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Metabolic heterogeneity is widely recognized as the next challenge in our understanding

of non-genetic variation. A growing body of evidence suggests that metabolic

heterogeneity may result from the inherent stochasticity of intracellular events. However,

metabolism has been traditionally viewed as a purely deterministic process, on the basis

that highly abundant metabolites tend to filter out stochastic phenomena. Here we

bridge this gap with a general method for prediction of metabolite distributions across

single cells. By exploiting the separation of time scales between enzyme expression and

enzyme kinetics, our method produces estimates for metabolite distributions without

the lengthy stochastic simulations that would be typically required for large metabolic

models. The metabolite distributions take the form of Gaussian mixture models that

are directly computable from single-cell expression data and standard deterministic

models for metabolic pathways. The proposed mixture models provide a systematic

method to predict the impact of biochemical parameters on metabolite distributions. Our

method lays the groundwork for identifying themolecular processes that shapemetabolic

heterogeneity and its functional implications in disease.

Keywords: metabolic variability, stochastic gene expression, metabolic modeling, single-cell modeling, mixture

model analysis

1. INTRODUCTION

Non-genetic heterogeneity is a hallmark of cell physiology. Isogenic cells can display markedly
different phenotypes as a result of the stochasticity of intracellular processes and fluctuations
in environmental conditions. Gene expression variability, in particular, has received substantial
attention thanks to robust experimental techniques for measuring transcripts and proteins at a
single-cell resolution (Golding et al., 2005; Taniguchi et al., 2010). This progress has gone hand-in-
hand with a large body of theoretical work on stochastic models to identify the molecular processes
that affect expression heterogeneity (Swain et al., 2002; Raj and van Oudenaarden, 2008; Thomas
et al., 2014; Dattani and Barahona, 2017; Tonn et al., 2019).

In contrast to gene expression, our understanding of stochastic phenomena inmetabolism is still
in its infancy. Traditionally, cellular metabolism has been regarded as a deterministic process on the
basis that metabolites appear in large numbers that filter out stochastic phenomena (Heinemann
and Zenobi, 2011). But this view is changing rapidly thanks to a growing number of single-cell
measurements of metabolites and co-factors (Bennett et al., 2009; Imamura et al., 2009; Lemke and
Schultz, 2011; Paige et al., 2012; Ibáñez et al., 2013; Yaginuma et al., 2014; Esaki and Masujima,
2015; Xiao et al., 2016; Mannan et al., 2017) that suggest that cell-to-cell metabolite variation is
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much more pervasive than previously thought. The functional
implications of this heterogeneity are largely unknown but
likely to be substantial given the roles of metabolism in many
cellular processes, including growth (Weisse et al., 2015), gene
regulation (Lempp et al., 2019), epigenetic control (Loftus and
Finlay, 2016), and immunity (Reid et al., 2017). For example,
metabolic heterogeneity has been linked to bacterial persistence
(Radzikowski et al., 2017; Shan et al., 2017), a dormant
phenotype characterized by a low metabolic activity, as well as
antibiotic resistance (Deris et al., 2013) and other functional
effects (Vilhena et al., 2018). In biotechnology applications,
metabolic heterogeneity is widely recognized as a limiting factor
on metabolite production with genetically engineered microbes
(Binder et al., 2017; Schmitz et al., 2017; Liu et al., 2018).

A key challenge for quantifying metabolic variability is
the difficulty in measuring cellular metabolites at a single-cell
resolution (Amantonico et al., 2010; Takhaveev and Heinemann,
2018; Wehrens et al., 2018). As a result, most studies use
other phenotypes as a proxy for metabolic variation, e.g.,
enzyme expression levels (Kotte et al., 2014; van Heerden
et al., 2014), metabolic fluxes (Schreiber et al., 2016), or
growth rate (Kiviet et al., 2014; Şimşek and Kim, 2018).
From a computational viewpoint, the key challenge is that
metabolic processes operate on two timescales: a slow timescale
for expression of metabolic enzymes, and a fast timescale
for enzyme catalysis. Such multiscale structure results in stiff
models that are infeasible to solve with standard algorithms
for stochastic simulation (Gillespie, 2007). Other strategies to
accelerate stochastic simulations, such as τ -leaping (Rathinam
et al., 2003), also fail to produce accurate simulation results
due to the disparity in molecule numbers between enzymes
and metabolites (Tonn, 2020). These challenges have motivated
a number of methods to optimize stochastic simulations of
metabolism (Puchałka and Kierzek, 2004; Cao et al., 2005;
Labhsetwar et al., 2013; Lugagne et al., 2013; Murabito et al.,
2014). Most of these methods exploit the timescale separation
to accelerate simulations at the expense of some approximation
error. This progress has been accompanied by a number of
theoretical results on the links between molecular processes and
the shape of metabolite distributions (Levine and Hwa, 2007;
Oyarzún et al., 2015; Gupta et al., 2017b; Tonn et al., 2019). Yet
to date there are no general methods for computing metabolite
distributions that can handle inherent features of metabolic
pathways such as feedback regulation, complex stoichiometries,
and the high number of molecular species involved.

