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Tumor progression depends primarily on vascular supply, which is facilitated by
angiogenic activity within the malignant tissue. Non-small cell lung cancer (NSCLC)
is a highly vascularized tumor, and inhibition of angiogenesis was projected to be a
promising therapeutic approach. Over a decade ago, the first anti-angiogenic agents
were approved for advanced stage NSCLC patients, however, they only produced a
marginal clinical benefit. Explanations why anti-angiogenic therapies only show modest
effects include the highly adaptive tumor microenvironment (TME) as well as the less
understood characteristics of the tumor vasculature. Today, advanced methods of
in-depth characterization of the NSCLC TME by single cell RNA sequencing (ScRNA-
Seq) and preclinical observations enable a detailed characterization of individual cancer
landscapes, allowing new aspects for a more individualized inhibition of angiogenesis to
be identified. Furthermore, the tumor vasculature itself is composed of several cellular
subtypes, which closely interact with other cellular components of the TME, and show
distinct biological functions such as immune regulation, proliferation, and organization
of the extracellular matrix. With these new insights, combinational approaches including
chemotherapy, anti- angiogenic and immunotherapy can be developed to yield a more
target-oriented anti-tumor treatment in NSCLC. Recently, anti-angiogenic agents were
also shown to induce the formation of high endothelial venules (HEVs), which are
essential for the formation of tertiary lymphoid structures, and key components in
triggering anti-tumor immunity. In this review, we will summarize the current knowledge
of tumor-angiogenesis and corresponding anti-angiogenic therapies, as well as new
aspects concerning characterization of tumor-associated vessels and the resulting
new strategies for anti-angiogenic therapies and vessel inhibition in NSCLC. We will
further discuss why anti-angiogenic therapies form an interesting backbone strategy
for combinational therapies and how anti-angiogenic approaches could be further
developed in a more personalized tumor-oriented fashion with focus on NSCLC.

Keywords: non-small cell lung cancer, angiogenesis, vascular endothelial growth factor, tumor
microenvironment, tumor endothelial cells, immunotherapy, combinational therapy
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INTRODUCTION

Angiogenesis is regulated by the balance of pro-angiogenic
and anti-angiogenic factors present in a tissue, if vascular
remodeling is required this balance shifts to an activating state,
called the “angiogenic switch” (Bergers and Benjamin, 2003). In
progressing tumors, a similar activated angiogenic phenotype
occurs which promotes endothelial cell (EC) proliferation,
migration, elongation and dissemination of metastases to distant
organs (Teleanu et al,, 2019). These findings proposed inhibiting
angiogenesis as a highly potent anti-cancer therapeutical
approach and have intensified the research for agents to
hamper vessel formation in diverse tumors over the past
decades (Augustine et al., 2019). Conclusively, inhibiting pro-
angiogenic molecules including vascular endothelial growth
factors (VEGFs) or their cognate receptors (VEGFRs), served as
anti-angiogenic therapy approaches in advanced stage NSCLC
patients, as well as other cancer entities, at the beginning of
this century (Sandler et al., 2006) and reviewed in Jayson et al.
(2016). High expectations for these anti-cancer drugs were
shattered rapidly as they exhibited only marginal benefits in
early clinical trials due to the acquisition of evasive or primary
resistance mechanisms consequently leading to a transient
therapy benefit. Therapy failure could be attributed to the
interplay of adaptive mechanisms of the TME (e.g., eliciting
compensatory angiogenic pathways) and its interacting cellular
compartments including TECs. In the previous years, a more
detailed characterization identified the (tumor) endothelium as a
heterogeneous cell population with distinct functional and organ-
specific phenotypes indicating multiple pathological features of
the tumor vasculature (Rafii et al., 2016). In addition to tumor
endothelial heterogeneity, other vessel formation processes
alongside vascular sprouting, such as vessel co-option or
vasculogenic mimicry (VM) were less acknowledged in NSCLC
but may play an important role in anti-angiogenic therapy
resistance. Furthermore, the ability of tumors to compensate
for absent signaling molecules by activating alternative pathways
represents another resistance mechanism. The inhibition of
VEGF/VEGEFR, for example, was shown to prompt tumors to
sustain angiogenesis via the secretion of substitute factors such
as PDGF (Crawford et al., 2009), bFGF (Babina and Turner,
2017) and angiopoietin-2 (Rigamonti et al., 2014), or by the
recruitment of pro-angiogenic cells such as tryptase secreting
mast cells (Wroblewski et al., 2017) thus, resisting single-target
therapies. Previous studies using dual or multi-target antibodies
which simultaneously inhibit several angiogenic signals exhibited
an incremental anti-angiogenic efficacy in different tumor types
(Li et al., 2016; Peterson et al., 2016; Liu et al., 2018; Hosaka
etal.,, 2020). However, many processes and factors contributing to
inefficacy and resistance to angiogenesis inhibitors, in particular
those involving the tumor endothelium, remain ambiguous.

The transient combinational efficacy of anti-angiogenic
agents and chemotherapy (in first-line, as well as in second-
line therapy) could possibly be attributed to a “vascular
normalization” phenotype. Nevertheless, the time window of
vessel re-organization and normalization is not well understood
in the clinical setting but could play a major role in the

transmission of chemical agents directly to the tumor, thereby
enhancing anti-cancer efficacy (Johnson et al., 2004; Sandler et al.,
2006; Garon et al., 2014; Reck et al., 2014). Additionally, cancer
immunotherapies which inhibit immune checkpoints (ICs) such
as programmed cell death protein 1/programmed cell death 1
ligand 1 (PD1/PD-L1) and cytotoxic T-lymphocyte-associated
protein 4 (CTLA4) have become landmarks in cancer treatment.
The interaction of tumor vasculature with immune cells has
a severe impact on the responsiveness and immunodeficiency
of the tumor. Vascular normalization due to VEGF-inhibiting
therapy exhibited increased lymphocyte infiltration and T-cell
activation which, combined with immune checkpoint inhibitors
(ICI), elicited an improved anti-tumor immunity in preclinical
trials (Allen et al., 2017; Schmittnaegel et al., 2017). Additionally,
combinational therapy of anti-angiogenic agents and ICI
resulted in the formation of HEVs, which enhances activation
of circulating B- and T-cells by mediating migration into
secondary lymphoid organs (Ager and May, 2015). When
surrounded by dense B- and T-cell rich areas, HEV can
further adapt to tertiary lymphoid structures (TLS) thereby
triggering potent anti-tumor immunity, which can significantly
improve patient outcomes (Martinet and Girard, 2013). We
are confronted with a network of considerable aspects when it
comes to anti-angiogenic therapy, many of which still require
thorough investigation. Further characterization of the TME and
the associated endothelium can help improve anti-angiogenic
therapies and optimize the proposed powerful synergic efficacy
of combinational therapeutical approaches in NSCLC.

THE ROLE OF TUMOR ANGIOGENESIS
IN NSCLC

Physiological angiogenesis has already been characterized in
detail and previously reviewed elsewhere (Goth et al., 2003;
Senger and Davis, 2011). The process of tumor angiogenesis,
which occurs early during tumor progression, is similar to
physiological vessel formation, but with differences in regulation
and grade of activity (Hanahan and Folkman, 1996; Raica
et al, 2009; Hanahan and Weinberg, 2011). Firstly, tumor
associated ECs acquire a chronic activated state, the “angiogenic
switch,” a result of the upregulation of angiogenic receptors and
activation of the PI3K-AKT signaling axis (Phung et al., 2006).
This activation results in increased proliferation, survival and
migration, leading to distortion of the basement membrane as
well as pericyte coverage in the tumor vasculature (Hida et al,,
2016). Consequently, TECs exhibit dysregulated behavior and
polarization resulting in leaky, hemorrhagic, and dysfunctional
vessels. Thus, oxygen levels, nutrient availability and waste
disposal is diminished, which has severe effects on the TME
(Colegio et al, 2014; Sanctis et al, 2018). Furthermore,
dysfunctional TECs severely impact lymphocyte adhesion,
trafficking and migration to the local tissue, resulting in a highly
immunosuppressive TME (Fridman et al., 2012).

