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Multiple cellular, biochemical, and physical factors converge to coordinate

organogenesis. During embryonic development, several organs such as the lung,

salivary glands, mammary glands, and kidneys undergo rapid, but intricate, iterative

branching. This biological process not only determines the overall architecture, size and

shape of such organs but is also a pre-requisite for optimal organ function. The lung, in

particular, relies on a vast surface area to carry out efficient gas exchange, and it is logical

to suggest that airway branching during lung development represents a rate-limiting

step in this context. Against this background, the vascular network develops in parallel

to the airway tree and reciprocal interaction between these two compartments is critical

for their patterning, branching, and co-alignment. In this mini review, we present an

overview of the branching process in the developing mouse lung and discuss whether

the vasculature plays a leading role in the process of airway epithelial branching.

Keywords: branching morphogenesis, endothelium, VEGF-vascular endothelial growth factor, VEGFR-vascular

endothelial growth factor receptor, lung

INTRODUCTION

Cellular rearrangement and pattern formation are integral parts of organogenesis. Cell-cell
communication, particularly between the endoderm-derived epithelium and the surrounding
mesoderm-derived mesenchyme, sets the stage for lung formation. Such epithelial-mesenchymal
interactions are highly defined along the proximal-distal axis in the developing lung. For example,
it has been shown that grafting distal lung mesenchyme at the level of the tracheal epithelium
leads to ectopic budding and subsequent branching at the grafting site (Alescio and Cassini, 1962).
Such bronchial mesoderm, but not non-specific mesoderm, has been shown to be required for
branching of the endoderm (Spooner and Wessells, 1970). Additionally, different thresholds of
mesenchymal cell abundance have been shown to be required for either epithelial maintenance
(in the case of minimal mesenchymal mass), or growth, morphogenesis and differentiation (in
the case of larger mesenchymal mass) (Masters, 1976). Later, it was shown that the distal lung
mesenchyme is characterized by the expression of fibroblast growth factor 10 (Fgf10) (Bellusci et al.,
1997) and that Fgf10-knockout embryos suffer from lung agenesis as well as other morphogenic
and organogenic abnormalities (Min et al., 1998; Sekine et al., 1999; Suzuki et al., 2000; Sakaue
et al., 2002; Jaskoll et al., 2005). In agreement with the study mentioned above regarding the
role of the mesenchymal mass (Masters, 1976), it was shown that Fgf10 dosage is critical for
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the amplification of epithelial progenitors during embryonic lung
development (Ramasamy et al., 2007).

Lung development starts with the evagination of the ventral
foregut endoderm at embryonic day 9.5 (E9.5) to form the
primitive lung buds, thus marking the embryonic stage of lung
development that lasts until E12.5 (Figure 1). The lung domain
in the foregut is marked by the expression of the transcription
factor Nkx2.1. Surrounded by the splanchnic mesoderm, the two
lung buds start undergoing iterative branching, the hallmark
feature of the pseudoglandular stage of lung development (E12.5–
E16.5) (Figure 1). Other stages of lung development include the
canalicular (E16.5–E17.5), saccular (E17.5 to post-natal day 5;
P5), and alveolar stages (P5–P30) (Figure 1). The nomenclature
of these stages is mainly based on the histological appearance
of these lungs when analyzed by light microscopy (Warburton
et al., 2010; El Agha and Bellusci, 2014; Volckaert and De Langhe,
2015).

The mesenchyme is a multifaceted compartment of the
developing lung containing a heterogenousmixture of progenitor
and differentiated cells, and it represents a reservoir of key
growth factors, signaling networks, and even physical forces that
direct lung development (Warburton et al., 2005, 2010; Morrisey
and Hogan, 2010; El Agha and Bellusci, 2014; McCulley et al.,
2015). Mesenchyme topology and dynamics in terms of cellular
density and orientation around the growing epithelial buds likely
guides the process of morphogenesis, particularly the branching
process. Apart from FGF10+ mesenchymal cells that also act as
progenitors for differentiated mesenchymal cells such as airway
and vascular smooth muscle cells and lipofibroblasts (Mailleux
et al., 2005; El Agha et al., 2014, 2017; Al Alam et al., 2015), airway
smooth muscle cells (Kim et al., 2015) and nerve cells (Bower
et al., 2014; Rhodes et al., 2015) have been proposed to be critical
for the branching process, although the involvement of airway
smooth muscle cell peristalsis in promoting epithelial branching
in vivo has been recently questioned (Young et al., 2020)
(Figure 1). Wingless-related integration site (WNT) signaling
and extracellular matrix (ECM) deposition such as fibronectin—
The latter is believed to act as “a rock in the stream” that forces
the bifurcation of the growing epithelial tubes (Warburton et al.,
2005)—have also been proposed as main drivers of epithelial
branching (De Langhe et al., 2005; Kadzik et al., 2014) (Figure 1).