In this paper we present a widely applicable method
for approximating single-cell metabolite distributions. Our
method is founded on the timescale separation between
enzyme expression and enzyme catalysis, which we employ
to approximate the stationary solution of the chemical master
equation. The approximate solution takes the form of mixture
distributions with: (i) mixture weights that can be computed
from models for gene expression or single-cell expression data,
and (ii) mixture components that are directly computable from
deterministic pathway models. The resulting mixture model can
be employed to explore the impact of biochemical parameters
on metabolite variability. We illustrate the power of the method

in two exemplar systems that are core building blocks of
large metabolic networks. Our theory provides a quantitative
basis to draw testable hypotheses on the sources of metabolite
heterogeneity, which together with the ongoing efforts in single-
cell metabolite measurements, will help to re-evaluate the role of
metabolism as an active source of phenotypic variation.

2. GENERAL METHOD FOR COMPUTING
METABOLITE DISTRIBUTIONS

We consider metabolic pathways composed of enzymatic
reactions interconnected by sharing of metabolites as substrates
or products. In general, we consider models with M metabolites
Pi with i ∈ {1, 2, . . . ,M} and N catalytic enzymes Ej with j ∈
{1, 2, . . . ,N}. A typical enzymatic reaction has the form

Pi + Ej
kf,j
−⇀↽−
kb,j

Cj

kcat,j
−−⇀↽−−
krev,j

Pk + Ej, (1)

where Pi and Pk are metabolites, and Ej and Cj are the free and
substrate-bound forms of the enzyme. The parameters (kf,j, kb,j)
and (kcat,j, krev,j) are positive rate constants specific to the enzyme.
In contrast to traditional metabolic models, where the number of
enzyme molecules is assumed constant, here we explicitly model
enzyme expression and enzyme catalysis as stochastic processes.
Our models also account for dilution of molecular species by
cell growth and consumption of the metabolite products by
downstream processes.

Though in principle one can readily write a Chemical Master
Equation (CME) for the marginal distribution P(P1, P2, . . . PM)
given the pathway stoichiometry, analytical solutions of the CME
are tractable only in few special cases. To overcome this challenge,
we propose a method for approximating metabolite distributions
that can be applied in a wide range of metabolic models. We
first note that using the Law of Total Probability, the marginal
distribution P(P1, P2, . . . , PM) can be generally written as:

P(P) =
∑

E

P(E)× P(P|E), (2)

where P = (P1, P2, . . . PM) and E = (E1,E2, . . . ,EN) are
the vectors of metabolite and enzyme abundances, respectively.
The equation in (2) describes the metabolite distribution in
terms of fluctuations in gene expression, comprised in the
distribution P(E), and fluctuations in reaction catalysis, described
by conditional distribution P(P|E).

A key observation is that Equation (2) corresponds to a
mixture model with weights P(E) and mixture components
P(P|E). To compute the mixture weights and components, we
make use of the timescale separation between gene expression
and metabolism. Gene expression operates on a much slower
timescale than catalysis (Cao et al., 2005; Levine and Hwa, 2007;
Kuntz et al., 2013), with protein half-lives typically comparable
to cell doubling times and catalysis operating in the millisecond
to second range. Therefore, in the fast timescale of catalysis we
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can write a conservation law for the total amount of each enzyme
(free and bound):

Et,j = Ej + Cj, (3)

where Et,j is the total number of enzymes Ej. Note that since
our models integrate enzyme kinetics with enzyme expression,
the variables Et,j follow their own, independent stochastic
dynamics. It is important to note that in our approach, the
conservation relation in (3) holds only in the fast timescale of
catalysis. This contrasts with classic deterministic models for
metabolic reactions, which typically focus on the fast catalytic
timescale and assume enzymes as constant model parameters
(Cornish-Bowden, 2004).

As a result of the separation of timescales, the weights
and components of the mixture in (2) can be computed
separately. Specifically, the mixture weights P(E) can be
obtained as solutions of a stochastic model for enzyme
expression (Raj and van Oudenaarden, 2008), or taken
from absolute single-cell measurements of enzyme expression.
Such absolute measurements can be obtained from single-
molecule technologies (Okumus et al., 2016), carefully calibrating
fluorescence data (Rosenfeld et al., 2006; Bakker and Swain,
2019) or normalization (Taniguchi et al., 2010). The mixture
components P(P|E), on the other hand, can be estimated
with suitable approximation techniques. For simplicity, here
we choose to employ the Linear Noise Approximation (LNA),
which provides a Gaussian estimate of the stationary distribution
of a stochastic chemical system (van Kampen, 1992; Elf and
Ehrenberg, 2003). The use of the LNA is justified on the basis
that metabolites tend to appear in large numbers per cell, a key
condition for the LNA to produce accurate results. However,
more accurate methods to compute P(P|E) can be used if
required (Andreychenko et al., 2017; Gupta et al., 2017a). In
Figure 1, we illustrate a schematic of the proposed method.