Additionally, the tumor stroma, which consists of a mix
of resident fibroblasts and pericytes as well as bone-marrow
derived tumor infiltrating leukocytes (e.g., macrophages and mast
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cells), regulates angiogenesis. M2 polarized tumor associated
macrophages can either directly activate angiogenesis by
releasing VEGE, bFGF and PIGF or indirectly via the release
of matrix-metalloproteinases (MMPs), which in turn remodel
the extracellular matrix for an enhanced endothelial migration
(Kessenbrock et al., 2010; Olson and Joyce, 2015). Fibroblasts,
as well as myeloid derived suppressor cells (MDSCs) promote
angiogenesis through expression of growth factors such as
VEGF and bFGF (Shi et al, 2017). CSF-1, a cytokine
crucial for the survival and differentiation of monocytes and
macrophages, mediates the recruitment of MDSCs into the
tumor niche, which in turn increases angiogenesis due to
growth factor release (Shojaei et al, 2007). By blocking the
CSF-1 signaling in combination with anti-VEGFR2 therapy,
tumor growth could be markedly decreased in murine lung
carcinoma models (Priceman et al., 2010). Mast cells comprise
a major compartment of inflammatory cells present in the
TME and exhibit important regulatory features regarding
angiogenesis (Ribatti and Crivellato, 2012). Their granules
contain various proteases, cytokines and growth factors including
pro-angiogenic molecules such as VEGE, bFGF, PDGF and
the potent angiogenic factor tryptase, which is released upon
activation of IgE or c-kit receptors (Ribatti and Ranieri, 2015).
Tryptase induces vascularization and vessel tube formation
by stimulating proliferation of ECs and activation of MMPs
(Ribatti and Crivellato, 2012). In NSCLC the number of tryptase
positive MCs linearly correlates with microvascular density,
confirming the important role of this enzyme in regulating
tumor angiogenesis (Ibaraki et al., 2005; Carlini et al., 2010).
Inhibition of c-kit and its ligand SCF could hamper mast cell
infiltration into the TME, preventing degranulation and thereby
producing a synergizing anti-angiogenic effect (Huang et al.,
2008; Overed-Sayer et al., 2020).

Current vessel-inhibiting therapies for treating advanced
NSCLC mainly focus on repressing the process of vessel
sprouting predominantly triggered by VEGF signaling. In the
past years, however, non-angiogenic processes in the TME
have gained attention as they are suggested to significantly
contribute to tumor progression while being resistant to
traditional angiogenesis inhibitors. In highly vascularized organs
such as the lung, it was observed that cancer cells start to
grow along existing vessels to preserve access to essential
nutrients and gases without the need to form new vasculature.
This process is referred to as vessel co-option (Pezzella et al.,
1997; Coelho et al., 2017). In contrast to the chaotic growth
of angiogenic tumor vessels, co-opted vasculature remains
well organized as deduced from normal tissues (Adighibe
et al,, 2006). So far, vessel co-option is suggested to result,
at least in part, of differential mitochondrial metabolism, but
it may also involve reduced inflammation (Donnem et al,
2013). The ECs of co-opted vessels experience severe molecular
changes during this process, for e.g., starting to express
angiopoietin-2, which results in strong regression of vessels
in the tumor core (Coelho et al., 2017). Thereupon, the
tumor core becomes hypoxic, which consequently activates
the angiogenic switch in tumor vessels (Holash et al., 1999).
In vitro studies of glioma cells suggest that tumor cells that

facilitate vessel co-option are dependent on the endoplasmic
reticulum based stress sensing protein IRE1 (Auf et al., 2010).
Furthermore the MMP-activating protein B2R was shown to
serve as a chemoattractant during the migration of glioma cells
towards blood vessels (Montana and Sontheimer, 2011). Finally,
CDC42, a protein involved in actin-dependent formation of
cytoplasmatic extensions, together with CD44, a protein crucial
for establishing cell-cell contact, enable the connection between
tumor cells and vessel covering pericytes for vessel co-option
(Caspani et al.,, 2014).

Another non-angiogenic mechanism termed “VM” describes
the process where cancer cells gain endothelial abilities to form
their own circulatory network consisting of microvascular tubes
to preserve blood supply (Pinto et al., 2016). So far, the molecular
mechanism behind VM is not yet understood, however, it
appears that VE-cadherin, the most prominent receptor on
ECs, may play an important role. VE-cadherin on tumor cells
can activate PI3K through the ERK1/ERK2 pathway which
subsequently activates the metalloproteases MMP14 and pro-
MMP2, resulting in remodeling of the ECM to enable cancer
cells to be reorganized into vessel-like tubes (Paulis et al., 2010;
Delgado-Bellido et al., 2017). VM networks resemble embryonic
vasculogenesis, referring to a highly aggressive tumor cell
phenotype that converted to an embryonic-like, undifferentiated
state to facilitate tube formation (Maniotis et al., 1999). Gene
expression analysis of VM networks in aggressive melanoma
identified genes correlated with various cellular phenotypes such
as fibroblasts, ECs and epithelial cells (Bittner et al., 2000; Seftor
et al., 2002a,b). Tumors positive for VM show an increased
expression of the ECM component laminin5y2 and several
MMPs, underlining the importance of ECM remodeling for
initiating and promoting this non-angiogenic process (Seftor
et al.,, 2001). Furthermore, VM is associated with poor prognosis
as it is mainly observed in aggressive forms of melanoma
and lung metastases (Williamson et al., 2016). Taking the
potent impact of these non-angiogenic processes in cancer
progression into consideration, may help us explain the occurring
resistance of lung tumors to VEGF-inhibitors (Dome et al., 2007;
Bergers and Hanahan, 2008).

In summary, the pathological features of tumor-associated
ECs and non-ECs which result in a complex cancer promoting
TME are diverse, and consequently contribute to therapy failure
of angiogenesis inhibitors as well as other therapy approaches
in a remarkable fashion. To better understand the biological
mechanisms behind drug resistance or lack of clinical benefit,
further investigation into the detailed characterization of the
endothelial compartment in the TME are essential.

TRADITIONAL METHODS FOR VESSEL
INHIBITION IN NSCLC

Currently used anti-angiogenic agents have been developed and
approved for clinical application after intense study of their
molecular, cellular, and physiological mode of action using
various experimental approaches. In the following part we
summarize currently available methods for investigating tumor
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angiogenesis as well as anti-angiogenic agents that have already
been accepted for treating NSCLC.

Methods to Study (Tumor) Angiogenesis
Experimental models remain the cornerstone for investigating
tumor angiogenesis and the development of new anti-angiogenic
therapies. As vessel sprouting is a multistep process there is
a wide array of assays which enable individual evaluation of
different stages, and each possesses specific advantages and
disadvantages (Shahid et al, 2017; Stryker et al, 2019). To
unravel these complex processes, it is crucial to understand the
analytical potential of each model. In vitro methods represent
the fundamental evaluation of tumor angiogenesis including
basic functional analysis such as proliferation, migration, and
tube formation. The big advantages of in vitro assays are their
simplicity, high reproducibility, and cost effectiveness, while
the disadvantages include the incomplete representation of
the cellular heterogeneity and prevailing conditions present in
human organs. Although findings from in vitro assays may never
be conclusive alone, they serve as a preliminary projection of
angiogenic processes upon treatment of choice and provide first
insights into a testing hypothesis.