Physical forces have also emerged as an important regulator
of epithelial branching (Figure 1). In fact, lung branching has
been proposed to be a natural physical consequence of the
interaction between cellular layers with surface tension between
them (Lubkin and Murray, 1995). Several mathematical models
for branching morphogenesis have been proposed such as
diffusion-limited growth by FGF (Miura and Shiota, 2002),
Turing instability-based model (Menshykau et al., 2012) and
mixed-type models (Guo et al., 2014a,b). These models have been
reviewed in Miura (2015). Interestingly, it has been shown that
increased intraluminal pressure by tracheal occlusion, achieved
via cauterization, boosts epithelial branching in air-liquid
interface (ALI) cultures of E12.5 embryonic lungs (Unbekandt
et al., 2008). Gene expression analysis showed that several
key growth factors such as Fgf10, sonic hedgehog (Shh), and
vascular endothelial growth factor a (Vegfa) were upregulated

whereas sprouty 2 (Spry2), a downstream target of FGF10 and
an inhibitor of FGF signaling, was downregulated after 48 h of
culture (Unbekandt et al., 2008).

During lung development, the vascular tree develops in
parallel to its epithelial counterpart where proximal vessels,
formed through the process of angiogenesis, and distal vessels,
formed through the process of vasculogenesis, fuse to form
a continuous vascular lumen around E13/E14 (deMello et al.,
1997). The lung vasculature is involved in the regulation of
many processes during lung development and its involvement in
epithelial branching has been a topic of extensive research. Here,
we discuss the various modes of lung branching and whether
the lung vasculature guides branching morphogenesis of the lung
epithelium during early lung development.

THE BRANCHING PROGRAM OF THE
DEVELOPING MOUSE LUNG:
HARD-WIRED AND STOCHASTIC
ASPECTS

Congenital diaphragmatic hernia (CDH) is a defect resulting
from impaired development, and therefore incomplete closure, of
the diaphragm, leading to the invasion of abdominal organs into
the thoracic cavity. CDH newborns suffer from lung hypoplasia
and the experimental model of nitrofen-induced CDH in rodents
has shown that epithelial branching is indeed impaired in these
embryos (Guilbert et al., 2000). This defect therefore favors a
model where available space dictates the extent of lung branching.
However, the assumption that lung branching morphogenesis
is an iterative process that proceeds in a random fashion until
the intrathoracic space is filled has already been challenged.
Members of various developmental signaling pathways such
as FGF, SHH, bone morphogenetic protein (BMP), and WNT
signaling have been implicated in this process (Cardoso and Lu,
2006; Warburton et al., 2010) (Figure 1). In a pioneering study,
the branch lineage of the bronchial tree and the accompanying
branching sequences were analyzed between E11 and E15
using fixed specimens (Metzger et al., 2008). Thorough analysis
of such samples showed that the developing lung undergoes
three modes of branching defined as domain branching, planar
bifurcation, and orthogonal bifurcation. Domain branching sets
up the overall shape of individual lobes and is controlled by
two patterning systems: A proximal-distal system controlling
periodicity/sequence of branching and a circumferential system
specifying the position of domains and the order in which
they are implemented. Planar bifurcation forms the edges of
the lobes and therefore occurs at their tips while orthogonal
bifurcation generates the surfaces of the lobes with a 90◦ rotation
in the bifurcation plane between each round of branching. These
findings indicate that the branching process is predominantly
stereotyped by genetic regulators although there are instances
where anomalous branching events, defined as “branching
errors” also take place. The branching pattern was therefore
proposed to be controlled by a global master routine that controls
further subroutines, setting the coupling scheme for each lineage
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FIGURE 1 | Overview of lung development and various factors controlling epithelial branching morphogenesis. During the pseudoglandular stage of lung development,

the lung undergoes successive rounds of branching. FGF10, secreted by submesothelial mesenchymal cells, induces budding and branching of distal terminal

epithelial buds. WNT signaling in the distal epithelium induces the deposition of fibronectin at the cleft region, which helps guide bifurcation. Epithelial, mesenchymal,

and mesothelial cells cooperate to promote the development of the endothelial network through VEGF-A/VEGFR2 signaling. Intraluminal pressure, innervation, and

airway smooth muscle cell differentiation are among many factors that promote branching morphogenesis. Orientation vector: A, Anterior; P, Posterior; D, Dorsal; V,

Ventral. Embryonic lung anatomy: Tr, Trachea; R, Right; L, Left; Cr, Cranial lobe; Md, Medial lobe; Cd, Caudal lobe; Ac, Accessory lobe. Cell-type code: Endo,

Endothelium; Epi, Epithelium; Mes, Mesenchyme; Meso, Mesothelium. The timeline representation of murine lung development does not correspond to a fixed scale.

early, and then relaxing and allowing these lineages to continue
independently (Metzger et al., 2008).