We thus propose the following procedure for computing
single-cell metabolite distributions:

1. Starting from the mixture model in Equation (2), compute the
enzyme distribution P(E) from a stochastic model for gene
expression, either analytically (if possible) or numerically with
Gillespie’s algorithm.

2. To approximate the mixture components P(P|E) with the
LNA, compute the steady state solution P̄ of the deterministic
rate equation for each enzyme state E:

Sv(P̄,E) = 0, (4)

where S is the stoichiometric matrix and v(·) is the vector
of deterministic reaction rates; for ease of notation we have
assumed a unit cell volume, and hence the deterministic rates
are equal to the propensities of the stochastic model. Note that
due to the timescale separation, Equation (4) must be solved
assuming constant enzymes E, and its solution depends on the
enzyme abundance, i.e., P̄ = P̄(E).

3. For each enzyme state E, compute the solution to the
Lyapunov equation (Elf and Ehrenberg, 2003):

A6 + 6AT + BBT = 0, (5)

FIGURE 1 | Computation of single-cell metabolite distributions with Gaussian

mixture models. We exploit the separation of timescales to compute the

weights and components of the mixture model in Equation (2). Mixture weights

are computed as stationary solutions to the Chemical Master Equation (CME)

for a chosen model for stochastic enzyme expression. The mixture

components are computed via the Linear Noise Approximation (Elf and

Ehrenberg, 2003) (LNA) applied to the pathway ODE model. The method

produces a Gaussian mixture model for metabolite distributions that can be

applied in a wide range of metabolic pathways.

where A is the Jacobian of (4) evaluated at the steady state
and BBT = Sdiag {v} ST . Note that, as in (4), the solution
of the Lyapunov equation depends on the enzyme state, i.e.,
6 = 6(E).

4. Following the LNA, approximate the mixture components
P(P|E) as a multivariate Gaussian distribution with mean P̄
and covariance matrix 6.

5. Combine the weights P(E) and Gaussian components P(P|E)
through the mixture model in (2).

In the next sections we illustrate the effectiveness of our method
in two exemplar systems.

3. REVERSIBLE MICHAELIS-MENTEN
REACTION

We first consider a stochastic model that integrates a reversible
Michaelis-Menten reaction with a standard model for enzyme
expression. As shown in Figure 2A, the Michaelis-Menten
mechanism includes reversible binding of four species: a
metabolic substrate S, a free enzyme E, a substrate-enzyme
complex C and a metabolic product P. To model enzyme
expression, we use the well-known two-stage scheme for
transcription and translation (Thattai and van Oudenaarden,
2001; Shahrezaei and Swain, 2008) (Figure 2A). The complete set
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FIGURE 2 | Exemplar metabolic systems. (A) Reversible Michaelis-Menten

reaction; the full set of reactions are shown in Equations (6)–(9). The model

accounts for reversible catalysis of a substrate S into a product P. (B)

Two-step pathway with noncompetitive end-product inhibition; the reactions

are shown in Equations (18)–(25). The product (P2) sequesters enzyme E1 into

an inactive form E∗
1 , thereby reducing the rate of the first reaction. In both

examples we assume a constant substrate S and linear dilution of all chemical

species. Enzymes are assumed to follow the two-stage model for gene

expression (Shahrezaei and Swain, 2008), which includes species for the

enzymatic mRNA and protein.

of reactions is:

S+ E
kf−⇀↽−
kb

C
kcat−−⇀↽−−
krev

P + E, (6)

∅ ktx−→ mRNA
ktl−→ mRNA+ E, (7)

P
kc−→ ∅, (8)

mRNA
kdeg−−→ ∅, E

δ−→ ∅, C
δ−→ ∅. (9)

The reactions in (6) correspond to a reversible Michaelis-Menten
reaction as in (1), while reactions in (7) are the two-stage
model for gene expression.We include four additional first-order
reactions (8) and (9) to model consumption of the metabolite
product with rate constant kc, mRNA degradation with rate
constant kdeg, and dilution of all model species with rate constant
δ. In what follows we assume that the substrate S remains strictly
constant, for example to model cases in which the substrate
represents an extracellular carbon source that evolves in much
slower timescale than cell doubling times.