Ex vivo assays such as the thoracic aorta ring and retina
angiogenesis methods represent the link between in vitro and
in vivo analysis. Here, functional vasculature fragments of
aorta/retina derived from mice or rats are immersed in a three-
dimensional culturing system for evaluating vessel sprouting
outgrowth under specific conditions. The advantage of this
method over in vitro assays is the preservation of original EC
properties within the tissue that are normally modified due to
isolation processes and repeated passaging. The absence of blood
flow and circulating EC progenitors or other factors constitute
the main disadvantages of these methods.

For more accurate information regarding angiogenic
processes upon treatment in a biological system or to perform
long-term studies, in vivo methods are necessary. The most
common systems to investigate angiogenesis in a living
organism are the chicken chorioallantoic membrane (CAM)
assay, matrigel plugs, and tumor xenograft models. CAM
assays, which have already been in use for decades, utilize
chorioallantoic membranes of fertilized chicken eggs to evaluate
angiogenic processes. While this method is cost effective, highly
reproducible and the outcomes are easily visualized, it must be
taken into consideration that vessel growth is evaluated during
developmental stages, which can affect studies investigating
mechanisms in mature vasculature. Matrigel plug assays enable
the use of an in vitro tool in an in vivo setting. Here, vascular
growth is evaluated by injection of matrigel, a synthesized
substrate resembling basement membrane matrix, into an animal
model which allows easy stimulation, subsequent excision, and
investigation of the plug with, for example, immunohistological
stainings. Compared with CAM assays, the matrigel plug can
be used in more analytical methods and provides a fast and
reliable representation of angiogenic processes in a biological
system. Nevertheless, this method may require more replicates
due to higher variability of results and is therefore more
expensive. Lastly, transplantation xenografts represent the

most advanced method to investigate tumor angiogenesis in
a living organism. Tumor cells, mostly of human origin, are
injected into immunodeficient mice to induce formation of
a cancer mass that can be further treated and monitored for
changes regarding tumor angiogenesis. This method most
suitably reflects the pathological mechanism of vessel growth
in vivo in the presence of blood circulation, as well as diverse
environmental factors. Furthermore, it enables the long-term
study of diverse processes associated with angiogenesis that
are observed in a biological system such as tissue invasion,
distant metastasis formation as well as non-angiogenic processes
like vessel co-option and VM, which are known to promote
resistance mechanisms in various cancers. Aside from the
ethical aspect, a considerable disadvantage of this method is the
incomplete or lacking representation of the immune system due
to immunosuppression of the study organism.

Examining which experimental assay is most suitable
for investigating a chosen angiogenic process under certain
conditions, necessitates extensive deliberation with the desired
endpoint, required technical equipment, level of experimental
throughput, cost, and ethics kept in mind. Additionally, the
complexity of angiogenesis cannot be unraveled using a single
analytical method but the thought-out application of multiple
overlapping analyses, ranging from cellular to physiological
levels, are necessary to obtain robust findings worth testing in the
clinical setting.

Anti-angiogenic Therapies Approved for

Treating NSCLC

In 2004, the first VEGFA-inhibiting antibody, bevacizumab, was
approved for use in advanced colorectal cancer in combination
with chemotherapy and was followed in 2006 in NSCLC (Sandler
et al., 2006). Since then, diverse anti-angiogenic antibodies or
tyrosine kinase inhibitors (TKIs) have been developed, which
block either VEGF-A binding to the receptor or directly inhibit
VEGEFR-2 to hamper vascularization in tumors. VEGF-pathway
inhibition has a broad anti-angiogenic effect in tumors: (1) it
primarily inhibits vessel growth which induces regional cancer
cell death and delays progression of the tumor rather than
diminishing its size (Escudier et al., 2007); (2) it induces EC
apoptosis as VEGF acts as a survival factor on the endothelium
by activating BCL2, Akt signaling, or apoptosis inhibitors
(Gerber et al., 1998; Fujio and Walsh, 1999); (3) it blocks the
recruitment of hematopoietic or endothelial progenitor cells for
new vessel formation which provides an essential function in
neovascularization in growing tumors (Rafii et al., 2002; Bertolini
et al., 2006). Angiogenesis inhibitors in combination with either
chemotherapeutics, targeted therapies or ICL, in first or second-
line therapies in NSCLC, have exhibited improved efficacy and
feasible safety, which significantly improved response rates and
prolonged progression free survival (PFS) in a large number
of patients. Currently three anti-angiogenic agents, namely
bevacizumab, ramucirumab and nintedanib are FDA/EMA
approved for use in advanced stage NSCLC and are summarized
in Table 1 (Hall et al., 2015; Alshangiti et al, 2018; Janning
and Loges, 2018) while more are in clinical testing. Despite the
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TABLE 1 | Clinical studies of anti-angiogenesis based therapies in NSCLC that led to FDA/EMA approval.

Line Population Therapy- Experimental arms Phase References
combination
First Stage lIIB-IV NSCLC AAT + ChT Bevacizumab + Carboplatin + Paclitaxel (n = 434) Il Sandler et al., 2006
Carboplatin + Paclitaxel (n = 444)
Advanced AAT + ChT Bevacizumab (low) + Cisplatin + Gemcitabine 1l Reck et al., 2009;
non-squamous NSCLC (n = 345) Reck et al., 2010
Bevacizumab (high) + Cisplatin + Gemcitabine
(n = 351)
Cisplatin + Gemcitabine (n = 347)
Stage lIIB-IV AAT + ChT Bevacizumab + standard chemotherapy (n = 2212) % Crino et al., 2010
non-squamous NSCLC
Locally advanced, AAT + ChT Bevacizumab + Platin-based chemotherapy Il Soria et al., 2013
recurrent or metastatic (n=1313)
NSCLC
Platin-based chemotherapy (n = 881)
Stage IIIB-IV AAT +TT Bevacizumab + Erlotinib (n = 75) Il Seto et al., 2014;
EGFR-mutated Yamamoto et al.,
non-squamous NSCLC 2018
Erlotinib (n = 77)
Stage IIIB-IV AAT + TT Bevacizumab + Erlotinib (n = 114) 1l Saito et al., 2019
EGFR-mutated
non-squamous NSCLC
Erlotinib (n = 114)
Stage IV AAT +TT Ramucirumab + Erlotinib (n = 224) Il Nakagawa et al.,
EGFR-mutated NSCLC 2019
Erlotinib (n = 225)
Metastatic AAT + ChT + ICI Bevacizumab + Atezolizumab + Carboplatin + Il Socinski et al., 2018
non-squamous NSCLC Paclitaxel (n = 356)
Bevacizumab + Carboplatin + Paclitaxel (n = 336)
Second Stage IV squamous and AAT + ChT Ramucirumab + Docetaxel (n = 1253) Ml Garon et al., 2014;
non-squamous NSCLC Reck et al., 2017
Docetaxel (n = 625)
Stage IIIB-IV NSCLC AAT + ChT Nintedanib + Docetaxel (n = 655) Il Reck et al., 2014;

Docetaxel (n = 654)

Novello et al., 2015

remarkable clinical benefits of these combinational approaches
on response rate and PFS, the overall survival (OS) benefits
were modest due to acquired drug resistance. It is important to
mention that in most lung cancer studies anti-angiogenic therapy
is administered until the onset of severe drug related adverse
effects or disease progression. So far, there is only preclinical
evidence that discontinued angiogenesis inhibition results in
TME reorganization and perhaps causes a rebound effect of
tumor angiogenesis. In tumor and healthy mouse models, it
could be shown that anti-VEGF therapy withdrawal resulted in
rapid tissue revascularization and long lasting structural changes
including vessel hyper-permeability and increased metastasis
in the diseased cohort (Yang et al., 2016). The treatment-
triggered hypoxia which induces angiogenesis especially during
therapy-withdrawal is one possible explanation to this tumor
promoting off-drug effect. The benefit of continuous anti-
angiogenic therapy beyond disease progression in the clinical
setting was first analyzed in a phase 3b trail in 2018 which
included 485 advanced NSCLC patients (Gridelli et al., 2018).
Here, bevacizumab was administered in addition to standard of

care therapy beyond disease progression. While, the treatment
continuation of bevacizumab yielded no substantial therapy
benefit, improvements in efficacy, and no new safety signals were
observed. Based on these findings, the approach of continuous
angiogenesis inhibition should be further investigated but may
be recommended at a certain degree in the future. Nevertheless,
treatment decisions should be based on individual therapeutic
efficacy, which needs to be tracked throughout the entire therapy.
However, the absence of reliable biomarkers with predictive
features for anti-angiogenic therapies hamper further therapy
improvement, thus molecular screening for markers associated
with tumor angiogenesis is currently of great value.

