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Mammalian eggs are surrounded by an extracellular matrix called the zona pellucida

(ZP). This envelope participates in processes such as acrosome reaction induction,

sperm binding, protection of the oviductal embryo, and may be involved in speciation.

In eutherian mammals, this coat is formed of three or four glycoproteins (ZP1–ZP4).

While Mus musculus has been used as a model to study the ZP for more than 35

years, surprisingly, it is the only eutherian species in which the ZP is formed of three

glycoproteins Zp1, Zp2, and Zp3, Zp4 being a pseudogene. Zp4 was lost in the Mus

lineage after it diverged from Rattus, although it is not known when precisely this loss

occurred. In this work, the status of Zp4 in several murine rodents was tested by

phylogenetic, molecular, and proteomic analyses. Additionally, assays of cross in vitro

fertilization between three and four ZP rodents were performed to test the effect of the

presence of Zp4 in murine ZP and its possible involvement in reproductive isolation. Our

results showed that Zp4 pseudogenization is restricted to the subgenus Mus, which

diverged around 6 MYA. Heterologous in vitro fertilization assays demonstrate that a

ZP formed of four glycoproteins is not a barrier for the spermatozoa of species with a

ZP formed of three glycoproteins. This study identifies the existence of several mouse

species with four ZPs that can be considered suitable for use as an experimental animal

model to understand the structural and functional roles of the four ZP proteins in other

species, including human.
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INTRODUCTION

The zona pellucida (ZP) is an extracellular coat that surrounds mammalian oocytes and early
embryos. This envelope participates in important events during fertilization and early embryo
development, such as the species-specific gamete recognition, acrosome reaction induction,
preventing polyspermy, and protecting the oviductal embryo (Yanagimachi, 1994; Dean, 2007;
Wassarman and Litscher, 2009; Gupta and Bhandari, 2011; Gupta et al., 2012; Tanihara et al., 2013;
Shu et al., 2015). The composition of the ZP matrix has been elucidated in many species, and
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has been seen to be composed of three to four glycoproteins in
eutherians (Bleil and Wassarman, 1980; Hedrick and Wardrip,
1987; Lefièvre et al., 2004; Hoodbhoy et al., 2005; Ganguly
et al., 2008; Goudet et al., 2008; Izquierdo-Rico et al., 2009;
Stetson et al., 2012, 2015; Moros-Nicolás et al., 2018c), and
four to seven in marsupials and monotremes (Frankenberg and
Renfree, 2018; Moros-Nicolás et al., 2018a; Wu et al., 2018).
Indeed, the composition of ZP is more variable than was
previously expected. Eutherian mammals can be classified into
three categories according to their ZP protein composition: (a)
species with four glycoproteins (ZP1, ZP2, ZP3, and ZP4) such
as human, rat, hamster, horse, rabbit, cat, cheetah, ferret, tiger,
panda, polar bear, and walrus (Lefièvre et al., 2004; Hoodbhoy
et al., 2005; Izquierdo-Rico et al., 2009; Mugnier et al., 2009;
Stetson et al., 2012, 2015; Moros-Nicolás et al., 2018c); (b) species
whose ZP is formed of ZP2, ZP3, and ZP4 (pig, cow, marmoset,
tarsier, dog, Weddell seal, and Antarctic fur seal) (Hedrick and
Wardrip, 1987; Noguchi et al., 1994; Goudet et al., 2008; Stetson
et al., 2012; Moros-Nicolás et al., 2018c); and (c) species whose
ZP is formed of ZP1, ZP2, and ZP3 (house mouse) (Bleil and
Wassarman, 1980).

Studies on the molecular evolution of the ZP family has
helped to better understand the species-specific differences in
the ZP composition. However, there is no consensus in relation
with the ZP nomenclature or the number of ZP subfamilies
(Spargo and Hope, 2003; Goudet et al., 2008; Feng et al., 2018;
Wu et al., 2018). The first events in the ZP evolution occurred
before the evolution of the first amphibians (Spargo and Hope,
2003). The ancestral ZPC gene and the precursor of ZP2, ZP4,
ZPD, and ZPAX subfamilies appeared after a gene duplication
event (Spargo andHope, 2003). This precursor duplicated several
times over a short period of evolutionary history, and led to
the ancestral ZPAX gene and the ancestral of ZP2, ZP4, and
ZPD genes. Afterwards, duplication events have occurred in
several lineages, the most important during early evolution of the
amniotes and giving rise to ZP1 and ZP4 groups within the ZPB
subfamily (Hughes and Barratt, 1999; Bausek et al., 2000; Goudet
et al., 2008). Thus, it was assumed that ZP1 and ZP4, previously
considered orthologs, are in fact paralogues. Some species retain
the two copies of the ancestral gene (ZP1 and ZP4, in the four
glycoprotein model), and others conserved only one (ZP1 or
ZP4, the three glycoprotein model). In this last case, one of the
copies (ZP1 or ZP4) was lost after a duplication event due to a
pseudogenization process (Goudet et al., 2008).

Massive gene loss events occurred during mammalian
evolution (Goudet et al., 2008; Feng et al., 2018; Killingbeck
and Swanson, 2018). For instance, there are several examples
of ZP1 loss in mammals; for example, in carnivores, a first
pseudogenization event dated around 60–65 million years ago
(MYA) (Nyakatura and Bininda-Emonds, 2012; Zhang et al.,
2013) in the suborder caniformia [e.g., dog (Canis familiaris)
(Goudet et al., 2008; Moros-Nicolás et al., 2018c) and fox
(Vulpes vulpes) (Moros-Nicolás et al., 2018c)], and a second
event after the separation of the Otariidae and Phocidae families,
[e.g., Antarctic fur seal (Arctocephalus gazella) and Weddell
seal (Leptonychotes weddellii) (Moros-Nicolás et al., 2018c)],
estimated to have occurred around 22 MYA (Nyakatura and

Bininda-Emonds, 2012). Another pseudogenization of ZP1 took
place early in the evolution of the Cetartiodactyla between 75 and
65MYA (Zurano et al., 2019) as it was lost in the cow (Bos taurus),
the dolphin (Tursiops) and the pig (Sus crofa) (Goudet et al.,
2008; Stetson et al., 2012). ZP1 was also probably independently
lost twice in primates: in marmoset (Callithrix) and in tarsier
(Tarsius) lineages (Stetson et al., 2012).

On the other hand, surprisingly, the pseudogenization of ZP4
has been described only in the house mouse (Mus musculus)
and in two South American marsupials (common opossum and
gray short-tailed opossum) (Goudet et al., 2008; Moros-Nicolás
et al., 2018a). In marsupials, this pseudogenization occurred
after the split between the South American and Australasian
marsupials dated at 80 MYA and before the divergence of
common opossum and gray short-tailed opossum, between 20
and 30 MYA (Meredith et al., 2008; Jansa et al., 2014).

To date, ZP2 and ZP3 proteins are present in all species,
which means that the functions of these proteins are essential;
indeed, mouse Zp2 and Zp3 are indispensable for fertilization
and embryo development (Liu et al., 1996; Rankin et al., 1996,
2001). Moreover, ZP2 was proven to be the primary sperm
receptor in mice and human (Baibakov et al., 2012; Burkart et al.,
2012; Avella et al., 2014, 2016).

Mouse ZP is formed of three proteins: Zp1, Zp2, and Zp3.
However, Zp4 is transcribed in Mus musculus oocytes but lacks
a protein product due to the presence of several stop codons in
its open reading frame (ORF) (Lefièvre et al., 2004; Evsikov et al.,
2006; Goudet et al., 2008). Moreover, mass spectrometry analysis
has failed to identify this protein (Boja et al., 2003).