Since on the fast timescale of the catalytic reaction, the total
number of enzymes can be assumed in quasi-stationary state
(Cornish-Bowden, 2004; Tonn et al., 2019), we have that

Etotal = E+ C, (10)

and therefore the general mixture model in (2) can be written as:

P(P) =
∞
∑

Etotal=0

P(Etotal)
︸ ︷︷ ︸

enzyme
distribution

×P(P|Etotal)
︸ ︷︷ ︸

Gaussian
from LNA

. (11)

The mixture weights P(Etotal) can be computed from the
stochastic model for gene expression in (7). Under the standard
assumption that mRNAs are degraded much faster than proteins
(Raj and van Oudenaarden, 2008), the stationary solution of the
two-stage model can be approximated by a negative binomial
distribution (Shahrezaei and Swain, 2008):

P(Etotal) =
Ŵ(a+ Etotal)

Ŵ(Etotal + 1)Ŵ(a)

(
b

1+ b

)Etotal 1

(1+ b)a
, (12)

where Ŵ is the Gamma function and the parameters are defined
as the burst frequency a = ktx/δ and burst size b = ktl/kdeg.

To compute the mixture components P(P|Etotal) with the
LNA, we write the full system of deterministic rate equations [see
(35) in section 6] for the three species E, C, and P. Note that in
this case, we can further reduce the rate equations by (i) using the
conservation law in (10), and (ii) assuming that the binding and
unbinding reactions between S and E reach equilibrium faster
than the product P, a condition that generally holds in metabolic
reactions. After algebraic manipulations, the reduced ODE can
be written as:

dP

dt
= f (P,Etotal)− g(P,Etotal)− kcP (13)

where

f (P,Etotal) = Etotal
kcatS/KmS

1+ S/KmS + P/KmP
,

g(P,Etotal) = Etotal
kbP/KmP

1+ S/KmS + P/KmP

(14)

and the parameters are KmS = (kb + kcat)/kf and KmP = (kb +
kcat)/krev.

The mean of each mixture component is simply given by the
steady state solution of (13), which we denote as P̄(Etotal). For
a given enzyme abundance Etotal, the variance 6(Etotal) of each
Gaussian component is given by the solution to the Lyapunov
equation in (5):

6(Etotal) =
1

2

f (P̄(Etotal))+ g(P̄(Etotal))+ kcP̄(Etotal)

kc + g′(P̄(Etotal))− f ′(P̄(Etotal))
, (15)

where f ′ and g′ are first-order derivatives. Combining the
negative binomial in (12) with the Gaussian components, we
can rewrite Equation (11) to get a Gaussian mixture model for
the metabolite:

P(P) = K

∞
∑

x=0

1

6(x)

Ŵ(a+ x)

Ŵ(x+ 1)

(
b

1+ b

)x

e
− 1

2

(
P−P̄(x)
6(x)

)2

, (16)

where both P̄(x) and 6(x) must be computed for each value of
x = Etotal in the summation. The normalization constant in
(16) is

K =
1

√
2πŴ(a)(1+ b)a

. (17)
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FIGURE 3 | Stationary product distribution of a Michaelis-Menten reaction.

The proposed mixture model in (16) provides an excellent approximation for

the metabolite distribution obtained with Gillespie’s algorithm (Gillespie, 2007).

Distributions were computed for varying values of the bursting parameter a.

Note that the resulting distributions are almost identical to those predicted in

our earlier work using a Poisson mixture (Tonn et al., 2019), since we have

deliberately chosen parameters to produce similar distribution in both cases.

All parameter values can be found in Table 1.

In Figure 3, we plot the mixture model (16) for realistic
parameter values and compare this approximation with
distributions computed from long runs of Gillespie simulations
of the whole set of reactions (6)–(9). The results indicate that
the mixture model provides an excellent approximation
of the metabolite distribution. In the next section we
test our methodology in a more complex pathway with
feedback regulation.

4. PATHWAY WITH END-PRODUCT
INHIBITION

A common regulatory motif in metabolism is end-product
inhibition, in which a pathway enzyme can bind to its own
substrate as well as the pathway product (see Figure 2B). The
product thus sequesters enzyme molecules, which reduces the
number of free enzymes available for catalysis and slows done
the reaction rate. To examine the accuracy of our method in this
setting, we study a fully stochastic model for a two-step pathway
with noncompetitive end-product inhibition:

S+ E1
kf,1−−⇀↽−−
kb,1

C1

kcat,1−−−⇀↽−−−
krev,1

P1 + E1 (18)

P1 + E2
kf,2−−⇀↽−−
kb,2

C2

kcat,2−−−⇀↽−−−
krev,2

P2 + E2 (19)

hP2 + E1
ksq
−−⇀↽−−
krsq

E∗ (20)

∅
ktx,1−−→ mRNA1

ktl,1−−→ mRNA1 + E1 (21)

∅
ktx,2−−→ mRNA2

ktl,2−−→ mRNA2 + E2 (22)

P1
kc,1−−→ ∅, P2

kc,2−−→ ∅ (23)

TABLE 1 | Parameter values for simulations in Figure 3.