NEW MOLECULAR CANDIDATES TO
PREDICT AND TRACK
ANTI-ANGIOGENIC EFFICACY IN NSCLC

As previously mentioned, there is a great need for biomarkers
to predict and track anti-angiogenic therapy efficacy, to help
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overcome innate and acquired resistance as it is still the main
obstacle that restrains clinical success (Bergers and Hanahan,
2008). So far, predictive angiogenesis-associated biomarkers
in NSCLC are lacking, highlighting the need for further
investigation to improve this anti-tumor approach.

In a recent study, it was demonstrated that
immunohistochemically confirmed TTF-1 expression in
advanced non-squamous NSCLC samples, which is a known
prognostic biomarker of lung adenocarcinomas, could be
linked to therapy success of bevacizumab in combination with
pemetrexed plus platinum derivatives (Takeuchi et al., 2018).
TTF-1 positive tumors exhibited enhanced clinical benefits when
bevacizumab was combined with the basic therapy whereas
TTE-1 negative tumors did not benefit from this addition.

Furthermore, despite the previous results of the IMpower150
study, where significant clinical benefits of bevacizumab in
combination with ICI and chemotherapy were shown, regardless
of PDL-L1 expression, a phase 1b study by Herbst et al.
observed contrary results. They reported a beneficial efficacy
of ramucirumab in combination with the PD-L1 inhibitor
pembrolizumab especially in patients with a PD-L1 expression
above 50% (Herbst et al., 2019). According to this, PD-L1
expression remains a predictive marker of ICI therapy or ICI
therapy in combination with anti-angiogenesis agents in NSCLC.
Qiu et al. recently examined the benefit of anti-angiogenic
therapies (bevacizumab, anlotinib or others) with anti-PD-L1
agents (nivolumab or pembrolizumab) in a real-world study
including 69 NSCLC patients. Subgroup analyses in the cohort
revealed that the response and PFS of this combinational
therapy was significantly higher when it was administered as
first-line therapy compared to other lines of treatment, and
when the therapy was initiated within the first 6 months of
diagnosis compared to later time points (Qiu et al, 2020).
Additionally, patients with EGFR wildtype tumors exhibited
significantly prolonged PES after the combinational therapy
compared to patients with EGFR mutated tumors. Interestingly,
no correlation between PDL-1 expression levels and the efficacy
of this combinational therapy has been observed so far, however,
follow up will be continued. In short, these study results can help
to optimize the use of anti-angiogenic agents in combination with
PD-L1 inhibitors, however, more factors need to be investigated
to yield an optimal benefit.

Another potent multi-targeted anti-angiogenic TKI,
anlotinib, has already shown profound benefits as third-
line combinational therapy in advanced NSCLC (Han et al,
2018a,b). A transcriptomics study of an anlotinib-resistant lung
cancer cell line, indicated that CXCL2, a cytokine involved in
wound healing and angiogenesis, was also involved in anlotinib-
resistance (Lu et al., 2019a). In vitro assays demonstrated that
exogenous CXCL2 could recover anti-angiogenic-induced
inhibition of migration and invasion and prevent apoptosis of
anlotinib-resistant cells. Furthermore, in a retrospective analysis,
anlotinib-induced decrease of the inflammatory cytokine CCL2
in serum correlated with prolonged PFS and OS (Lu et al,
2019b). Nevertheless, resistance and poor response to anlotinib
hinder drug efficacy. While the underlying mechanisms are still
unknown, elevated serum-levels of two angiogenesis-related

markers KLK5 and L1CAM were recently correlated with poor
response to anlotinib (Lu et al., 2019b).

Easily available predictive biomarkers, e.g., liquid biopsy,
which allow the continuous track of response to angiogenesis
inhibition are highly desired to optimize efficacy, as most of the
current methods involve invasive procedures (biopsy or surgery)
which limit analytical accessibility.

Several studies suggested a potential prognostic value of
VEGF in NSCLC but so far investigations into circulating
VEGF levels have not yielded consistent results (Rodriguez
Garzotto et al.,, 2016). In the E4599 study, high VEGF levels
in pretreatment plasma of 878 patients with advanced stage
NSCLC, who received combinational treatment of bevacizumab
plus chemotherapy, correlated with increased overall response
but had no predictive outcome on survival (Dowlati et al., 2008).
Another study observed contrary results when baseline plasma
biomarkers of 303 non-squamous NSCLC patients undergoing
similar therapy were evaluated (Mok et al., 2014). Here, baseline
VEGFA levels in the plasma correlated with prolonged PFS
and OS but showed no association with response rates to the
therapy. The predictive value of VEGF or other proangiogenic
factors on anti-angiogenic drug response is a highly discussed
matter revealing vastly variable results. This is partly due to
analytical variability, including sample collection and handling,
as well as the disagreements regarding the most suitable sample
choice for evaluating circulating factors (Rodriguez Garzotto
et al., 2016). For example, serum or platelet rich plasma may
not adequately represent the physiological VEGF level as it has
been shown that the clotting processes initiates VEGF release
in platelets (Webb et al, 1998). Moreover, the pathological
situation can impact VEGF levels, as patients with more advanced
tumors or several metastatic tumor sites exhibit a higher baseline
level of plasma VEGFA, suggesting that VEGFA is linked to
the tumor burden (Mok et al, 2014). Previously proposed
correlations of circulating angiogenic factor levels with anti-
angiogenic therapy efficacy in lung cancer seem to reflect tumor
biology thus, have an important prognostic role rather than
to be predictive (Crohns et al, 2010). The observed trend
of increasing circulating factors in response to angiogenesis
inhibition on one hand was shown to depend considerably on
the TME and may represent therapy-induced hypoxia (Zaman
et al, 2006; Kut et al, 2007). On the other hand, high
VEGFA levels could also be attributed to TP53 mutated lung
tumors which correlated with improved efficacy of bevacizumab
(Schwaederlé et al., 2015). A currently identified alternative
biomarker for bevacizumab-based chemotherapy combinations
in patients with advanced NSCLC is CXCL16. In the analyzed
sera of 40 advanced staged NSCLC patients therapy-induced
decrease of CXCL16 levels correlated with prolonged OS
compared with patients exhibiting only moderate decrement
(Shibata et al., 2020).

However, confirming if any of these molecular markers
indeed exhibit adequate predictive features necessitates further
investigation. New aspects of processes which promote tumor
angiogenesis, and a better understanding of the endothelium as
driving force can help identify reliable biomarkers and overcome
therapy failure in NSCLC.

Frontiers in Cell and Developmental Biology | www.frontiersin.org

January 2021 | Volume 8 | Article 610903


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Daum et al.

New Aspects of Anti-angiogenesis Therapy

MECHANISMS OF TUMOR
VASCULARIZATION IN NSCLC

There are several mechanisms on both the cellular and
environmental levels which can promote vessel formation in
human tumors, many of which are not yet been completely
elucidated. Although angiogenesis may represent the most
important part of tumor vascularization, other processes that
result in perfusion of the tumor tissue should be investigated in
more detail and considered when designing new anti-angiogenic
approaches in NSCLC.

