dimensional eigenbrain for the detection of subjects and brain regions related
with Alzheimer’s disease. J. Alzheimer’s Dis. 50, 1163–1179. doi: 10.3233/jad-
150988

Zhang, Y. D., Zhang, Y., Hou, X. X., Chen, H., and Wang, S. H. (2018b). Seven-
layer deep neural network based on sparse autoencoder for voxelwise detection
of cerebral microbleed. Multimed. Tools Applicat. 77, 10521–10538. doi: 10.
1007/s11042-017-4554-8

Zhang, Y., Zhang, H., Chen, X. B., Liu, M. X., Zhu, X. F., Lee, S. W., et al.
(2018). Strength and similarity guided group-level brain functional network

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 January 2021 | Volume 8 | Article 610569

https://doi.org/10.1109/tmi.2011.2140380
https://doi.org/10.1109/jbhi.2019.2934230
https://doi.org/10.1109/jbhi.2019.2893880
https://doi.org/10.3389/fninf.2017.00055
https://doi.org/10.3389/fninf.2017.00055
https://doi.org/10.1016/j.media.2018.11.006
https://doi.org/10.1016/j.media.2018.11.006
https://doi.org/10.1007/s12021-019-09418-x
https://doi.org/10.1007/s12021-019-09418-x
https://doi.org/10.1109/tpami.2012.88
https://doi.org/10.1016/j.jocs.2018.11.008
https://doi.org/10.1016/j.jocs.2018.11.008
https://doi.org/10.1016/j.neuroimage.2005.12.057
https://doi.org/10.1016/j.neuroimage.2005.12.057
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1137/141000695
https://doi.org/10.1086/687857
https://doi.org/10.1007/s11682-014-9320-1
https://doi.org/10.1007/s11682-014-9320-1
https://doi.org/10.1198/jasa.2009.0126
https://doi.org/10.1198/jasa.2009.0126
https://doi.org/10.1016/j.neuroimage.2016.07.058
https://doi.org/10.3389/fnins.2015.00307
https://doi.org/10.3389/fnins.2015.00307
https://doi.org/10.1002/lary.23365
https://doi.org/10.1002/hbm.23821
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1007/s11682-015-9408-2
https://doi.org/10.1111/cns.12499
https://doi.org/10.1016/j.neuroimage.2010.10.026
https://doi.org/10.1016/j.neuroimage.2010.10.026
https://doi.org/10.1016/j.neuroimage.2011.10.015
https://doi.org/10.1016/j.neuroimage.2011.10.015
https://doi.org/10.1007/s00429-013-0524-8
https://doi.org/10.1007/s00429-013-0524-8
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.3233/jad-151010
https://doi.org/10.3233/jad-151010
https://doi.org/10.3389/fnagi.2020.00028
https://doi.org/10.3389/fnagi.2020.00028
https://doi.org/10.1016/j.neuroimage.2013.03.004
https://doi.org/10.1002/hbm.23524
https://doi.org/10.3233/jad-160092
https://doi.org/10.7717/peerj.1251
https://doi.org/10.7717/peerj.1251
https://doi.org/10.1016/j.patrec.2015.04.016
https://doi.org/10.1016/j.patrec.2015.04.016
https://doi.org/10.1166/jmihi.2015.1542
https://doi.org/10.3233/jad-170069
https://doi.org/10.3233/jad-170069
https://doi.org/10.3233/jad-150988
https://doi.org/10.3233/jad-150988
https://doi.org/10.1007/s11042-017-4554-8
https://doi.org/10.1007/s11042-017-4554-8
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-610569 December 28, 2020 Time: 17:20 # 13

Jiao et al. Constructing DFNs for eMCI Classification

construction for MCI diagnosis. Pattern Recog. 88, 421–430. doi: 10.1016/j.
patcog.2018.12.001

Zhang, Z. M., Ely, G., Aeron, S., Hao, N., and Kilmer, M. (2014). “Novel methods
for multilinear data completion and de-noising based on tensor-SVD,” in
Proceeding of the IEEE Conference on Computer Vision and Pattern Recogniton,
(Columbus, OH), 3842–3849.

Zhou, Y. Y., Qiao, L. S., Li, W. K., Zhang, L. M., and Shen, D. G. (2018).
Simultaneous estimation of low- and high-order functional connectivity for
identifying mild cognitive impairment. Front. Neuroinform. 12:1–8. doi: 10.
3389/fninf.2018.00003

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Jiao, Ji, Zhang, Shi and Wang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 January 2021 | Volume 8 | Article 610569

https://doi.org/10.1016/j.patcog.2018.12.001
https://doi.org/10.1016/j.patcog.2018.12.001
https://doi.org/10.3389/fninf.2018.00003
https://doi.org/10.3389/fninf.2018.00003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Constructing Dynamic Functional Networks via Weighted Regularization and Tensor Low-Rank Approximation for Early Mild Cognitive Impairment Classification
	Introduction
	Materials and Methods
	Framework
	Data Acquisition and Processing
	Conventional DFN Construction
	DFN Construction Based on WR
	Tensor Low-Rank Approximation
	Feature Extraction, Feature Selection, and Classification

	Results
	Visualization of Brain Functional Networks
	Classification Results
	Discriminative Brain Regions and Functional Connections

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