Figure 3

δ 0.00025 s−1 kb 1, 000 s−1

a {25, 50, 120} kcat 3.6 s−1

b 1 krev 0.01 s−1

S 3, 000 molecules kc 0.02 s−1

kf 1× S s−1

mRNA1

kdeg,1−−−→ ∅, mRNA2

kdeg,2−−−→ ∅, (24)

E∗
δ−→ ∅, E1

δ−→ ∅, E2
δ−→ ∅, C1

δ−→ ∅, C2
δ−→ ∅ (25)

The two reactions in (18) and (19) are reversible Michaelis-
Menten kinetics, sharing the intermediate metabolite P1 as a
product and substrate, respectively. The end-product inhibition
in (20) consists of reversible binding between h molecules of P2
and the first enzyme E1 into a catalytically-inactive complex E∗.
The remaining model reactions in (21)–(25) are analogous to the
previous example in section 3: reactions in (21) and (22) describe
the two-stage model for expression of both enzymes, and with
reactions (23)–(25) we model first-order mRNA degradation,
product consumption, and dilution by cell growth. For simplicity
we also assume that both enzymes are independently expressed,
but in general our method can also account for cases in which
enzymes are co-expressed or co-regulated (Chubukov et al.,
2014). The resulting model has two distinct pools of enzymes,
which remain constant over the timescale of catalysis:

Et,1 = E1 + E∗ + C1,

Et,2 = E2 + C2,
(26)

and therefore the mixture model in (2) becomes

P(P1, P2) =
∑

Et,1 ,Et,2

P(Et,1,Et,2)
︸ ︷︷ ︸

enzyme
distribution

P(P1, P2|Et,1,Et,2)
︸ ︷︷ ︸

Gaussian
from LNA

, (27)

where the summation goes through all (Et,1,Et,2) pairs. Since both
enzymes are expressed independently, the enzyme distribution is
the product of two negative binomials P(Et,1,Et,2) = P(Et,1) ×
P(Et,2), each one analogous to the distribution in (12).

To compute the mixture components with the LNA, we
use the rate equations for the reactions in (18)–(23); the full
set of ODEs is listed in Equation (36) in the Methods. As
in the first example, by employing the conservation laws in
(26) and assuming rapid equilibrium of the complexes C1 and
C2, the deterministic model can be further simplified to a 2-
dimensional ODE:

dP1

dt
= f (P1, P2)− g(P1, P2)− kc,1P1,

dP2

dt
= g(P1, P2)− kc,2P2,

(28)
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where for ease of notation we have omitted the dependency on
Et,1 and Et,2. The nonlinear functions in (28) are

f (P1, P2) = Et,1
κSS− κ1P1

1+ θPh2 + S/Km,S + P1/Km,1

,

g(P1, P2) = Et,2
κ2P1 − κ3P2

1+ P1/Km,2 + P2/Km,3
,

(29)

where θ = ksq/krsq is the product-enzyme binding constant
and the remaining parameters are defined as κS = kcat,1kf,1/
(kb,1 + kcat,1), κ1 = kb,1krev,1/(kb,1 + kcat,1), κ2 = kcat,2kf,2/
(kb,2 + kcat,2), κ3 = kb,2krev,2/(kb,2 + kcat,2), Km,S = kcat,1/κS,
Km,1 = kb,1/κ1, Km,2 = kcat,2/κ2, and Km,3 = kb,2/κ3.

As in the previous example, the ODEs in (28) correspond
to the full model (36) rewritten in terms of both metabolites
assuming that the enzyme-substrate reactions reach equilibrium
in a faster timescale than catalysis. This reduced model can
be readily employed to obtain approximations for the mixture
components with the LNA. If we denote as P̄ = P̄(Et,1,Et,2) the
steady state solution of (28), we can write the Lyapunov equation
as A6 + 6AT + BBT = 0 with A and BBT given by

A =






d

dP1

(

f − g
)

− kc,1
d

dP2

(

f − g
)

dg

dP1

dg

dP2
− kc,2




 , (30)

BBT =
[

f + g + kc,1P1 −g
−g g + kc,2P2

]

, (31)

where f (·), g(·), and their derivatives are evaluated at the steady
state solution P̄(Et,1,Et,2). The Gaussian components of the
mixture model are then

P(P1, P2|Et,1,Et,2) =
1

2π |6(Et,1,Et,2)|
e−

1
2 (P−P̄(Et,1 ,Et,2))