In the following part we summarize various levels of
tumor vascularization that may represent new targets for
vessel inhibition in NSCLC. All mentioned mechanisms are
summarized in Figure 1.

TEC Characteristics That Promote

Tumor Vascularization in NSCLC

The endothelium is postulated to be a large contributor to the
therapeutic efficacy of anti-angiogenic therapies, and therefore
represents a possible source of therapy response or failure. It
is well known that the process of angiogenesis is comprised
of different EC phenotypes which execute distinct functions.
During the elongation of the sprouting vessel VEGF-sensitive
tip ECs migrate into avascular tissue regions, thus leading the
proliferating trailing stalk ECs, which built up the growing
vessel. Newly formed vasculature finally adapts a mature and
quiescent phenotype referred to as phalanx ECs (Carmeliet and
Jain, 2011; Betz et al., 2016). The EC phenotypes involved are
highly dynamic and can reprogram the gene expression to meet
their current physiological requirements. However, the tumor

FIGURE 1 | Mechanisms of tumor vascularization in NSCLC. Tumor vascularization in lung cancer can be promoted by various processes which overlap during

VESSEL
CO-OPTION

cancer progression. In general tumor vascularization/angiogenesis can be stimulated on the cellular level (TEC properties), the environmental level (TME stimuli) or
facilitated in absence of angiogenic signaling (non-angiogenic processes). TECs exhibit upregulated metabolism to enable high angiogenic activity which includes
processes involved in proliferation (cholesterol synthesis and glycolysis) and processes that enable migration via ECM remodeling (collagen synthesis). Potential
targets involved in these pathways (SQLE, PFKFB3, and ALDH18A1, respectively) are considered to increase the angiogenic potential of TECs in NSCLC. Hypoxia
and acidosis induced by high levels of lactate due to upregulated glycolysis constitute to a highly pro-angiogenic tumor environment. Angiogenesis stimulating
factors (VEGF, bFGF, PDGF, HIF-1a, tryptase, and MMPs) are released by both, cancer cells and stromal cells, including fibroblasts, pericytes, tumor associated
macrophages and ECs. Non-angiogenic processes constitute to tumor vascularization and are inaccessible for anti-angiogenic agents, thus contributing to therapy
resistance. VM comprises the formation of tubular structures arising from cancer cells that gain endothelial like properties to maintain vascular supply during cancer
progression. Another mechanism of cancer cells to persist in circulation is to grow along existing vasculature, which is referred to as vessel co-option. In this figure
we summarized the various mechanism of tumor vascularization that should be considered when targeting the inhibition of tumor vessels in NSCLC.
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endothelium was not studied in depth and a recent single-
cell RNA sequencing (scRNA-Seq) study identified even more
EC phenotypes from both healthy and tumor tissue from lung
cancer samples as already known, indicating a much more
complex phenotypic heterogeneity of the (tumor) vasculature
than initially presumed (Goveia et al., 2020). Interestingly,
although phenotype proportions differed strongly between
analyzed NSCLC patients, they collectively observed a low
abundance of tip and proliferating TECs, which represent the
main targets of traditional anti-angiogenic therapy. Furthermore,
they identified a so-far-unknown tumor exclusive phenotype of
activated postcapillary vein EC that upregulated features known
from HEVs in inflamed tissues such as immunomodulatory
factors and ribosomal proteins. The unexpected finding that

activated and proliferating TECs only represent a minority of
the pathological EC phenotypes found in NSCLC, allows us to
reconsider currently used anti-angiogenic therapy as less of a
vessel-inhibiting strategy, and more of a strategy to modulate the
higher proportion of mature TECs into potent participants of
tumor surveillance.

In order to develop new angiogenesis-inhibiting therapies,
the molecular differences between physiological and pathological
ECs will need to be elaborated. Genetically TEC and NEC
phenotypes significantly differ in gene expression affecting
diverse cellular mechanisms such as proliferation, migration,
inflammation, and angiogenesis (Figure 2). Previous studies
have shown that one key feature of TECs is a highly active
metabolism, which permits pathological processes as increased

MDSC

o <@

CANCER CELL FIBROBLAST

TAM  MAST CELL

IMMUNE IMMUNE CELL LYMPHOCYTE
RECRUITMENT HOMING ACTIVATION /
~ ~ g I IMMUNE CELL
V] ! : \ I TRAFFICKING
] ] : \ -t
1 ' 1

PRO-ANGIOGENIC & IMMUNE SUPPRESSIVE
MICROENVIRONMENT

FIGURE 2 | The multifaced picture of TECs in NSCLC. TECs possess features that enable continuous angiogenic activity for progressing vascularization of the
tumor. These features are ensured by genetical changes in the tumor endothelium that are triggered by diverse stimuli of the TME e.g., hypoxia and growth factor
release. The stroma, consisting of various cells, promote angiogenesis by directly releasing signaling molecules into the adjacent tissue, thereby stimulating TECs.
Fibroblasts and myeloid derived suppressor cells (MDSCs) activate angiogenesis by releasing VEGF and bFGF into the TME. Additionally, CSF-1 molecules,
expressed by cancer cells, further recruit MDSCs into the tumor niche. Tumor associated macrophages (TAMs) can directly induce angiogenesis by releasing VEGF,
bFGF, and PIGF, or indirectly by releasing matrix metalloproteinases (MMPs) which promote endothelial migration. Mast cells secrete tryptase (TRYPT) into the TME
which stimulates EC proliferation and enables ECM remodeling. Furthermore, to facilitate enhanced angiogenesis, TECs upregulate the surface expression of
angiogenic receptors as well as increase metabolic activity including energy and amino acid metabolism and the biosynthesis of nucleotides. In addition to the high
angiogenic activity, TECs can directly suppress inflammatory responses by downregulation of inflammatory cytokines for immune cell recruitment (CCL2, CCL8, and
IL-6), receptors required for immune cell homing (ICAM) or lymphocyte activation (MHC | and MHC Il) which results in impaired immune cell trafficking and migration
into the TME. In summary the complex interaction of tumor-protecting environmental conditions and the pathological features of TECs lead to a pro-angiogenic and
immune suppressive TME in NSCLC.
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proliferation and angiogenesis (Cantelmo et al., 2016). TECs
exhibit upregulated glycolysis due to elevated expression
of  6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
(PFKFB3), which regulates proliferation and migration during
tumor angiogenesis (van der Veldt et al., 2012; de Bock et al,,
2013). Hyperglycolytic TECs subsequently release high amounts
of lactate into the environment, which in turn, further stimulates
EC proliferation and angiogenesis (Annan et al., 2019). It could
be demonstrated that inhibition of PFKFB3 resulted in improved
drug efficacy and decreased metastatic events in tumor mouse
models (Cantelmo et al,, 2016). Another study in xenograft
NSCLC mouse models exhibited that PFKFB3 mRNA silencing
in combination with docetaxel results in a chemoenhancing effect
and increases anti-cancer efficacy compared with monotherapies
alone (Chowdhury et al, 2017). Furthermore, to sustain
upregulated proliferative capacity, TECs exhibit elevated
nucleotide biosynthesis including upstream pathways that are
involved in serine and lipid synthesis (Cantelmo et al., 20165
Bruning et al.,, 2018; Li et al,, 2019). In addition, Lambrechts
et al. (2018) showed that MYC-targets, which are involved
in transcription processes, were most upregulated in TECs
of human NSCLC samples. Interestingly, ¢-MYC expression
induces angiogenesis in combination with HIF-la and VEGF
(Lee and Wu, 2015) and recruits tryptase positive mast cells into
the tumor niche (Soucek et al., 2007), therefore, MYC inhibition
may have a potential anti-cancer effect.