The paradigm that lung branching morphogenesis is
stereotyped and hard-wired was challenged by Blanc et al.
(2012) who carried out three-dimensional (3D) reconstruction
of whole right cranial lobes between E11.25 and E13.5. The
authors concluded that beyond early branching generations,
the branching stereotypy loosens up, and epithelial buds simply
try to homogenously fill the surrounding mesenchymal space.
The dynamic changes of mesodermal shape seemed to influence
both the branching pattern and branching rate, indicating
that branching of the endoderm is basically connected to
local changes of mesoderm growth (Blanc et al., 2012). Those

findings indicated that the branching mode of the epithelial
tree is unlikely to be specified and predefined by a rigid, global
genetic program.

VEGF-A/VEGFR2 SIGNALING POSITIVELY
REGULATES EPITHELIAL BRANCHING
MORPHOGENESIS

VEGFs are critical ligands for the development of blood
vessels from hemangioblasts, a population of hematopoietic,
and endothelial progenitor cells. These ligands are produced
by both epithelial and mesenchymal cells at E12.5. Using
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organotypic cultures of E11.5 lung explants grown in an ALI
for up to 4 days, it was shown that VEGF-A is deposited
in the subepithelial mesenchyme adjacent to the branching
distal epithelial buds where it upregulates endothelial cell
markers and promotes vasculogenesis (Healy et al., 2000)
(Figure 1). Such expression pattern hinted at a possible role
for VEGF-A in coordinating airway branching and blood
vessel formation during early lung development. Later work
demonstrated that epithelium-derived SHH and mesothelium-
derived FGF9 cooperate to induce Vegfa expression in both
the subepithelial and submesothelial mesenchyme, that in
turn acts on vascular endothelial growth factor receptor
2-positive (VEGFR2+; aka fetal liver kinase 1-positive or
FLK1+) endothelial progenitors to induce vasculogenesis, thus
contributing to the formation of the capillary plexus (White
et al., 2007) (Figure 1). Interestingly, overexpression of Vegfa in
distal epithelial cells, but not in proximal airways, disrupts the
peripheral vascular network, and impairs epithelial branching
(Akeson et al., 2003). The latter findings highlight the importance
of the crosstalk between the epithelium and endothelium
in the distal lung and that disturbance of the spatial and
temporal control of VEGF-A signaling has implications for
branching morphogenesis.

Since lung development proceeds in a hypoxic environment
inside the uterus, it was hypothesized that low oxygen
levels represent an important factor for lung branching
morphogenesis as well as vascular development. Indeed,
E11.5 embryonic lung explants grown in ALI at 3% oxygen
exhibited enhanced numbers of terminal epithelial branches
compared with controls cultured at 20% oxygen (van Tuyl
et al., 2005). Interestingly, the spatial expression patterns of
mesenchymal Fgf10 and epithelial Bmp4 did not seem to
be affected by hypoxia. Moreover, vascular development was
boosted by hypoxia as evident by the extensive endothelial
network that extended from the trachea to distal epithelial tips.
Knock down of Hif1a and Vegfa led to dramatic impairment
of vascularization in these lung explants while exogenous
VEGF treatment rescued the phenotype in Vegfa–, but not
Hif1a–, knockdown explants. Importantly, arrested vascular
development coincided with significant simplification of the
epithelial tree indicating that the disturbance of vascular
network assembly disrupts epithelial branching (van Tuyl et al.,
2005).