Ultrastructural evidences suggest that mouse ZP is composed
of filaments. Three different models were described; the first one
suggests a filamentous structure where Zp2-Zp3 heterodimers
are the basic repeating units of the filaments with cross-linking
of filaments by dimeric Zp1 (Greve and Wassarman, 1985;
Wassarman, 1988). The second one proposed by Dean in 2004,
describes a ZP formed by repeats of Zp3-Zp2 and Zp3-Zp1
heterodimers that form the main fibrillar structure, being bound
through the glycoproteins Zp1 and Zp2 (Dean, 2004). The
third one, is a variation of the first model, so that the Zp1
glycoprotein is incorporated into the long filaments through its
ZP domain; therefore in the mouse, the ZP would be formed
by a fibrillar framework constituted by long polymers of Zp1-
Zp2-Zp3 which are joined to each other by Zp1 homodimers
through disulfide bonds forming a three-dimensional structure
(Monné and Jovine, 2011; Stsiapanava et al., 2020). However, the
ZP structure of the species with four proteins remains unproven.

The house mouse (Mus musculus) is an index species for
biomedical research, and has been used as a model to study
the ZP for more than 35 years (Liu et al., 1996; Rankin
et al., 1996, 1999, 2001; Baibakov et al., 2012; Avella et al.,
2014). Nevertheless, its ZP composition markedly differs from
that seen in other mammals, including human. Thus, the
lack of a good experimental animal model is one of the
major hurdles to fully understanding the functional role of
human ZP proteins (Gupta, 2018). Since rat (Rattus genus)
has four glycoproteins and the house mouse (Mus genus) only
three, Zp4 was probably lost after their divergence around 12
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MYA (Jaeger et al., 1986; Jacobs et al., 1989, 1990; Goudet
et al., 2008). In order to determine more precisely when this
pseudogenization took place, the Zp4 gene was sequenced in
different species of rodent that belong to the same group as
Mus and Rattus, the Murinae subfamily, involving a particularly
comprehensive taxonomic sampling within the genus Mus
(Musser and Carleton, 2005). This study permitted better
understanding of the unusual composition of the mouse ZP and
has led to the proposal of a new animal model for studying
human ZP. In order to ascertain whether the presence of four
ZP glycoproteins in its composition could affect fertilization,
an in vitro heterologous fertilization study using closely-related
murine species was performed.

RESULTS

Pseudogenization of Zp4 Occurs Only in
Mus
Our aim was to amplify and sequence the region of
genomic DNA encompassing the exons 1–9 of the Zp4
gene in several species of the subfamily Murinae (Table 1).
Sequences were aligned to the corresponding genomic
portions of DNA of Mus (chromosome 13) and Rattus
(chromosome 17). Sequences of the mRNA obtained from
Mus mattheyi, Mus pahari, and Mastomys coucha ovaries were
added to determine the limits of the exons. The complete
sequences (covering exons 1–9) were obtained only for
Rattus rattus and Mus minutoides. For the other species,
the coverage ranged between 70% (Apodemus flavicollis
and Mus minutoides) and 13% (Lemniscomys striatus and
Malacomys longipes).

These new sequences were aligned with Zp4 sequences of
other muroid rodents found in Genbank or ENSEMBL (Table 1).
The full length alignment (exons 1–9) comprises 36 sequences
and 5,140 bp (genomic DNA) and 1,301 bp (coding portion).
Two portions of the sequences were scrutinized: the beginning
of the gene (from exons 1–3) and the end of our alignment
(exons 8 and 9), in both of which stop codons were found in
Mus musculus (Goudet et al., 2008). The first fragment in all our
samples was successfully amplified (except Lemniscomys striatus)
and the second one in thirteen samples.

The results showed that stop codons are present in the first
three exons of Zp4 in eight species of the subgenus Mus: M.
caroli, M. cypriacus, M. cookii, M. famulus, M. macedonicus, M.
musculus, M. spicilegus, andM. spretus (Figure 1); however, they
were also present in exons 8 and 9 inM. musculus andM. spretus.

The phylogenetic tree (Figure 2) confirms the monophyly of
this subgenus and indicates that the pseudogenization took place
after the divergence of the subgenus Mus and before species
diversification. Previous studies reported that the four subgenera
of Mus diverged between 6 and 7 MYA (Lecompte et al., 2008;
Pagès et al., 2012; Meheretu et al., 2015). Within the subgenus
Mus the earliest offshoot is estimated to have appeared at around
5 MYA (Pagès et al., 2012), indicating that the pseudogenization
took place between 5 and 7 MYA.

Zp1, Zp2, Zp3, and Zp4 Are Expressed in
Mus (Coelomys) pahari, Mus (Nannomys)
mattheyi, and Mastomys coucha Ovaries
To determine whether Zp4 pseudogenization affects only the
subgenus Mus, it was necessary to confirm the expression of the
four ZP genes and proteins in other subgenera belonging to the
genus Mus, in our case Nannomys and Coelomys (Musser and
Carleton, 2005; Pagès et al., 2012). Individuals of two species—
Mus mattheyi (subgenus Nannomys) and Mus pahari (subgenus
Coelomys)—were studied. Furthermore, a species from another
genus of the Murinae subfamily, Mastomys coucha, was also
analyzed. The species were selected according to their availability
and phylogenetic interest for this study.

Using RT-PCR analysis, full-length cDNAs of Mus mattheyi
and Mus pahari Zp1 (Supplementary Figure 1) and Zp4
(Supplementary Figure 2) were obtained from total RNA
prepared from ovaries. The sequence analysis indicated that they
have a complete coding region. The open reading frames (ORFs)
encode polypeptides with a theoretical molecular weight of 68.61
and 59.51 kDa (Mus mattheyi Zp1 and Zp4) and 68.37 and 59.54
kDa (Mus pahari Zp1 and Zp4).

These genetic sequences would translate a predictive protein
in both species with a high degree of similarity to ZP1 and
ZP4 proteins of other mammals (Supplementary Figures 3, 4).
In the N-terminal region, a signal peptide is present, whose
peptidase cleavage site was predicted by means of the Bendtsen
et al. (2004) algorithm. The C-terminal region corresponds to the
transmembrane domain (TMD), and is followed by a cytoplasmic
tail (Krogh et al., 2001). Moreover, a basic amino acid domain
upstream of the TMD may serve as a consensus furin cleavage
site (CFCS) (Arg-Arg-Arg-Arg/RRRR). The molecules have a
conserved ZP domain, which is present in most sequences
of envelope glycoproteins in many species. Upstream of the
ZP domain, there is a trefoil domain, characteristic of ZP1
and ZP4 proteins, with six Cys residues, as reported for ZP
proteins (Bork, 1993), and between the signal peptide and the
trefoil domain a single ZP-N domain at their N-termini, as
reported previously (Callebaut et al., 2007; Nishimura et al., 2019)
(Supplementary Figures 3, 4). The presence of all these domains
indicates that the Zp1 and Zp4 of these rodents could share an
apparent similar molecular structure with other ZP proteins.

Thus, taking into consideration that ZP2 and ZP3 are
present in all vertebrates described to date and that they have
never suffered pseudogenization, the presence of a complete
ORF of Zp1 and Zp4 mRNA in these murine species suggests
a ZP consisting of four glycoproteins. Nevertheless, partial
amplification of Zp2 and Zp3 were made in both species to
demonstrate the presence of the four transcripts (Figure 3).
Furthermore, Zp1, Zp2, Zp3, and Zp4 mRNAs from Mastomys
coucha were also partially amplified (Figure 3).

ThemRNA of Zp1, Zp2, Zp3, and Zp4 are effectively translated
in proteins, as confirmed by the detection of several peptides
belonging to Zp1 and Zp4 in Mus mattheyi and Mus pahari and
the four proteins (Zp1, Zp2, Zp3, and Zp4) in Mastomys coucha

(Table 2) by MS/MS analyses.
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TABLE 1 | Muroid species and accession numbers of the sequences used for the phylogenetic study of the Zp4 gene.