Focusing on endothelial metabolism in cancer, a recent study
could identify at least two metabolic signatures which are highly
upregulated in angiogenic endothelium and TECs. One for
proliferation, which includes gene sets associated with biomass
production e.g., glycolysis, TCA cycle, fatty acid oxidation,
cholesterol biosynthesis and amino acid metabolism, and one for
remodeling of the extracellular matrix including gene sets for
collagen biosynthesis in particular proline synthesis (Rohlenova
et al., 2020). These results educed two new possible metabolic
targets to hamper tumor angiogenesis; aldehyde dehydrogenase
18 family member A1 (ALDH18A1), an enzyme essential for de
novo biosynthesis of proline; and squalene epoxidase (SQLE),
the rate-limiting enzyme in cholesterol biosynthesis. Silencing of
ALDH18A as well as SQLE impaired EC proliferation, migration
and vessel sprouting in in vitro assays. Summarized, targeting
endothelial metabolism in cancer is an interesting therapeutic
option that could possibly assist an anti-angiogenic approach
for treating NSCLC.

Another key feature of TECs in lung cancer is the
downregulation of inflammatory responses thus contributing to
tumor-associated immune escape. Single-cell analysis of NSCLC
samples identified the most downregulated genes of the tumor
endothelium in connection to inflammation, which included
CCL2, CCL18, and IL6, essential for immune cell recruitment;
MHC I and II, essential for immune cell activation; and ICAM,
required for immune cell homing (Lambrechts et al., 2018).
As the endothelium represents the primary connection between
the immune system and tumor cells, these results indicate the
important role of TECs in immunomodulatory processes that
hamper anti-tumor immunity. It has been demonstrated that
angiogenesis inhibition can restore proinflammatory surface

proteins on TECs during a therapy-induced process termed
“vessel normalization” (Goveia et al., 2020). Vessel normalization
not only improves immune cell activation and infiltration, but
is also suggested to enhance drug delivery to the tumor sites,
thus improving its efficacy (Allen et al., 2017; Schmittnaegel
etal., 2017). Additionally, combinational therapy of angiogenesis
inhibitors and immunotherapy (anti-PD-L1) in previous studies
could elicit the formation of unique blood vessels in treated
tumors that resemble HEVs typically found in lymphoid tissues,
which implicated increased treatment efficacy (Allen et al., 2017;
Schmittnaegel et al, 2017). HEVs can mediate immune cell
adhesion and migration into the tumor, which may be important
for bypassing TEC-induced immune escape (Ager and May,
2015). In the already discussed scRNA-Seq study by Goveia
et al., they demonstrated that VEGFR inhibition could induce
vessel normalization by shifting invasive, low immunogenic TEC
phenotypes to a more quiescent, immune-modulatory phenotype
resembling HEVs (Goveia et al, 2020). These remarkable
observations indicate that TECs comprise the ability to transform
into HEVs to promote immune cell infiltration into the tumor
and induce a potent anti-tumor response. This extends the
previous observations of favorable synergistic effects of immune
therapy in combination with angiogenesis inhibitors in NSCLC,
especially when it results in HEV formation. Furthermore, direct
induction of HEV formation could be a promising new strategy
in anti-angiogenic approaches that may attain great clinical
importance. However, currently there are no reliable biomarkers
to track the process of vessel normalization or HEV formation
in NSCLC which could help to predict and optimize this new
treatment strategy.

Non-angiogenic Mechanisms in
Association With Neovessel Inhibition in
NSCL

As mentioned above, in some cases tumor vascularization can be
facilitated by non-ECs which adapt certain properties to sustain
access to the circulation, which may support anti-angiogenic
drug resistance. During tumor progression, processes that lead
to vascularization of the malignant tissue can vary locally as well
as temporarily and involve angiogenic as well as non-angiogenic
mechanisms even in the same lesion (Bridgeman et al., 2017). In
lung tumors, where non-angiogenic tumor growth occurs most
commonly, previous studies primarily located non-angiogenic
processes in the tumor periphery, whereas angiogenesis is
typically localized in the hypoxic tumor core (Pezzella et al., 1997;
Donnem et al., 2018). Here, we briefly discuss the impact of non-
angiogenic processes in NSCLC on anti-angiogenic drug efficacy
based on previous studies.

VEGEF-A inhibition using bevacizumab failed to inhibit VM
in breast cancer cells in vitro, furthermore, sunitinib, a multi
targeting anti-VEGFR inhibitor, even promoted VM in breast
cancer mouse models (Dey et al, 2015; Sun et al, 2017).
Additionally it could be demonstrated that VM in NSCLC
depends on expression of Sema4D and its receptor plexinBl
which activate RhoA and downstream ROCK, comprising an
already known angiogenesis-promoting process in tumors (Basile
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etal.,, 2006). Inhibition of Sema4D or downregulation of plexinB1
resulted in RhoA/ROCK pathway inhibition and could reduce
VM formation in human NSCLC cell lines (Xia et al., 2019).
Although the role of VM in NSCLC is not fully understood,
previous observations suggest that it may contribute to anti-
angiogenic therapy failure and may serve as an option to treat
aggressive lung tumors.

Vessel co-option on the other hand is a common phenomenon
especially observed in lung metastases when tumor cells start
to invade perivascular tissues (Jensen, 2016). Anti-angiogenic
therapy with sunitinib could induce a switch from angiogenic
vessel formation to vessel co-option in a lung metastatic
mouse model, which ultimately resulted in sunitinib resistance
(Bridgeman et al., 2017). Unfortunately, regulative mechanisms
of vessel co-option in human tumors remain unknown in large
part, however, predicting the occurrence of either VM or vessel
co-option could be a useful tactic to prevent anti-angiogenic drug
resistance in some patients. According to these and other results,
it could be confirmed that non-angiogenic tumors contribute to
anti-angiogenic therapy resistance which reveals the undoubted
importance of targeting both angiogenic, but also non-angiogenic
vessel growth to treat NSCLC (Donnem et al., 2018).

NEW ASPECTS FOR VESSEL INHIBITION
IN NSCLC

Increasing knowledge of the physiological processes of tumor
vascularization in addition to traditional angiogenesis has
enlightened a variety of adaptive mechanisms which can promote
anti-angiogenic therapy resistances. This awareness fortifies
the necessity for alternative anti-angiogenic agents besides
traditional anti-VEGF therapy.

New Targets for Vessel Inhibition in
NSCLC

As previously examined, tumor angiogenesis depends on
upregulated metabolic activity e.g., elevated cholesterol levels in
TECs. Cholesterol not only represents a fundamental structural
component of cell membranes and serves as precursor for several
steroid hormones, it is also crucial for membrane function and
angiogenic signaling, making it a favorable target for tumor vessel
inhibition (Lyu et al., 2017). Inhibition of intracellular cholesterol
trafficking with anti-inflammatory drug chepharantine was
shown to hamper angiogenesis and tumor growth in lung cancer
xenograft mice while improving anti-tumor activity of standard
chemotherapeutics (Lyu et al., 2017). Another study has shown
that pharmacological lowering of intracellular cholesterol levels
with pitavastatin could reduce growth and migration and induced
apoptosis in human lung tumor-associated ECs in vitro (Hu et al.,
2020). In vivo experiments using lung cancer xenograft mice
exhibited that pitavastatin-treatment could completely arrest
tumor growth in these animals when combined with cisplatin and
delayed tumor growth and impaired angiogenesis in cisplatin-
resistant mouse models.