The positive effect of VEGF signaling on epithelial branching
has been shown to bemediated by endothelial-epithelial crosstalk
(Gebb and Shannon, 2000; Del Moral et al., 2006). Using
organotypic cultures of E11.5 lung explants, it was shown that
treatment with VEGF enhanced the number of terminal epithelial
branches in parallel to increased epithelial and mesenchymal
proliferation (Del Moral et al., 2006). VEGF did not have
a direct effect on isolated endoderm. The impact on lung
branching coincided with the upregulation of Flk1, Sftpc, and
Bmp4 and the downregulation of Spry2/4, which are known
inhibitors of FGF signaling. Conversely, knock down of Flk1
led to reduced terminal branching with downregulation of Flk1,
Sftpc, and Bmp4 in parallel to upregulation of Spry2/4. Loss of
Flk1 expression also led to significant reduction of proliferation

in both the epithelium and mesenchyme (Del Moral et al.,
2006). Those findings suggested that the vasculature is an
important factor for promoting epithelial branching during early
lung development.

In another study, the effect of in vivo vascular depletion
on the branching stereotypy and the coordination between the
branching of epithelial and vascular tubes leading to their co-
alignment was studied (Lazarus et al., 2011). A loss-of-function
approach involving the overexpression of a dominant-negative,
decoy vascular endothelial growth factor receptor 1 (VEGFR1)
to inhibit the effect of VEGF signaling between E6.5 and
E12.5 was employed. E12.5 lungs showed that vascular ablation
caused fewer, more dilated airway branches in addition to
ectopic branching events compared with control lungs (Lazarus
et al., 2011). This was accompanied by upregulation of Spry2
and downregulation of Shh, the gene encoding its receptor
(patched 1 or Ptc1) and downstream target glioma-associated
oncogene 1 (Gli1). Importantly, domain branches, as described
by Metzger et al. (2008), requiring a change in the branching
plane were preferentially affected by vascular depletion. These
branching abnormalities coincided with impaired expression of
the branching mediator Fgf10 and branching regulators Shh
and Spry2 (Lazarus et al., 2011). Additionally, treatment of
E11.5 ALI cultures with a VEGFR2 intracellular inhibitor led
to vascular depletion coupled to a 30% reduction in planar
bifurcations and a 70% reduction in orthogonal bifurcations
(Lazarus et al., 2011). Remarkably, the in vivo experiments
showed that airway branching and the 3D architecture of the lung
seemed to be fully rescued as a consequence of revascularization
due to termination of VEGF blockade between E12.5 and post-
natal day 14 (P14), indicating that the branching arrest was
reversible and that vascular regain was at least permissive for
kick-starting epithelial branching morphogenesis (Lazarus et al.,
2011).

Using organoid cultures, it was shown that human umbilical
vein endothelial cells (HUVECs) facilitated the generation
of branched bronchioalveolar organoids from human
bronchial epithelial cells (Franzdóttir et al., 2010). Further
analysis confirmed that airway epithelial cells were polarized,
and that inhibition of FGF signaling via pharmacological
intervention inhibited the branching process (Franzdóttir et al.,
2010).

Another culture system involves the engraftment of
E12.5 lungs under the kidney capsule of adult host mice.
Using this model, it was shown that inhibiting VEGF-A
activity by injecting host animals with a dominant-
negative decoy mFLT(1–3)Ig led to the inhibition of both
vascular development and epithelial branching (Zhao et al.,
2005).

Collectively, there is strong evidence suggesting that
the vascular network is critical for proper epithelial
morphogenesis, at least in part by affecting the spatial
expression pattern of key genes involved in the branching
process. In the next section, evidence suggesting that
the lung epithelium is capable of undergoing branching
morphogenesis in the absence of the vascular system will
be presented.
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THE LUNG EPITHELIUM IS CAPABLE OF
BRANCHING IN THE ABSENCE OF
ENDOTHELIAL CELLS

Despite the general notion that the lung vasculature has a strong
influence on epithelial branching in the developing lung, several
lines of evidence suggest that the vasculature is dispensable for
epithelial branching. For example, it has been reported that
epithelial branching proceeds even in the absence of endothelial
cells in vitro (Havrilak and Shannon, 2015). The authors used
ALI cultures of E12.5 lung explants to show that treatment with
various VEGFR inhibitors did not impair the branching process
after 48 h of ex vivo culture. Loss of endothelial cells as a result of
such treatment did not seem to impair epithelial, smooth muscle
or pericyte differentiation. Additionally, the authors elegantly
showed that distal mesenchymal cell suspensions that had been
depleted of endothelial cells were capable of promoting the
formation of branched structures when combined with distal
epithelial cell suspensions and allowed to grow on a membrane
for 5–7 days in the presence of SHH stimulation (Havrilak
and Shannon, 2015). Moreover, they also showed that primary
lung endothelial cells isolated from E12.5 lungs or human lung
microvascular endothelial cells (HMVEC-L) were not capable of
promoting branching of epithelial rudiments when cultured in
basement membrane extract as opposed to the positive control
cultured in the appropriate medium (Havrilak and Shannon,
2015). Those findings argue that the endothelial component is
dispensable for epithelial morphogenesis and branching. Follow-
up work showed that pharmacological inhibition of VEGFR at
E8.5 did not affect early lung specification and bud formation
(Havrilak et al., 2017). On the other hand, analysis of Flk1-
knockout embryos that do not develop endothelial cells revealed
impaired pulmonary specification in the mutant endoderm likely
due to delayed development as such mutants were able to
catch up with the controls in terms of respiratory specification
and bud formation when cultured ex vivo (Havrilak et al.,
2017).