Subfamily Species ZP4 (GenBank & Ensembl) RNA (this study) DNA (this study)

Murinae Apodemus flavicollis LR990796, LR990797

Murinae Arviicanthis niloticus LR990798, LR990799

Murinae Grammomys surdaster XM_028769799

Murinae Lemniscomys striatus LR990800

Murinae Malacomys longipes LR990801

Murinae Mastomys coucha XM_031359266 MH822871

Murinae Maxomys whitheadi LR990802, LR990803, LR990804

Murinae Micromys minutus LR990805

Murinae Millardia meltada LR990806, LR990807

Murinae Mus caroli CAROLI_EIJ_v1.1 chr13/XM_021180912 LR990808, LR990809

Murinae Mus cookii LR990810

Murinae Mus crociduroides LR990811

Murinae Mus cypriacus LR990812, LR990813

Murinae Mus famulus LR990814

Murinae Mus macedonicus LR990815, LR990816

Murinae Mus mattheyi MH822867

Murinae Mus minutoides LR990817, LR990818, LR990819

Murinae Mus musculus GRCm38 chr13/ENSMUST00000220980/NR_027813

Murinae Mus pahari XM_029547650 MH822868

Murinae Mus saxicola LR990820

Murinae Mus spicilegus MUSP714/ENSMSIT00000023447 LR990821, LR990822

Murinae Mus spretus SPRET_EiJ_v1 chr13 LR990823

Murinae Niviventer confucianus LR990824, LR990825

Murinae Otomys angoniensis LR990826, LR990827

Murinae Praomys jacksoni LR990828

Murinae Praomys tullbergi LR990829

Murinae Rattus exulans LR990830, LR990831

Murinae Rattus norvegicus AF456325

Murinae Rattus rattus XM_032885241 LR990832

Gerbillinae Meriones unguiculatus XM_021663194/XM_021663196

Cricetinae Cricetulus griseus XM_003505264/XM_027405493

Cricetinae Mesocricetus auratus NM_001281648/DQ838550

Arvicolinae Microtus ochrogaster XM_013353098

Neotominae Peromyscus leucopus XM_028860421

Neotominae Peromyscus maniculatus XM_006980166

Spalacinae Nannospalax galili XM_00884135

A total of 12, 6, and 13 different peptides corresponding to
Zp4 were identified in the different analyses, yielding a sequence
coverage of 30.99, 16.74, and 49.08% for Mus mattheyi, Mus
pahari, andMastomys coucha, respectively (Figure 4).

Taken together, these data indicate that four ZP proteins
are expressed in Mus mattheyi, Mus pahari, and Mastomys
coucha ovaries.

Heterologous in vitro Fertilization (Oocyte
With Three ZP Proteins vs. Four ZP
Proteins)
The next question was whether the ZP composition of the egg
could interfere with fertilization, for this reason we performed in
vitro fertilization experiments with species differing in their ZP

composition. Four rodents with different ZP composition were
used: Mus musculus with three ZP proteins (Zp1, Zp2, and Zp3)
and Mus mattheyi, Mus pahari, and Mastomys coucha with four
ZP proteins (Zp1, Zp2, Zp3, and Zp4). The in vitro fertilization
rates in a non-competitive context were analyzed (Table 3).

Oocytes from the four species were co-incubated with
spermatozoa in conspecific or heterospecific reciprocal crosses.
Fertilization success in the conspecific crosses was high only
in Mus musculus (79.16%), whereas in the other species the
rate was zero or very low (0% in Mus mattheyi, 0.81% in
Mastomys coucha, and 3.5% inMus pahari). WhenMus musculus
spermatozoa participated in the fertilization the rates were
67.5% in co-incubation with ova from Mus pahari, 11.7% with
ova from Mus mattheyi, and 0% with ova from Mastomys
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FIGURE 1 | Zp4 alignment of the different species analyzed. Initial methionine is signaled with 1. Stop codons are marked by an asterisk (*) and arrows.
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FIGURE 2 | Phylogenetic relationships of Zp4 gene in different species of muroid rodents. Bootstrap support and posterior probabilities are indicated for each node.

The species where Zp4 is a pseudogene are indicated in red. The symbol Ψ indicates the branch of the tree where the pseudogenization probably took place. The

species for which we sequenced the mRNA are indicated with an asterisk.

coucha. The fertilization rate was very low when Mus mattheyi
or Mus pahari spermatozoa were used, except for Mastomys
coucha spermatozoa with Mus musculus oocytes (67.14%). Our
observations showed that Mus mattheyi and Mus pahari sperm
were still able to adhere to the heterologous ZP, but we observed
that the number of spermatozoa that adhere to the ZP was much
lower than in the control group. Besides, we observed that when
the sperm adhered to the ZP, they remained immobile (data not
shown). Taking into consideration the results obtained in the in
vitro fertilization crosses between Mus musculus vs. Mus pahari

(67.5%) and Mastomys coucha vs. Mus musculus (67.14%), it can
be concluded that the presence of the 3 or 4 ZP proteins is not a
limiting factor for in vitro fertilization.

Analysis of ZP4 Positive Selection
Genes with a role in fertilization show a common pattern of
rapid evolution, which can be attributed to positive selection. An
analysis of such selection in Zp4 gene was made in order to know
the level of interspecific divergence and the existence of positive
selection sites.
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FIGURE 3 | Analysis of Zp1, Zp2, Zp3, and Zp4 gene expression in (A) Mus

mattheyi, Mus pahari and (B) Mastomys coucha by RT-PCR. Amplicons

corresponding to each gene are shown. Primers used for the amplifications of

the different ZP genes are shown in Supplementary Table 2.

The selection analysis pointed to significant positive selection
for both muroid datasets. For the dataset of the 28 muroids, both
tests (M1a vs. M2a and M7 vs. M8) were significant (p < 0.05 in
the former case and p < 0.01 in the latter), and one site (141 R)
showed a posterior probability > 95% (Table 4). For the dataset
of the 13 muroids, both tests (M1a vs. M2a, M7 vs. M8) were
significant (p < 0.01), and one site (547 L) showed a posterior
probability > 95% (Table 4).

DISCUSSION

Our results indicate that the pseudogenization of Zp4 in mice
is a relatively recent event that took place during the evolution
of the genus Mus, a genus that encompasses more than 40
species divided into four subgenera: Mus, Pyromys, Nannomys,
and Coelomys (Musser and Carleton, 2005; Shimada et al., 2010;
Suzuki and Aplin, 2012). The subgenus Mus is by far the most
extensively studied as it includes the cosmopolitan commensal
Mus musculus (the house mouse), which has been used as a
model to study the ZP and gamete interaction for the last
four decades. This subgenus comprises 14 species (Auffray and
Britton-Davidian, 2012). The other subgenera are Nannomys,
the African pygmy mouse with 19 recognized species, and two
South-East-Asian subgenera Coelomys, the shrew mouse with
four species, and Pyromys the spiny mouse with five species
(Musser and Carleton, 2005).

DNA sampling among the genus Mus included species
belonging to the four subgenera, and the mRNA and protein

analyses included species of two of these four subgenera for which
no data had previously been available (Nannomys and Coelomys).

Analysis of Zp4 Protein in Mus (Nannomys)

mattheyi and Mus (Coelomys) pahari
The DNA and mRNA analyses of Mus mattheyi and Mus pahari
Zp4 sequences indicated the presence of a coding sequence for
a full-length protein. The alignment showed a high degree of
conservation: 87.32 and 88.05% with Mastomys coucha, 76.47
and 77.35% with hamster, 82.94 and 83.49% with rat, and 63.82
and 64.38% with human, for Mus mattheyi and Mus pahari,
respectively. At the ZP domain, the 10 cysteines found were
conserved in all the species. The furin cleavage site, described
in human (Kiefer and Saling, 2002) and rat (Hoodbhoy et al.,
2005) coincided with the potential sites for the rodents analyzed
(Supplementary Figure 4).