Another potential angiogenic target for cancer treatment is
tiel. While the second tie receptor, tie2, is well characterized

as a regulator during late stages of angiogenesis (e.g. vascular
maturation or in quiescent ECs) via the angiopoetin/tie signaling
pathway, an associated ligand for the less studied tiel, has not
yet been identified (Augustin et al., 2009). In contrast to tie2,
tiel is upregulated in angiogenic vessels and downregulated in
quiescent ECs and is somehow involved in the regulation of the
angiopoietin/tie signaling cascade (Sato et al., 1995; Kim et al,,
2016; Korhonen et al., 2016; La Porta et al., 2018). As tiel is
also upregulated in intratumoral vasculature, its deletion on ECs
successfully produced a potent anti-angiogenic effect in different
cancers (Kaipainen et al., 1994; Aguayo et al,, 2001). In fact,
EC-specific deletion of tiel in lung carcinoma and melanoma
mouse models resulted in delayed cancer growth, predominantly
in late-stage tumors (La Porta et al, 2018). Furthermore,
it inhibited neovessel sprouting and a reduced intratumoral
vessel density, while the remaining mature vasculature became
strongly normalized, which limited further metastatic formation.
These findings, and the fact that tiel expression is increased
in angiogenic endothelium compared with resting vasculature,
presents tiel as a highly potent angiogenic target, especially in
the treatment of advanced staged NSCLC.

Another considerable strategy of anti-angiogenic therapy
could include targeting micro RNAs (miRNAs) as they represent
a new paradigm in molecular cancer therapy. The impact of
miRNAs in post-transcriptional regulation has already been
associated with pathways involved in cancer and vascular disease
as summarized in Sun et al., 2018. The following studies evaluated
the potential role of specific angiogenesis-related miRNAs as
targets in lung cancer. Hsu et al. observed that miR-23a, a
micro RNA known to be hypoxia-associated, was overexpressed
in exosomes of oxygen depleted CL1-5 lung cancer cells (Hsu
et al.,, 2017). Furthermore, these cancer-cell derived exosomes
could induce angiogenesis via HIF-1a signaling in vitro when
internalized by HUVECs. Additionally, miR-23a transfection
increased permeability and transendothelial migration of cancer
cells in vitro by downregulation of the tight junction protein
Z0O-1 and stimulated neovascularization and tumor growth
in vivo in CL1-5 xenograft mice, proposing it to be an
appealing target for anti-angiogenic therapy. Upregulation of
miR-195 in squamous lung cancer cells in vitro on the other
hand could be associated with impaired VEGF expression and
hampered migration and invasion, thereby facilitating a tumor-
suppressive function. Additionally, overexpression of miR-195 in
HUVECs was observed to inhibit tube formation and reduced the
expression of VEGE, which hampered their angiogenesis activity
in vitro (Liu et al., 2019).

As it is an essential process during vessel growth, targeting
ECM remodeling may also be an interesting approach to inhibit
tumor angiogenesis in NSCLC. The most prominent enzymes
involved in this process are matrix-metalloporoteinases (MMPs)
which are inhibited under physiological conditions by tissue
inhibitors of metalloproteinases (TIMPs). miR-130b could be
identified as a promotor of MMP-2 activity and invasion of
NSCLC cancer cells in vitro by downregulation of TIMP-2.
Additionally, it could be observed that miR-130b was significantly
upregulated in tumor tissue of NSCLC patients with vascular
cancer cell invasion (Hirono et al., 2019). According to these
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findings, targeting miR-130b could be a strategy to impede
angiogenesis and cancer cell invasion in lung cancer.

Uribesalgo et al. suggested targeting the apelin signaling
pathway to inhibit tumor vessel formation in lung cancer
(Uribesalgo et al., 2019). Apelin is a conserved peptide involved
in developmental angiogenesis and is also upregulated in ECs
within the TME. Previous studies could associate high apelin
levels with a poor clinical outcome in patients with NSCLC
(Gyorffy et al, 2010). In murine lung cancer models, apelin
knockout reduced tumor burden and prolonged survival by
inhibiting VEGE, TGF-1, and TNF-a and simultaneously
decreased MDSC infiltration in the TME (Uribesalgo et al., 2019).
The combination of pharmacological inhibition of apelin with
the anti-angiogenic drug sunitinib in lung cancer and mammary
cancer mouse models, significantly delayed tumor growth and
could almost double the survival, even in the KRAS driven or p53
mutated tumors, when compared with sunitinib treatment alone.
Finally, apelin loss also reduced vessel density and prevented
sunitinib-induced hypoxia and poor vessel structure in the TME.
Conclusively, apelin inhibition may provide a potent synergistic
anti-tumor effect when combined with anti-angiogenic agents,
while, and most importantly, avoiding therapy-induced hypoxia
of the TME, thus decreasing the chance of metastases, and
bypassing potential therapy resistances.

New Therapy Approaches for Vessel
Inhibition in NSCLC

Single-target anti-angiogenic agents have already shown their
limitations in clinical settings (Jayson et al., 2016). Even
in combination with other therapy approaches like standard
chemotherapy or immune therapy, treatment success remains
largely marginal. Targeting several pro-angiogenic molecules
with recombinant fusion proteins could therefore increase the
anti-angiogenic effect of such therapies. Zhang et al. (2020)
could successfully establish a multi-epitope peptibody containing
bFGF and VEGF sequences, which could provoke a potent anti-
bFGE/VEGF response by inhibiting proliferation and migration
of lung cancer cells as well as HUVECs in vitro. When
injected into lung cancer mouse models, autologous generated
anti-peptibody antibodies inhibited tumor progression and
angiogenesis and decreased expression of bFGF, VEGFA and
PDGF in the tumor tissue. Targeting angiogenesis with fusion
proteins exhibited potent anti-tumor efficacy in murine models
and may represent a new approach for vessel inhibition in
NSCLC, especially in combination with other therapy agents
aimed at important angiogenic factors, previously discussed
potential TEC specific markers or cellular mechanisms (Table 2).

The instability of tumor vessels due to morphological
abnormalities (e.g., incomplete pericyte coverage) impedes drug
delivery to the local lesion. Although anti-angiogenic therapy
can temporarily restore tissue perfusion and drug delivery
by vascular normalization, treatment withdrawal often results
in vessel hyper-permeability and can even induce a rebound
effect of tumor angiogenesis (Yang et al., 2016). As continuous
inhibition of angiogenesis remains difficult to implement for
health or economic reasons, an alternative or more independent

TABLE 2 | Pro-angiogenic factors involved in angiogenesis.

Factor Abbreviation

Angiogenic function

Vascular endothelial VEGF Inducing angiogenesis by

growth factor stimulating proliferation, survival,
and migration of ECs

Basic fibroblast growth bFGF Inducing angiogenesis by

factor stimulating proliferation and
migration of ECs and extracellular
matrix degradation

Hypoxia-inducible HIF-1a Regulating proangiogenic factor

factor 1-alpha expression under oxygen depletion

Platelet-derived growth PDGF Inducing angiogenesis by

factor stimulating proliferation, migration
and tube formation of ECs and
regulating VEGF signaling

Tryptase TRYPT Inducing angiogenesis by
stimulating proliferation of ECs and
vascular tube formation

Colony stimulating CSF-1 Inducing release of proangiogenic

factor 1 factors by MDSC

Placental growth factor PIGF Inducing angiogenesis by
stimulating proliferation, survival
and migration of ECs and recruiting
proangiogenic macrophages

Angiopoietin-2 Ang2 Regulating neovascular remodeling,
vessel maturation and sensitizing
ECs to cytokines