T6−1(P−P̄(Et,1 ,Et,2)), (32)

where P = (P1, P2)
T and | · | is the matrix determinant. After

combining the joint distribution of enzymes and the components
into Equation (27), we get a Gaussian mixture model for the joint
marginal distribution of both metabolites:

P(P1, P2) =

K

∞
∑

x,y=0

Ŵ(a1 + x)Ŵ(a2 + y)

Ŵ(x+ 1)Ŵ(y+ 1)

(
b1

1+ b1

)x (
b2

1+ b2

)y

×

1

|6(x, y)|
e−

1
2 (P−P̄(x,y))T6(x,y)−1(P−P̄(x,y)), (33)

where P̄(x, y) and 6(x, y) need to computed numerically for each
pair (x, y) = (Et,1,Et,2) in the summation. The burst frequencies
ai = ktx,i/δ and burst sizes bi = ktl,i/kdeg,i are specific to each
enzyme, and the normalization constant is given by

K =
1

2πŴ(a1)Ŵ(a2)(1+ b1)a1 (1+ b2)a2
. (34)

FIGURE 4 | Stationary distributions for the intermediate metabolite in a

two-step pathway with end-product inhibition. The panels show the

distribution of intermediate metabolite P1 for different combinations of

parameter values. (A) Impact of enzyme bursting frequency a1 and a2. (B)

Impact of binding constant between the first enzyme and the end-product. All

parameter values can be found in Table 2.

To test the quality of the approximation, we numerically
computed the mixture model in (33) for various combinations
of parameter values, shown in Figure 4. We observe that the
mixture model offers an excellent approximation as compared to
exact Gillespie simulations of the full model (18)–(25). We note
that in this case, the full stochastic model has seven species and
three different timescales, and therefore the runtime of Gillespie
simulations are extremely long, in the order of several hours
per run.

To further illustrate the utility of our method, we
employed the mixture model to study the impact of
parameter perturbations on the metabolite distributions.
Without an analytical solution, such a study would require
the computation of long Gillespie simulations for each
combination of parameter values, which quickly become
infeasible due to the long simulation time. In contrast,
the mixture model provides a systematic way to rapidly
evaluate the influence of model parameters on metabolite
distributions. In Figure 5A we show summary statistics of
the marginal P(P1) for various combinations of average
enzyme expression levels. The results suggest that expression
levels can have a strong impact on the mean and coefficient
of variation of the intermediate metabolite. Moreover, in
Figure 5B we plot the distribution P(P1, P2) for combinations
of bursting parameters. The results show that uncorrelated
enzyme fluctuations can result in correlated metabolite
distributions due to the coupling introduced by the pathway
(Levine and Hwa, 2007).
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TABLE 2 | Parameter values for simulations in Figure 4.

Figure 4 Figure 4A Figure 4B

δ 0.00025 s−1 krev,1 0.0001 s−1 a1 {35, 126, 210} a1 80

kdeg,1 0.2 s−1 kc,1 0.00025 s−1 a2 {35, 97, 97} a2 80

kdeg,2 0.2 s−1 kf,2 1.5 s−1 b1 1 b1 1

S 3,000 molecules kb,2 15, 000 s−1 b2 1 b2 1

kf,1 20× S s−1 kcat,2 150 s−1 ksq 10−10 s−1 ksq {0, 10−10, 10−12} s−1

kb,1 15,000 s−1 krev,2 0.001 s−1 krsq 1 s−1 krsq 1 s−1

kcat,1 22.5 s−1 kc,2 0.15 s−1 h 3 h 3

FIGURE 5 | Impact of enzyme expression on metabolite distributions. (A) We compute the mean and coefficient of variation (CV) of the intermediate metabolite P1 in

model (18)–(25), for a wide range of mean enzyme expression levels. (B) Enzyme expression parameters shape the metabolite distribution; We computed the joint

metabolite distribution P(P1,P2) for three combinations of enzyme bursting parameters, chosen to give the same mean expression, and assuming both enzymes are

expressed independently. Shown are contour plots of the bivariate distributions of enzymes (left) and metabolites (right). The results suggest that metabolite

correlations emerge even when enzymes are uncorrelated, as reported previously in the literature (Levine and Hwa, 2007). All parameter values can be found in

Table 3.

5. DISCUSSION

Cellular metabolism has traditionally been assumed to follow
deterministic dynamics. This paradigm results largely from the

observation that cellular metabolites are highly abundant.
However, recent data shows that single-cell metabolite

distributions can display substantial heterogeneity in their
abundance across single cells (Bennett et al., 2009; Imamura
et al., 2009; Lemke and Schultz, 2011; Paige et al., 2012; Ibáñez
et al., 2013; Yaginuma et al., 2014; Esaki and Masujima, 2015;
Xiao et al., 2016; Mannan et al., 2017). It has also been shown
that expression of metabolic genes is as variable as any other
component of the proteome (Taniguchi et al., 2010), and thus in
principle it is plausible that such enzyme fluctuations propagate
to metabolites. These observations have begun to challenge

the paradigm of metabolism being a deterministic process,
suggesting that metabolite fluctuations may play a role in
non-genetic heterogeneity.