Another line of evidence for the dispensability of endothelial
cells for lung branching comes from the organoid field. Human
pluripotent stem cells (hPSCs) can be used to generate endoderm
spheroids, and further conditioned to give rise to branched
lung organoids in the absence of endothelial cells (Miller et al.,
2019). Even earlier studies using isolated endoderm have shown
that recombinant growth factors such as FGF1 or FGF10 are
sufficient to induce epithelial branching (Nogawa and Ito, 1995;
Bellusci et al., 1997). Co-culturing bronchioalveolar stem cells
(BASCs) characterized by dual expression of airway and alveolar
markers (Scgb1a1 and Sftpc, respectively) with appropriate
resident mesenchymal cells (CD45- CD31- EpCAM- SCA-1+)
leads to the formation of highly branched bronchioalveolar
organoids that are reminiscent of the branching lung (Vazquez-
Armendariz et al., 2020). Last but not least, several theoretical
works have shown that FGFs per se drive lung branching
(Miura and Shiota, 2002; Clément et al., 2012). These data, as
well as others, strongly suggest that the epithelium is highly
responsive to mesenchymal signals that instruct branching

morphogenesis and that the vasculature does not seem to play
a leading role nor is absolutely required for epithelial branching.

DISCUSSION

Tissue interactions represent a hallmark feature of lung
organogenesis, and various cellular, molecular, biochemical, and
physical mechanisms have been implicated in this developmental
process. In this context, the interplay between epithelial,
mesenchymal, mesothelial, and endothelial cells is absolutely
critical for coordinating the development of the various
constituent tissues within the lung. As highlighted above,
vascular ablation in vivo mainly disrupts vascular development
but also perturbs epithelial branching patterns. The observation
that endothelial cells appear to be dispensable for epithelial
rearrangement and branching suggests that the vascular system
seems to play a modulatory role and is mainly involved in
downstream patterning of airway branching during the course
of lung development. The influence of the lung endothelium
might bemediated by endothelium-derived factors that modulate
ECM properties such as stiffness or heparan sulfate proteoglycan
composition. Heparan sulfates are known to interact with
diffusible proteins such as FGF10 and create growth factor
gradients that instruct epithelial patterning (Izvolsky et al.,
2003; Warburton et al., 2010). Therefore, it is plausible
that the endothelium creates a permissive or modulatory
environment that impacts branching patterns along the growing
epithelial tubes. Given the close association between the
distal epithelium and the endothelial layer, it is possible that
interaction between the two cellular domains across the basement
membrane is mediated by paracrine-acting growth factors (other
than VEGF-A/VEGFR2 signaling) and downstream (positive
and negative) feedback-loop mechanisms. Epithelial-endothelial
interaction might also be mediated by ECM-integrin signaling
or even physical forces arising from sprouting of endothelial
cells leading to the engulfment of terminal buds by the
capillary plexus.

Despite the widespread use of the elegant ALI organotypic
culture system, one of its limitations is that it heavily distorts
the 3D structure of embryonic lungs and leads to severe
flattening on polycarbonate membranes. This issue might
mask potential deleterious effects for vascular ablation on
the 3D patterning of epithelial branches. Moreover, oxygen
concentration, the absence of the systemic blood circulation and
extrapulmonary cells such as bone marrow-derived cells and
loss of nerve connections collectively alter the physiological,
biochemical and biophysical context, and certainly do not
mimic the in-utero environment. On the other hand, the
majority of the in vivo genetic approaches that have so far
been employed do not perturb the endothelium in a cell-
autonomous fashion, which opens the door for potential non-
specific effects on non-endothelial cells. Future studies designed
to selectively manipulate/ablate endothelial cells in the lung
during defined intervals with minimal off-target effects in vivo
might unveil novel mechanisms related to epithelial-endothelial
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crosstalk along the proximal-distal axis and their impact on
lung branching.
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