Matrix metalloproteases MMPs Remodeling of ECM for endothelial
migration

6-Phosphofructo-2- PFKFB3 Metabolic regulation of proliferation

Kinase/Fructose-2,6- and migration in ECs

Biphosphatase

MYC Inducing angiogenesis in
combination with HIF-1a and VEGF

Aldehyde ALDH18A1 Regulating collagen biosynthesis for

dehydrogenase 18 remodeling of ECM for endothelial

family member A1 migration

Squalene epoxidase SQLE Regulating cholesterol biosynthesis
for EC proliferation

Apelin APLN Involved in developmental
angiogenesis and expressed in
angiogenic ECs

miR-23a Inducing angiogenesis via HIF-1a

signaling
Fibronectin/EllIB Remodeling of ECM for endothelial

migration

delivery system of anti-angiogenic agents could help to overcome
these issues. Nanomaterials have become an emerging field
in cancer therapy in recent years, as their unique molecular
properties make them suitable targeted drug delivery-systems.
Physiochemically, these nanoparticles match the size of inter-
endothelial junctions of blood vessels in the TME and therefore
increase permeation and retention (EPR) resulting in a passive
drug delivery (Chauhan and Jain, 2013). Nanomaterials such as
liposomes or nanotube carbon structures are used to deliver anti-
angiogenic agents and improve drug specificity while reducing
cytotoxic side effects, drug clearance and resistance mechanisms
in the treatment of NSCLC (Seshadri and Ramamurthi, 2018). In
the past, studies using biodegradable polymers as nanocarriers
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to deliver chemotherapeutics and targeted drugs exhibited
significant anti-tumor efficacy in vitro and in vivo. For
example, paclitaxel encapsulated aldehyde polyethylene glycol-
polylactide (PEG-PLGA) conjugated to a VEGFR2-inhibiting
peptide showed increased internalization in HUVECs in vitro
as well as potent activity against breast cancer models in vivo
(Yu et al,, 2010). Although there are several peptide motifs
that are suggested to target tumor endothelium such as RGD
or NGR which can bind integrin heterodimers CD51 and
CD61, or aminopeptidase N, respectively, their targeting with
nanomaterial is not yet applied for treating NSCLC (Sakurai
et al,, 2019). Furthermore, non-angiogenic mechanisms such as
VM or vessel co-option could also represent possible targets
for nanomaterial-based therapy as the EPR effect of such
molecules could help to overcome delivery and infiltration issues
of traditional cancer therapeutics. However, nanotherapeutics
may provide a new potential anti-angiogenic therapeutical
approach, but as already discussed, there is still a need for
more specific biomarkers to exclusively target tumor vasculature
in an organ specific manner. Taking this into consideration,
chimeric antigen receptor (CAR) T-cell therapy, which serves as
personalized immune therapy using autologous T-lymphocytes,
engineered to target specific antigens present in a tumor, could
be used to exclusively eliminate TECs without damaging healthy
vasculature. CAR T-cells already have shown remarkable clinical
success in liquid malignancies like B-cell acute leukemia with
response rates above 80%, however, this outstanding efficacy
has not yet been translated into the solid tumor setting. The
therapy failure can, at least in part, be attributed to the impaired
accessibility of the tumor mass due to dysfunctional vasculature
and immunosuppressive conditions in the TME. Targeting tumor
vessels directly with CAR T-cells could therefore be a good
strategy to overcome these issues, which at best, can normalize the
defective vasculature and improve drug efficacy in combinational
therapy settings. In a recent study Xie et al. (2019) generated
VHH-based CAR T-cells targeting EIIIB, an alternatively spliced
domain of fibronectin, which is strongly expressed during
angiogenesis. Injected EIIIB-targeting CAR T-cells could delay
tumor growth and improve survival in immunocompetent mouse
models harboring aggressive melanoma, whereas colorectal
cancer mouse models did not respond to the treatment. Here,
the expression levels of EIIIB in the different tissues had impact
on the therapy outcome which again highlights the importance
of organ specific vascular markers as well as the impact of
organ specific angiogenic activity when targeting tumor vessel
formation. Other studies investigated the anti-angiogenic efficacy
of TEMS8-specific CAR T cells in solid cancer mouse models.
TEMS is one of the first discovered TEC markers and represents
a promising target in anti-angiogenic therapy strategies (St Croix
et al, 2000). In 2018, a study reported that TEMS8-specific
CAR T-cells could improve survival and significantly decreased
vascularization in triple negative breast cancer mouse models
and induced tumor regression in mice with lung metastases
(Byrd et al., 2018). A more recent study, however, observed
contrasting results where TEM8-sepcific CAR T-cells triggered
high toxicity and induced inflammation in lung and spleen when
injected into healthy mice (Petrovic et al., 2019). It is suggested

that the engineered T-cells cross-reacted with other antigens
or targeted TEMS in healthy tissues, although it is normally
expressed at a much lower quantity compared with pathological
levels. However, both processes resulted in severe toxicity in vivo
and again emphasize the need for more adequate, highly specific
tumor-vessel exclusive markers that can be targeted with either
CAR T-cells or other previously discussed inhibiting molecules.

So far, the main obstacles of anti-angiogenic therapy in
NSCLC are evading- or intrinsic resistance mechanisms which
still remain elusive. We have discussed a wide array of
possible therapies and therapy systems that could improve anti-
angiogenic efficacy when combined with standard treatment.
The principal goal would be to expand the therapeutical
effect of angiogenesis-inhibiting drugs on vessel normalization
and render the tumor more vulnerable to additional agents
such as chemotherapy or immunotherapy. In a recent study,
Hosaka et al. could show that dual angiogenesis inhibition
could sensitize resistant off-target tumors to therapy. Therefore
they created mouse models of breast cancer or fibrosarcoma,
both resistant to anti-VEGF and anti-PDGF treatment due to
increased tumor associated expression of bFGE a molecule
which modulates the vasculature via pericyte recruitment in a
PDGEF-dependent process (Hosaka et al., 2020). Neither anti-
VEGF nor anti-PDGF monotherapy had a significant anti-
tumor effect on bFGF-positive tumors, but the combination
of both agents produced a superior benefit, inhibiting cancer
growth by suppressing proliferation and triggering apoptosis
of tumor cells. Interestingly, even the pan-blocking of FGEF-
receptors did not yield a comparable benefit. To explain this
unexpected effect, angiogenesis has to be considered as an
interacting network of various signaling pathways which cannot
be disrupted by blocking a single molecule. In this study the oft-
target anti-VEGF/PDGF therapy generated a synergistical effect
in which PDGF inhibition ablated bFGF-dependent perivascular
coverage which further sensitized tumor vessels to anti-VEGF
inhibition. These findings demonstrate that the disruption of
interacting angiogenic pathways by simultaneously targeting
multiple angiogenic factors can provoke a highly potent anti-
tumor effect which is able to circumvent mechanisms of
therapy resistance, and thus should be considered as new
approach to improve neovessel inhibition in cancer. While
physiological, as well as pathological vascularization is comprised
of diverse molecular pathways, several of which may serve
as new targets, some in particular, such as VEGF/VEGFR
signaling, represent key players of angiogenesis and should
remain an irreplaceable anchor of anti-angiogenic therapy
approaches in NSCLC.

DISCUSSION

Angiogenesis is a main therapeutic concept in oncology,
especially in NSCLC, where three approved agents are available
in combination with chemotherapy or immunotherapy.
Nevertheless, the therapeutic efficacy of the current anti-
angiogenic therapies is not satisfying and needs a more
personalized/individualized approach. Increasing knowledge
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in angiogenic processes and non-angiogenic processes that
contribute to tumor vascularization, provide precise targets
for novel therapy strategies and pave the way for developing
new anti-angiogenic treatment concepts that target e.g., TEC
metabolism, TEC specific factors, tumor vessel normalization and
combinational approaches with CAR T-cells. These therapeutic
concepts need to be evaluated for synergistic effects as, in
our view, modern anti-angiogenesis represents the concept of
shaping the TME rather than being a direct anti-tumor therapy
itself. However, these therapeutic strategies are very promising
in preclinical setting and the translation into a clinical setting
is not only warranted but highly desired. Furthermore, a new
horizon of targeted and functional TEC characterization was
opened by scRNA-Seq studies, which proved that the tumor
vasculature is highly heterogenous and differs from the normal
adjacent vasculature more than primarily assumed in terms
of metabolic activity, immune suppression and heterogeneity
for example. In addition, new synergistic effects of TECs in
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