Six (Asn50, Asn74, Asn122, Asn209, Asn226, and Asn299)
and five (Asn50, Asn74, Asn122, Asn209, and Asn299) potential
N-glycosylation sites were identified in the mature protein in
Mus mattheyi and Mus pahari, respectively. Of which, Asn122
and Asn209 were identified by proteomics in Mus mattheyi,
indicating that these sites are not glycosylated or not always
occupied (Figure 4). The potential N-glycosylation sites Asn50,
Asn74, and Asn226 have been identified in rat Zp4 (Hoodbhoy
et al., 2005), so they seem to be conserved in Murinae; however,
Asn299 has not been detected in the rest of the species analyzed,
implying that there are differences in the glycosylation pattern
between these species and the rat. Further studies are necessary
to identify the glycosylation sites and the type of oligosaccharide
chain present.

In mature Zp4 protein, a total of 76 and 73 potential O-
glycosylation sites were found in Mus mattheyi and Mus pahari,
respectively. Some of the peptides identified contained some of
these O-glycosylation sites, 25 in Mus mattheyi and 11 in Mus
pahari, so that they would be free or partially occupied in the
mentioned proteins (Figure 4). O-glycosylation data are only
available for sow and rat ZP4 (Kudo et al., 1998; Hoodbhoy
et al., 2005). An O-glycosylated region (Thr296, Ser298, Ser301,
Ser304, and Thr312) has been described in rat (Hoodbhoy et al.,
2005), and is conserved inMus mattheyi andMus pahari (Ser298,
Ser301, and Ser304), in addition to Thr296, which is only present
inMus mattheyi (Supplementary Figure 4).

Taking into account that HPLC/MS analysis can be considered
a semi-quantitative technique, the fact that the coverage for Zp1
inMusmattheyi andMus pahariwas 7.22 and 7.98%, respectively,
compared to the coverage for Zp4 of 30.99% in Mus mattheyi
and 16.74% inMus pahari, this suggests that Zp1 is less abundant
in the ZP than Zp4. These results coincide with those published
by Boja et al. (2003) for house mouse (ZP coverage of 56% for
Zp1, 96% for Zp2 and 100% for Zp3), and for rat with a protein
coverage of 52% for Zp1 and 70% for Zp4 (Boja et al., 2005;
Hoodbhoy et al., 2005). They would also agree with the results
published for other species, such as rabbit (Stetson et al., 2012)
and cat (Stetson et al., 2015), where the coverage of ZP1 is lower
than that of ZP4; however, they do not coincide with the results
published for hamster, where the coverage of ZP1 was 12.6% and
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TABLE 2 | Peptides identified by proteomic analysis in Mus mattheyi, Mus pahari, and Mastomys coucha ZPs.

Peptides Score SPI Sequence n

Mus mattheyi

ZP1

HIPCMVKGSPKEACQQAGCCYDSAK 3.26 58.6 234–258 2

GDNYRTQVVAtDK 3.37 90.6 474–486 3

ZP4

GSHYVMMVSMQEVDVAGNMTGTRER 5.68 78.1 105–129 12

FSIAVSRNATSPPLRLDSLHLVFR 4.31 50.6 202–225 1

RRKSELHFETTTSISSkGPLILLQATK 3.48 56.2 471–497 1

LLKCPLDLRAPDAPSAEVCSPVPVK 3.54 64.2 130–154 1

DKSYGSYYGSDAYPLVK 3.38 63.6 331–347 1

KSELHFETTTSISSKGPLILLQATK 7.17 57.5 473–497 2

TSSPFPSHHQRFSIDTFSFMSAVR 7.03 56.8 412–435 1

FSIDTFSFMSAVREK 5.04 64.9 423–437 1

TQPGPLSLELQIAKDK 3.74 58.6 317–332 1

RKSELHFETTTSISSKGPLILLQATK 3.60 54.1 472–497 1

CTREGRFSIAVSRNATSPPLR 4.30 50.9 196–216 1

CTREGRFSIAVSR 4.28 86.1 196–208 1

Mus pahari

ZP1

FTIATFTLLDSSSQNALR 4.58 62.5 498–515 1

SGYFTLVVSQETALTHGVMLDNVR 5.73 70.7 275–298 2

ZP4

CPVDLHTTDASNAEVCSPVPVK 6.75 60.2 133–154 3

LLKCPVDLHTTDASNAEVCSPVPVK 3.34 55.1 130–154 1

AVYENELVAIRDVQAWGRSSITR 5.91 70.9 260–282 1

ERLLKCPVDLHTTDASNAEVCSPVPVKER 3.44 60.8 128–156 2

RIPVQKASSPFPSHHQRFSIA 5.39 62.8 406–426 4

RERLLKCPVDLHTTDASNAEVCSPVPVK 4.03 52.8 127–154 1

Mastomys coucha

ZP1

QAVLPNGRVDTAQDVTLICPKPDRIVTRDPYLAPPTTPEPFTPHTFALHPIT 13.63 81.6 109–160 2

GLAGPTVPHPQWGTLEPWELTEMDSV 11.05 71.2 195–220 1

EPWELTEMDSVGTHLPQERCRVASGHIPCMVKGS 11.01 66 210–243 1

VPHPQWGTLEPWELTEMDSVGTHLPQERC 10.76 66.3 201–229 1

MALTHGVMLDNVHLAYAPNGCPPTQ 10.42 67.7 287–311 1

IATFTLLDSSSQNALRGQVYFFCSASACHPVGSKTCSTTCD 9.25 58.1 501–541 1

CDSGIARRRRSSGHHNS 7.42 88 540–556 1

FTIATFTLLDSSSQNALRGQVYFFCSASACHPVGSKTCSTTCDSGIARRRR 8.73 67.4 499–549 1

RSSGHHNSTIQALNIVSSPGAVGFEDAAKLEPSGSSRNSSSR 7.7 63.1 549–590 2

GQVYFFCSASACHPVGSKTCSTTCDSGIARR 7.4 66.6 517–547 1

RRSSGHHNSTIQALNIVSSPGAVGFEDAAKLEPSGSSR 6.16 66.8 548–585 1

SSGHHNSTIQALNIVSSPGAVGFEDAAKLEPSGSSR 5.57 57.5 550–585 1

ZP2

LNAYIKSHSSPVASVKPGPLQLVLQTYPDKS 12.38 78.2 467–497 1

TVVTSMNSLSLPQSA 12.28 88.9 27–41 1

(Continued)
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TABLE 2 | Continued