Here we described a new computational tool to predict the
statistics of metabolite fluctuations in conjunction with gene
expression. The method is based on a timescale separation
argument and leads to a Gaussian mixture model for the
stationary distribution of cellular metabolites. Computing
distributions from this approximate model is substantially faster
than through stochastic simulations, as these can be extremely
slow due to the multiple timescales of metabolic pathways.
Our technique can therefore be employed to efficiently explore
the parameter space and predict the shape of metabolite
distributions in different conditions. In earlier work we showed
that the product of a single metabolic reaction can be accurately
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TABLE 3 | Parameter values for simulations in Figure 5.

Figure 5A Figure 5B

a1 [10, 100] a1 {10, 50, 50}
a2 [10, 100] a2 {50, 50, 10}
b1 1 b1 {5, 1, 1}
b2 1 b2 {1, 1, 5}
ksq 10−10 s−1 ksq 0 s−1

krsq 1 s−1 krsq 1 s−1

h 3 h 3

described by a Poisson mixture model (Tonn et al., 2019). Such
approximation allowed the discovery of previously unknown
regimes for metabolite distributions, including heavily tailed
distributions and various types of bimodality and multimodality.
The Poisson approximation, however, is bespoke to single
reactions and not valid for more complex systems. In contrast,
the Gaussian mixture model discussed here can be applied to
multiple kinetic mechanisms, more complex stoichiometries, as
well as post-translational regulation.

An advantage of our approach is that the mixture weights can
be computed offline from stochastic models for gene expression
or single-cell expression data. The model is flexible in that it
can readily accommodate gene expression models of various

complexity. For the sake of illustration, in our examples we

used the simple two-stage model for gene expression, but

other models including gene regulation can also be employed
(Dattani and Barahona, 2017). Particularly relevant models are

those that account for enzyme co-regulation, a widespread
feature of bacterial operons (Chubukov et al., 2014), which

translates into correlations between expression of different
pathway enzymes and the resulting metabolite abundances.
A limitation of our method is that in many cases analytic
solutions of the CME are not known, particularly for large
models with multiple interacting genes. In such cases, the
mixture weights P(E) can be approximated through stochastic
simulations (Gillespie, 2007) albeit at the expense of increased
computational costs. Most recently, progress in stochastic
simulation of genome-scale metabolic networks (Tourigny et al.,
2020) can offer an alternative route for studying fluctuations in
large metabolic models.

The effectiveness of our method relies on two conditions:
the separation of timescales between enzyme expression and
enzyme catalysis, and the ability of the LNA to approximate the
mixture components accurately. The first condition is satisfied
by the vast majority of enzymes because their kinetics operate
in regimes that are orders of magnitude faster than gene
expression (Chubukov et al., 2014). However, the timescale
separation can fail if the metabolic substrate S, typically a
carbon source, cannot be assumed to be constant, a suitable
assumption in the typical case of abundant nutrient sources
with low fluctuations. Our theory would need to be extended
in cases when nutrient sources become another source of
variability, e.g., under fluctuations dictated by the environment
(Dattani and Barahona, 2017). The second condition breaks
down when the LNA fails to provide good estimates of the

mixture components (Thomas and Grima, 2015; Andreychenko
et al., 2017). As explained in section 2, here we have deliberately
chosen to employ the LNA because it provides a simple and
rapid method to compute the mixture components, P(P|E), for
a broad range of metabolic pathways. Yet in cases where its
assumptions do not hold, e.g., low abundance of metabolites,
the LNA step in our method can be replaced by more accurate
approximations. Such alternative methods include, for example,
the conditional system size expansion including terms beyond
the LNA, maximum entropy reconstructions using the method
of conditional moments, or the finite state projection algorithm
(Andreychenko et al., 2017; Gupta et al., 2017a), all of which can
be readily incorporated into our mixture model strategy. These
methods rely on different assumptions and their approximation
quality will vary depending on the specific model parameters;
in some cases, estimates for their approximation errors can be
obtained with suitable methods, as discussed in a recent review
on this topic (Kuntz et al., 2020).