Peptides Score SPI Sequence n

PCGRSIYRLLSLLFTVVTSMNSLSLPQSANSAFPGTLICDKDGVRVEF 12.2 71.1 13–60 1

MDPNSYGITKDIIAKDIASKTLGAVAALVGLAVVIGF 11.86 75.2 664–700 1

TFSSKAICVPDLSVACNATHMTLTIPEFPGKLKS 11.71 79.1 248–281 1

KFPYKTCTLKVIGGYQMNIRVGDTS 11.28 83.2 96–120 1

TCTLKVIGGYQMNIRVGDTSTDVRGKDDMHHFFCPAIQAEAHETSEIVVCMEDLISFSFPQ 11.28 88.2 101–161 1

QFYLSSLKLTFYFQGDMVSTVIDPECHCESPVSIDELCAQ 11.12 43.3 328–367 1

SLDSPLCSVTCPAPLRSKREASKDDTMTV 11.01 65.1 617–645 1

QGDMVSTVIDPECHCESPVSIDELCAQDGFMDFEVYSHQTKP 10.73 69 341–382 1

WENPPSNIVFRNSEFR 10.69 62.9 238–453 1

KITFSSKAICVPDLSVACNATHMTLTIPE 10.68 75.8 246–274 1

HSSPVASVKPGPL 10.36 88.2 474–486 1

SMNSLSLPQSANSAFPGTLICDKDGVRVEFSSRFDMEKWNPAVVDTFGNEILNCTYAL 10.33 82.9 31–88 1

DDTMTVSLPGPILLLSDDSSSKGV 10.12 69.2 640–663 5

SSYLYTVQLKLLFSIPGQKITF 10.02 69.8 228–249 1

DDTMTVSLPGPILLLSDDSSSKGVMDPNSYGI 9.36 62.3 640–671 1

NSLSLPQ 7.51 67.7 33–39 1

SLDSPLCSVTCPAPLRSKREASKDDTMTVSLPG 7.5 100 617–649 1

IDSQKITLHVPANATGVAHYVQESSYLYTVQLK 5.73 92.6 205–237 1

LLSLLFTVVTSMNSLSLPQSANSAFPGTLICDKDGVRVEFSSR 10.98 65.9 21–63 1

NDPNIKLALDDCWATSSEDPASVPQWQIVMDGCAYELDNYR 9.98 87.6 527–567 2

DEYPVVRYLRQPIYMEVTVLNRNDPNIKLALDDCWATSSEDPASVPQWQIVMD

GCAYELDNYR

9.68 68.4 505–567 1

VQSLGLARFHIPLNGCGTQQKFEGDKVIYENEIHGLWENPPSNIVFRNSEFR 9.14 83.1 402–453 1

VIYENEIHGLWENPPSNIVFRNSEFRMTVR 8.8 44.1 428–457 3

REASKDDTMTVSLPGPILLLSDDSSSKGVMDPNSYGITKDIIAK 8.55 61.3 635–678 1

VEFSSRFDMEKWNPAVVDTFGNEILNCTYALDMEK 8.26 34.1 58–92 1

REASKDDTMTVSLPGPILLLSDDSSSK 7.91 62.2 635–661 1

MARWQRKESVNPPCGRSIYRLLSLLFTVVTSMNSLSLPQSANSAFPGTLICDK

DGVRVEFSSRFDMEK

7.86 70.5 1–68 1

ITFSSKAICVPDLSVACNATHMTLTIPEFPGK 7.84 83.9 247–278 1

DEYPVVRYLRQPIYMEVTVLNR 7.54 54.4 505–526 1

FILKFPYKTCTLKVIGGYQMNIRVGDTSTDVR 7.47 69.8 93–124 1

TFAFVSEARRLNSLIYFHCSALICNQVSLDSPLCSVTCPAPLR 6.95 48.1 590–632 1

SKREASKDDTMTVSLPGPILLLSDDSSSKGVMDPNSYGITK 6.79 62 633–673 1

DDTMTVSLPGPILLLSDDSSSKGVMDPNSYGITKDIIAKDIASK 5.9 85.2 640–683 1

SKREASKDDTMTVSLPGPILLLSDDSSSKGVMDPNSYGITKDIIAK 5.83 85.6 633–678 1

LADENQNVSEMGWIIKIGNGTR 5.5 80.8 166–187 6

TTFHSAGSSVAHSGHYQRFDVK 4.3 87.1 568–589 1

ZP3

FRATVSSEEKLAFSLRLMEENWNTEKSSPTFHLGEVAHLQAEVQTGSHL

PLQLFVDYCVATPSPAPD

12.86 66.9 149–215 1

VDSHGCLVDGLSESFSAFQVPRPRPEMLQFTVDVFHFANSSRNTLYITCHL 8.36 72 225–275 1

TVGPLIVLGNANDQTVEGWTSSAQTSMALGLGLVTMAFLTLAA 6.39 94.6 352–394 1

ITCHLKVAPANQIPDKLNKACSFNKTSQSWLPVEGDADICDCCSH 5.5 100 271–315 1

(Continued)
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TABLE 2 | Continued

Peptides Score SPI Sequence n

ZP4

QEVDVAGNMTRTRERLLKCPL 12.46 64.1 115–135 1

GGQVYLHCSASVCQPAGMPSCMIICPASRRRRKSELYFENT 12.25 33.7 443–483 1

PSPISRGDCEEVGCCYSSEEEEAGSCYYGNTVTSHCTREGGFSI 11.98 66.4 154–206 1

GSHYVMMVGMQEVDVAGNMTRTRERLLKCPLDLPSKAPDAPSAEVCSPVPIKERL 11.63 70.6 105–159 1

QPAGMPSCMIICPASRRRRKSELYFENTTS 11.13 74.6 456–485 1

TREGGFSIVVSRNATSPPLRLDSLRLVSR 10.6 59.7 199–227 1

VNIRVLALPPPIPKTQPGPLS 8.68 61.5 305–325 1

QVLGGQVYLHCSASVCQPAGMPSCMIICPASRR 8.69 60 440–472 2

LVSRNNSGCDPVMTTSTFVLFQFPFSSCGTTRRITGDQALYENELVAIQDVQA

WGRSSITRDSNFRLR

8.63 80 224–291 1

QVLGGQVYLHCSASVCQPAGMPSCMIICPASR 7.2 36.7 440–471 1

GDCEEVGCCYSSEEEEAGSCYYGNTVTSHCTREGGFSIVVSR 6.87 81.6 169–210 1

LDSLRLVSRNNSGCDPVMTTSTFVLFQFPFSSCGTTRR 6.84 51.1 219–256 1

QRFSIATFSFMSAVR 5.41 75.4 423–437 2

Peptides with a score higher than 5 and percentage-scored peak (SPI) intensity of 60%, which are the threshold criteria for a positive identification, are shown in italics. “n” represents

the number of times that the peptide has been detected.

that of ZP4 11.2% (Izquierdo-Rico et al., 2009). Future studies
using quantitative proteomics are needed to clarify the ZP protein
ratios in different species.

Evolution of ZP Proteins in Muroid Rodents
The DNA analysis in different taxa showed the presence of
stop codons in the eight species belonging to subgenus Mus
and no stop codons in the other Mus species. The gene
expression analysis in Mus pahari (subgenus Coelomys) and
Mus mattheyi (subgenus Nannomys) clearly demonstrated the
presence of four transcripts (Zp1, Zp2, Zp3, and Zp4) using
RT-PCR and four ZP proteins using proteomic analysis. These
results agree with previous studies that reported the existence
of four proteins in the ZP in other placental species like
human (Lefièvre et al., 2004), rat (Hoodbhoy et al., 2005),
hamster (Izquierdo-Rico et al., 2009), rabbit (Stetson et al.,
2012), cat (Stetson et al., 2015), or ferret (Moros-Nicolás
et al., 2018c). These four proteins were also present in some
marsupials, even though in this group the evolution of the
ZP proteins is more complex as there are several copies of
the ZP3 gene (Moros-Nicolás et al., 2018a). The four-protein
composition could be considered as the ancestral state in
eutherian mammals, and ZP1 or ZP4 being lost in some lineages
during their evolution.

Until now the ZP composition in the Murinae subfamily
was only known in the rat (with four glycoproteins) and house
mouse (with three glycoproteins), suggesting that Zp4 was
lost after their divergence around 11.2 MYA (Aghová et al.,
2018). Using comprehensive taxonomic sampling within the
subfamily, especially within the genus Mus (with representative
taxa of the four subgenera), we were able to narrowed down
the approximate date of the loss of Zp4. First, all other
murine genera included in our study seem to have a functional
Zp4, suggesting a more recent loss meaning that it occurred
within the genus Mus, which diverged around 7.2 MYA (Pagès

et al., 2012). Second, we found that all Mus species from
the Coelomys, Nannomys and Pyromys subgenera have four
glycoproteins, while all species from the Mus subgenus have
only three, suggesting that Zp4 pseudogenized early in the Mus
subgenus lineage. Previous studies have reported that the four
subgenera of Mus diverged between 6 and 7 MYA (Chevret
et al., 2005; Lecompte et al., 2008; Pagès et al., 2012), initially
the subgenus Coelomys, then Nannomys, and finally Mus and
Pyromys (Veyrunes et al., 2006). Within the subgenus Mus, the
earliest offshoot is estimated to have appeared at around 5 MYA
(Pagès et al., 2012), indicating that Zp4 pseudogenization took
place 5–7 MYA.

Pseudogenization events are not rare in the ZP family. ZP1
has been identified as a pseudogene in several species (Goudet
et al., 2008; Tian et al., 2009; Stetson et al., 2012; Moros-
Nicolás et al., 2018c). The ZPAX gene was lost in mammals
before the divergence between marsupials and placentals (Tian
et al., 2009). These multiple and independent loss events may
be explained in part as the consequence of a duplication event,
since ZP1 and ZP4 are paralogue genes (Bausek et al., 2000).
After duplication, three evolution events may occurred to the
duplicate copies: (a) the ancestral function is partitioned and
shared by both copies (subfunctionalization); (b) one gene
acquires a new function and the other retains the original
one (neofunctionalization), or (c) one gene conserves the
original function and the other degenerates to a pseudogene
(Cañestro et al., 2013).

The duplication took place in vertebrates before the
mammalian divergence (Goudet et al., 2008), and after the
duplication event, ZP4 or ZP1 may have pseudogenized
in some mammalian lineages, while the remaining
ZP protein continued to perform the function of the
ancestral gene. In the house mouse, the pseudogenization
of Zp4 indicates that Zp1 retained the function of the
ancestral gene.
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FIGURE 4 | (A) Mus mattheyi Zp4 (AYN07267.1), (B) Mus pahari Zp4 (AYN07268.1), and (C) Mastomys coucha Zp4 (XP_031215126.1) amino acid sequences. Bold

sequences are the tryptic peptides obtained by MS/MS. The putative N-glycosylation sites are in red. The signal peptide and the furin cleavage site (Arg-Arg-Arg-Arg)

are shown in pink.
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TABLE 3 | Results of cross in vitro fertilization (with cumulus and without cumulus cells).

Percentage of fertilization with spermatozoa of

Oocytes of Mus musculus (n = 6) Mus pahari (n = 3) Mus mattheyi (n = 2) Mastomys coucha (n = 2)

Mus musculus (n = 26) 79.16 (n = 216) 6.1 (n = 98) 3.22 (n = 93) 67.14 (n = 70)

Mus pahari (n = 15) 67.5 (n = 40) 3.5 (n = 28) 0 (n = 7) –

Mus mattheyi (n = 12) 11.7 (n = 34) 0 (n = 2) 0 (n = 6) –

Mastomys coucha (n = 4) 0 (n = 44) – – 0.81 (n = 123)

Percentage of fertilization with spermatozoa of

Oocytes with cumulus cells of Mus musculus Mus pahari Mus mattheyi Mastomys coucha

Mus musculus 81.25 (n = 160) 8.70 (n = 46) 4.76 (n = 63) 67.14 (n = 70)

Mus pahari 56.52 (n = 23) 0 (n = 15) – –

Mus mattheyi 11.73 (n = 34) 0 (n = 2) 0 (n = 6) –

Mastomys ocucha 0 (n = 44) – – 0.81 (n = 123)

Oocytes without cumulus cells of

Mus musculus 73.21 (n = 56) 3.85 (n = 52) 0 (n = 30) –

Mus pahari 82.35 (n = 17) 7.69 (n = 13) 0 (n = 7) –

Mus mattheyi – – – –

First part of the table is a summary of the oocytes used with and without cumulus cells.

TABLE 4 | Results of maximum likelihood models of Zp4 of muroid rodents.

Model code Log-likelihood Parameters estimates Positively selected sites (BEB)

28 sequences, 711 sites

M1a (NearlyNeutral) −4431.388215 p0 = 0.66320, w0 = 0.18102,

w1 = 1

M2a (PositiveSelection) −4427.068269 p0 = 0.65668, p1 = 0.33691,
w0 = 0.18357, w1 = 1, w2 =

4.86401

141 R, 225 S

M7 (beta) −4435.034712 p = 0.56075, q = 0.72347

M8 (beta&ω >1) −4429.555890 p0 = 0.99203, p = 0.60009, q

= 0.78536, ws = 4.35054

21 P, 57S, 124M, 141 R, 225 S

13 sequences, 1,644 sites

M1a (NearlyNeutral)

−8045.827139 p0 = 0.55934, w0 = 0.12004,

w1 = 1

M2a (PositiveSelection) −8040.634099 p0 = 0.55158, p1 = 0.43982,
w0 = 0.12076, w1 = 1, w2 =

5.14829

141 R, 293 R, 419S, 439V, 444 L, 547 L

M7 (beta) −8048.563689 p = 0.29653, q = 0.31182

M8 (beta&ω1) −8042.092294 p0 = 0.99002, p = 0.31394, q

= 0.33456, ws = 4.73038

4 Q, 43 Q, 57S, 105K, 112M, 115M, 123N, 127 T,

141 R, 145A, 146 P, 147S, 156V, 169 R, 198 R,

204 R, 219 R, 239M, 274 P, 277 Q, 281 R, 293 R,

339G, 418S, 419S, 439V, 444 L, 467V, 468 T,

506A, 508M, 514 R, 515 T, 517V, 525 M, 547 L

The numbers in bold correspond to positively selected sites with P > 95%.

The evolution of male and female reproductive proteins
was probably promoted by positive Darwinian selection.
Moreover, comparative sequencing studies among taxonomic
groups have led to the discovery that reproductive proteins
evolve more rapidly than other genes expressed in other
tissues (Swanson et al., 2001; Torgerson et al., 2002). This
positive selection has been described in seminal plasma proteins
(Kingan et al., 2003; Dorus et al., 2004), oviductal proteins

(Moros-Nicolás et al., 2018b), and also in other proteins
related with fertilization, such as ZP3, CatSper1 or CD9
(Swanson et al., 2001, 2003) These proteins would have been
under a selective pressure that may be related to male-female
interaction, in this case, sperm-egg interaction. Our analysis
identified two sites in Zp4 that are under positive selection
(141R and 547L). These results strongly suggest that Zp4
gene has been subjected to positive selection during evolution.
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These amino acids appear to be important for the protein
function. Future studies using direct mutagenesis will be useful
to unravel the specific function of these amino acids in
ZP4 protein.

Functional Implication of the Presence of
ZP4 in the ZP Matrix
Several studies have analyzed the function of different ZP
proteins. Recent studies in human demonstrate that mutations in
ZP1 gene are related to infertility (Huang et al., 2014; Sun et al.,
2019; Yuan et al., 2019), these mutations could affect the shuttling
of glycoproteins to the secretory pathway, which would prevent
the formation of the ZP around the ova, but also the formation
and development of eggs (Huang et al., 2014; Sun et al., 2019;
Yuan et al., 2019). The house mouse has provided interesting
information on the functions of the different ZP proteins thanks
to the use of animals genetically modified as KO and transgenic
(Liu et al., 1996; Rankin et al., 1996, 1999, 2001; Dean, 2004). It
was demonstrated that Zp1 offers stability and structural integrity
to the matrix. KOmice for Zp1 have an abnormal ZP, being more
porous; however, these mice are fertile, although their litter sizes
are low (Rankin et al., 1999). On the other hand, KOmice for Zp2
or Zp3 present oocytes that are not surrounded by a ZP (Liu et al.,
1996; Rankin et al., 1996, 2001). In the case of rodents with four
ZP proteins, the roles played by Zp1 and Zp4 remain unresolved.