Although our method can account for a large class of
metabolic models and post-translational regulation mechanisms,
there are a number of promising extensions that would
broaden its utility in light of recent experimental advances.
First, here we have only considered stationary distributions
of metabolites, and a number of experiments have revealed
cases in which metabolic heterogeneity emerges during dynamic
nutrient shifts (Kotte et al., 2014; van Heerden et al., 2014;
Nikolic et al., 2017). Extensions of ourmethod to time-dependent
metabolite distributions require the computation of the time-
dependent solution of the CME for the enzyme expression model
(Shahrezaei and Swain, 2008; Cao and Grima, 2018). As long
as the dynamics of gene expression is slow enough to preserve
the time scale separation, the computation of the mixture
components with the LNA or other methods remains unchanged.

Another promising extension is the inclusion of
transcriptional feedback regulation, a topic that has received
substantial attention in the literature (Zaslaver et al., 2004;
Chubukov et al., 2012; Chaves and Oyarzún, 2019; Lempp et al.,
2019). In these systems, some pathway metabolites can bind to
transcription factors (TF) that control enzyme expression in
the same pathway. Such regulation can be included by using
the conditional LNA method (Thomas and Grima, 2015) at the
expense of not being able to compute the mixture weights offline
anymore. Specifically, this extension would model mixture
weights through more elaborate enzyme expression models
in which the metabolite-TF interactions are replaced by their
conditional averages, leading to an effective feedback model that
requires specialized solution methods (Holehouse et al., 2020).
A particularly promising application of such extended analysis
is in synthetic biology, where there is a growing interest in the
interplay between stochastic fluctuations and experimentally
tunable parameters of molecular circuits (Briat et al., 2016; Boada
et al., 2017). In particular, the use of metabolite-responsive
feedback can improve robustness of strains engineered for the
production of high-value metabolites (Oyarzún and Stan, 2013;
Stevens and Carothers, 2015). Early results in this area (Oyarzún
et al., 2015) suggest complex dependencies between metabolite
fluctuations and the tunable parameters of the feedback control
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system. Such analyses were purely based on lumped models
for metabolite-TF binding, and hence a more detailed theory
could reveal novel design strategies to mitigate metabolite
heterogeneity in production strains.

A number of works have sought to find links between
fluctuations across layers of cellular organization, such as gene
expression, metabolism and cell growth (Kiviet et al., 2014;
Kotte et al., 2014; van Heerden et al., 2014; Nikolic et al., 2017;
Thomas et al., 2018). But since measurement of metabolites
in single cells remains technically challenging, there is pressing
need for computational methods to predict fluctuations in
cellular metabolites. Our proposed method provides a systematic
approach for such task, paving the way for the generation of
hypotheses on the molecular sources of metabolic heterogeneity.

6. METHODS

6.1. Model Simulation
Stochastic simulations were computed with Gillespie’s algorithm
over long simulation times (several hours) corresponding to
thousands of cell cycles. The ODE models and Lyapunov
equations were solved in Matlab. In all examples, the negative
binomial distribution for gene expression in (12) was computed
with its continuum approximation (Gamma distribution).

6.2. Deterministic Rate Equations
6.2.1. Reversible Michaelis Menten

The full set of rate equations for the reversible reaction in (6)–
(8) is:

dP

dt
= kcatC − krevEP − kcP

dE

dt
= −kfSE+ kbC + kcatC − krevEP,

dC

dt
= kfSE− kbC − kcatC + krevEP.

(35)

To further reduce the above system of ODEs to Equation (13)
in the main text, we can substitute the conservation relation in
Equation (10), i.e. C = Etotal − E, and use the fact that the
substrate-enzyme complex (C) typically equilibrates much faster
than the product P, which means that dC/dt ≈ 0 in the timescale
of catalysis.

6.2.2. End-Product Inhibition

The full set of rate equations for the reactions in (18)–(23) is:

dP1

dt
= kcat,1C1 − krev,1E1P1 − kf,2E2P1 + kb,2C2 − kc,1P1

dP2

dt
= kcat,2C2 − krev,2E2P2 − ksqE1P

h
2 + krsqE

∗ − kc,2P2.

dE1

dt
= −kf,1SE1 +

(

kb,1 + kcat,1
)

C1 − krev,1P1E1

−ksqP
h
2E1 + krsqE

∗,

dC1

dt
= kf,1SE1 −

(

kb,1 + kcat,1
)

C1 + krev,1P1E1,

dE∗

dt
= ksqP

h
2E1 − krsqE

∗,

dE2

dt
= −kf,2P1E2 +

(

kb,2 + kcat,2
)

C1 − krev,2P2E2,

dC2

dt
= kf,2P1E2 −

(

kb,2 + kcat,2
)

C1 + krev,2P2E2 (36)

As in the previous example, we can use the rapid equilibrium
assumption and the conservation relations in (26), i.e., Et,1 =
E1 + E∗ + C1 and Et,2 = E2 + C2, to simplify the 7-dimensional
ODE in (28) to the 2-dimensional system in (28) of the main text.
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