The study of ZP4 was not possible until now in animal
models because, while the KO technology was well-developed in
the house mouse (Mus musculus), which has a pseudogenized
Zp4, the technique was very difficult to perform in rat, hamster
and rabbit. However, development of CRISPR-cas9 technology
made it possible to develop the KO technique in species that
possess ZP4 (Fan et al., 2014; Bae et al., 2020). In fact, we have
recently reported the phenotype of the female rabbit without
the ZP4 gene (Lamas-Toranzo et al., 2019). The female rabbit is
subfertile and it was observed that this protein is crucial for the
embryo development but not for fertilization (Lamas-Toranzo
et al., 2019). Moreover, the ZP was significantly thinner, more
permeable, and exhibited a more disorganized and fenestrated
structure suggesting a structural role (Lamas-Toranzo et al.,
2019). The development of KO animals for ZP4 in other species
with four ZP proteins, like the rat or the mice presented in this
work could also be a useful tool to study the function of this gene.
Furthermore, transgenic mice showing a humanized ZP4 have
provided valuable information (Yauger et al., 2011). Indeed, these
transgenic mice are fertile; however, their ZP is not recognized by
human sperm, which means that ZP4 is not sufficient to support
human sperm binding to the ZP (Yauger et al., 2011).

A previous study has shown that heterologous fertilization
between different species of rodents is possible, although the
success is directly related to the phylogenetic proximity of the
species (Roldan et al., 1985): the heterologous fertilization rate
in vivo and in vitro is considerably lower than the homologous
fertilization rate (Roldan et al., 1985; Roldan and Yanagimachi,
1989; Dean and Nachman, 2009; Martín-Coello et al., 2009).
Furthermore, in those cases in which embryo culture was
carried out, cleavage arrest or embryo degeneration was observed

(Roldan et al., 1985). In our study, heterologous IVF was possible
when the spermatozoa from Mus musculus had to fertilize the
oocytes from Mus mattheyi and Mus pahari, demonstrating that
the presence of Zp4 is not involved in the species-specific binding
of sperm. This also means that a ZP formed of four glycoproteins
is neither a physical nor biological barrier for the spermatozoa
of species with a ZP formed of three glycoproteins, at least in in
vitro conditions, indicating that Zp4 does not produce any steric
hindrance that impedes the specific gamete interaction.

CONCLUSION

The present study provides new insights into the molecular
evolution of Zp4 in rodents showing that Zp4 pseudogenization
is restricted to the subgenusMus, which diverged around 6MYA.
The use of murine species with four ZP proteins may therefore
be suitable for studying the structure and functionality of ZP
proteins from most species, including humans. These rodents
must be considered a tool of great value due to the possibility of
applying transgenesis and KO techniques to study the function
of these proteins and because of their short reproduction cycle
compared to other species.

METHODS

Ethical Approvals
All animal procedures were performed following the Spanish
Animal Protection Regulation, RD 1201/2005 which conforms
to European Union Regulation 2003/65. All animal experiments
were approved by the institutional review board of the University
of Murcia according to the guide for Care and Use of Laboratory
Animals as adopted by the Society for the Study of Reproduction.

Animals
Adult females and males of four species of murine rodents were
used: the house mouse (Mus musculus), Matthey’s mouse [Mus
mattheyi (subgenus Nannomys)], Gairdner’s shrewmouse [Mus
pahari (subgenus Coelomys)], and the southern multimammate
mouse Gairdner’s shrewmouse (Mastomys coucha). Mus
musculus specimens were of the hybrid strain C57CBAF1,
purchased from Harlan Ibérica, (Barcelona, Spain), while Mus
mattheyi and Mus pahari were obtained from the “Institut
des Sciences de l’Evolution de Montpellier” (Montpellier,
France) and Mastomys coucha specimens were obtained from
Hobbyzoo (Madrid, Spain), whose species were verified by PCR
amplification of the cytochrome b. Animals were kept under
standard laboratory mouse conditions in an environmentally
controlled room with a 14 h light:10 h darkness photoperiod
under constant temperature and relative humidity conditions.
Animals were provided with food (Harlan Ibérica, Barcelona,
Spain) and water, both available ad libitum. Animals to be
used for the experiments were weaned when they were 4 weeks
old. Males were kept in individual cages and were used when
they were >12 weeks old; after weaning, females were housed
together. Mus musculus females were used when they were 6–8
weeks old, andMastomys coucha,Mus mattheyi, andMus pahari
females were used when they were 6–12 weeks old.
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Collection of Mouse Ovaries
Ovaries were obtained from three different species of mouse:
Mastomys coucha, Mus mattheyi, and Mus pahari. The animals
were sacrificed by CO2 overdose, and the ovaries were obtained
and frozen in liquid nitrogen and kept at −80◦C (for molecular
and proteomic analysis) or washed in PBS and used directly (to
obtain the ZPs).

Collection of Mouse Oocytes
Before oocytes were obtained from Mastomys coucha, Mus
mattheyi, Mus musculus, and Mus pahari, the animals were
subjected to a hormonal treatment to induce superovulation.
Females were injected intraperitoneally with 7.5 IU of equine
Chorionic Gonadotrophin (eCG) (Sigma-Aldrich, St. Louis,
USA), followed 48 h later by 5 IU of human Chorionic
Gonadotrophin (hCG) (Lepori Pharma, Spain). The animals
were sacrificed 14 h after hCG injection by cervical dislocation
and their oviducts were removed. Cumulus-oocyte-complexes
(COCs) were obtained from the ampulla of the uterine tube and
placed in PBS (for proteomic analysis) or HTF medium (for IVF
analysis), COCs were removed or not by gently pipetting into
0.5% hyaluronidase (Sigma-Aldrich, St. Louis, USA).

Zona Pellucida Isolation in Mastomys

coucha
To obtain the isolated ZPs, animals were subjected to ovarian
stimulation and the oocytes were obtained as explained above.
Cumulus cells (CCs) were removed by using 0.5% hyaluronidase
(Sigma-Aldrich, St. Louis, USA) in PBS, and the ZPs were
obtained after vigorous pipetting of each oocyte using a narrow-
bore micropipette in PBS, followed by four washes in PBS to
eliminate the oocyte debris. ZPs were solubilized for 30min at
65◦C (Accu BlockTM, Labnet, USA), and kept at−20◦C until use.

In vitro Fertilization
As mentioned above females of the four species were subjected
to a hormonal treatment to induce superovulation. In vitro
fertilization was performed as previously described by Hourcade
et al. (2010). Males were killed by cervical dislocation. The
epididymides and vasa deferentia were removed from males of
the four mouse species and placed in 1,000 µl of M2 medium,
and adipose tissue and blood vessels were removed. The clean
structures were placed in a 500 µl drop of Human Tubular
Fluid (HTF) medium (BSA supplemented) covered with mineral
oil (Sigma-Aldrich, St. Louis, USA), from which spermatozoa
were collected. Concentrations were determined with a Bürker
hemocytometer. Spermatozoa were incubated in HTF for 30min
at 37◦C with 5% CO2 in air for capacitation.

Fourteen hours after hCG injection, females were sacrificed
by cervical dislocation and their oviducts were removed. COCs
were obtained from the ampulla of the uterine tube and using
a wide-bore pipette tip, placed in 500 µl of HTF medium. Each
sample was inseminated with a final concentration of 1 × 106

spermatozoa/ml, and 30min after, each well was observed under
an inverted microscope to assess sperm-oocyte binding. Gametes
were co-incubated for 5 h at 37◦C under 5% CO2 in air, after
which, remaining CCs and attached sperm were removed by

washing in HTF medium with a fine pipette; oocytes were then
washed three times in potassium simplex optimized medium
(KSOMaa) and placed in culture drop for 24 h at 37◦C under 5%
CO2 in air. Nine hours after insemination, the extent of successful
fertilization was assessed in a group of presumptive zygotes by
pronucleus visualization under a microscope. Another group of
presumptive zygotes was confirmed 24 h after, by analyzing 2-cell
stage embryos.

Pronucleus Visualization
Nine hours after insemination, oocytes were incubated in
a 100 µl drop of 10 pg Hoechst-33342 dye (bisbenzimide
trihydrochloride, Sigma, Madrid, Spain), before being placed
on a coverslip for viewing by a fluorescent microscope (Nikon
Optiphot-2). The DNA + H-33342 complex was excited with
UV at 355 nm light and epifluorescence emission at 465, and
photographed. For this, a G 365 excitation filter, an FT 395
dichromatic beam splitter, and an LP 420 barrier filter were used.
Both epifluorescent and brightfield photographs were taken using
a Coolpix MDC Lens, Nikon, Japan.

Molecular Analysis
Samples and Genomic DNA Isolation
A total of 23 species of the subfamily Murinae were
included in this study (Table 1). DNA was extracted from
ethanol-preserved tissues obtained from the collection of
Preserved Mammalian Tissues of the “Institut des Sciences
de l’Evolution of Montpellier” and from mice of the
“Conservatoire Génétique de Souris Sauvages de Montpellier”
(Montpellier, France). Total DNA was extracted using a QIAamp
DNA Mini Kit (Qiagen, Hilden, Germany) following the
manufacturer’s recommendations.

Obtaining Ovarian RNA and cDNA Synthesis
Total RNA was isolated from ovaries of three species: Mus
mattheyi,Mus pahari, andMastomys coucha using RNAqueous R©

kit (Ambion, Austin Texas, USA) according to themanufacturer’s
instructions. The first-strand cDNA was synthesized with the
SuperScript First-Strand Synthesis System kit for RT-PCR
(Invitrogen-Life Technologies, Carlsbad, USA), according to the
manufacturer’s protocol.

Amplification and Sequencing of ZP Genes
PCR amplifications were made using genomic DNA or ovarian
cDNA as templates. Primers were designed from Mus musculus
Zp1 (NM_009580), Zp2 (NM_011775), and Zp3 (NM_011776)
sequences; in the case of Zp4, primers were designed from
conserved regions of Zp4 in Mus musculus (NR_027813)
and Rattus norvegicus (NM_172330) (Supplementary Table 1).
Overlapping fragments were analyzed to sequence the region
of genomic DNA encompassing the exons 1–9 of the Zp4
genes, which is 4,513 bp long for Rattus norvegicus. PCR
amplification for DNA amplification was carried out in 50 µl
reaction volume containing 5 µl of DNA or 2 µl of DNA,
0.5µM of each primer, 200µM of each dNTP, 2mM MgCl2,
and 1 IU of Taq DNA Polymerase (Fermentas, Waltham, USA)
or 2.5U of polymerase AmpliTaq Gold (Applied Biosystems,
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California, USA). PCR was carried out using a Mastercycler
personal thermocycler (Eppendorf, Hamburg, Germany) or a
T300 thermocycler (Biometra, Germany) following an initial
denaturation cycle of 3min at 95◦C, and then 30 cycles of 1min at
95◦C, followed by 1min at annealing temperature (depending on
the primers) and then 1min at 72◦C. The final extension time was
10min at 72◦C. PCR products were analyzed by electrophoresis
on 1.5% agarose gels. Four microliters of the PCR reaction
mixture were mixed with loading buffer (Fermentas, Waltham,
USA) and separated for 60min at 90V before visualizing
under UV light using ethidium bromide (Sigma-Aldrich, St.
Louis, USA).

Amplicons were carefully excised from the agarose gels
and purified with the QIAquick Gel Extraction Kit Protocol
(Qiagen) or DNA gel extraction kit (Millipore) or directly
purified with the DNA Clean and Concentrator TM-5 (Zymo)
according to the manufacturer’s instructions. Amplicons
were automatically sequenced using a 3,500 Genetic Analyzer
(Applied Biosystems, California, USA) or send to Genome
Express (Meylan, France). The new sequences were submitted
to GenBank under the accession numbers: MH822867,
MH822868, and MH822871 for Mus mattheyi, Mus pahari,
and Mastomys coucha, respectively, (mRNA) and to EMBL
under the accession numbers: LR990796-LR990832 for the
DNA sequences.

Bioinformatic Analysis
Sequences were analyzed to determine the degree of homology
with other known sequences using the “BLAST program” (Basic
Local Alignment Search Tool) (http://www.ncbi.nlm.nih.gov/
blast/). Multiple sequence alignment was carried out using
“Clustal Omega” (http://www.ebi.ac.uk/Tools/msa/clustalo/).

The amino acid sequences were analyzed using the software
packages “signalP” (www.cbs.dtu.dk/services/SignalP/), “smart
genome” (http://smart.embl-heidelberg.de/) to predict the
signal peptide and different domains and “NetOGlyc”
(www.cbs.dtu.dk/services/NetOGlyc) and “NetNglyc”
(www.cbs.dtu.dk/services/NetNGlyc) to predict potential
O-linked and N-linked glycosylation sites, respectively. The
theoretical protein molecular weight and mature protein
molecular weight were calculated with “PeptideMass” from
“ExPASy” (http://web.expasy.org/peptide_mass/).

Phylogenetic Analysis
To complete the dataset, ZP4 sequences from different muroid
rodents (Table 1) were retrieved from GenBank and Ensembl
gene predictions.

All these predictions were checked manually to detect
annotation errors especially close to splicing sites. Similarity
searches were performed using BLAST and BLAT against
assembled genomes in Ensembl followed by a manual
compilation of data to predict further genes or exons missing
from the Ensembl predictions. It was also checked that the
new sequences corresponded to a syntenic region of the
corresponding chromosome. Only the exonic portions were kept
for the phylogenetic analysis. Translated sequences were aligned

using Muscle in Seaview (Gouy et al., 2010). The pseudogene
sequences were added afterwards to the nucleotide alignment
and manually aligned. The best-fit model of evolution (SYM+G)
was determined using the Akaike information criterion (AIC;
Akaike 1973), as implemented in jModelTest v2.1.7 (Darriba
et al., 2012). Phylogenetic trees were reconstructed using
two probabilistic approaches: maximum likelihood (ML) and
Bayesian inferences (BI). The ML phylogeny was reconstructed
with PhyML (Guindon et al., 2010). The robustness of each node
was assessed with 1,000 bootstrap replicates. BI was performed
using MrBayes v3.2 (Ronquist et al., 2012). Four independent
runs of 10,000,000 generations sampled every 500th generation
were performed. A burn-in period was determined graphically
using Tracer1.7 (Rambaut et al., 2018). It was also checked that
the effective sample sizes (ESSs) were above 200 and that the
average SD of split frequencies remained <0.05 after the burn-in
threshold. We discarded 10% of the trees and visualized the
resulting tree with FigTree v1.4 (Rambaut, 2016). The robustness
of the nodes was estimated with Posterior Probabilities (PP).

Test for Evidence of Positive Selection
Selection analyses were made with the muroid datasets, modified
to remove the pseudogene sequences, leading to the first
alignment of 28 taxa with 711 bp (237 codons) and a second
alignment with only the complete Zp4 sequences including 13
taxa (1,644 bp). The analyses were performed with CODEML
from PAML4 (Yang, 2007). Data were analyzed under different
models: M1a (neutral model), M2a (selection), M7 (beta
distribution), and M8 (beta distribution and selection). The
likelihood ratio test (LRT) of positive selection was performed
on two pairs of models, M1a with M2a, and M7 with M8 (Yang,
2007).

Proteomic Analysis
The expression of ZP proteins was studied using proteomic
analysis in Mastomys coucha, Mus mattheyi, and Mus pahari
ZP. Ovaries were trimmed using small scissors and dissected
to remove fat and connective tissue. The solubilized ZP was
obtained according to the protocol previously described by our
group (Izquierdo-Rico et al., 2009; Jiménez-Movilla et al., 2009).
Solubilized ZP was also obtained from oocytes, for which oocyte
ZP was solubilized at 65◦C in PBS buffer for 30min. The
analysis was carried out on an HPLC-MS system consisting of
an Agilent 1100 Series HPLC (Agilent Technologies, Santa Clara,
CA) equipped with a µ-well-plate autosampler and a capillary
pump, and connected to an Agilent Ion-Trap XCT Plus mass
spectrometer (Agilent Technologies, Santa Clara, CA) equipped
with an electrospray (ESI) interface.
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