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The use of model systems that are capable of robust, spontaneous retina regeneration

has allowed for the identification of genetic pathways and components that are required

for retina regeneration. Complemented by mouse models in which retina regeneration

can be induced after forced expression of key factors, altered chromatin accessibility,

or inhibition of kinase/signaling cascades, a clearer picture of the key regulatory events

that control retina regeneration is emerging. In all cases, Müller glia (MG) serve as an

adult retinal stem cell that must be reprogrammed to allow for regeneration, with the

end goal being to understand why regenerative pathways are blocked in mammals, but

spontaneous in other vertebrates such as zebrafish. miRNAs have emerged as key gene

regulatory molecules that control both development and regeneration in vertebrates.

Here, we focus on a small subset of miRNAs that control MG reprogramming during

retina regeneration and have the potential to serve as therapeutic targets for treatment

of visual disorders and damage.
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INTRODUCTION

In mammals and humans, the extent of spontaneous repair after retina injury or disease is
either non-existent or extremely limited (Karl and Reh, 2010). Rather than regenerate, damaged
mammalian retinas commonly undergo reactive gliosis and scar formation (Bringmann et al.,
2006). This lack of a complete regenerative response to damage directly limits the treatment options
for retinal based diseases such as age-related macular degeneration or Stargardt’s disease (Link
and Collery, 2015; Zarbin, 2016). Numerous strategies are currently being tested to address this
limitation, including gene therapy approaches and transplantation of stem cell-derived progenitor
cells (MacLaren et al., 2006; Pearson et al., 2012; Cehajic-Kapetanovic et al., 2015; Roska and Sahel,
2018; Stern et al., 2018). An attractive alternative strategy for treatment is to induce endogenous
MG-derived regeneration of the retina as is observed in fish and amphibians (Hamon et al., 2016;
Lahne et al., 2020). Zebrafish have the ability to regenerate a large array of tissues and organs
(Gemberling et al., 2013). One goal for these studies is to determine the factors and pathways that
allow for persistent and spontaneous regeneration. Focusing on the retina, knowledge gained from
zebrafish studies (Wan and Goldman, 2016; Yao et al., 2018; Hoang et al., 2020; VandenBosch et al.,
2020; Zhou et al., 2020) can be applied to identify common mechanisms that induce mammalian
retina regeneration. Here, we will focus on the explicit role of miRNAs duringMG reprogramming.
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RETINA REGENERATION IN ZEBRAFISH

The retina forms from the central nervous system (CNS) and
develops into a three-layered structure consisting of seven main
types of cells and numerous other cell types identified by single
cell RNAseq (Macosko et al., 2015). The structure, function, cell
types, and genes expressed in the retina are largely conserved
among vertebrates, supporting the notion that information
gained from models capable of spontaneous regeneration might
apply to mammals whose regenerative capacity isn’t clear
(Hitchcock and Raymond, 2004; Stenkamp, 2007; Hamon et al.,
2016).

The three main layers that constitute the retina include
the outer nuclear layer (ONL), inner nuclear layer (INL), and
ganglion cell layer (GCL). The INL and ONL are separated
by a thin synaptic layer called the outer plexiform layer
(OPL), and the INL and GCL are separated by a thick
synaptic layer called the inner plexiform layer (IPL). The
ONL contains rod and cone photoreceptors. The INL contains
three types of interneurons: bipolar cells (BCs), horizontal
cells (HCs), and amacrine cells (ACs). Ganglion cells (GCs)
populate the GCL, collect information from BCs, and send
signals to the brain for higher order visual processing. In
addition to these neuronal cell types, Müller glia (MG)
constitute the main glial cell type spanning all three layers of
the retina.

MÜLLER GLIA-DERIVED REGENERATION

The unique behavior and placement of MG following damage
led to hypotheses that they play an integral role in retina
regeneration. Multiple lines of evidence, largely from zebrafish,
strongly support MG as the source of retina progenitors after
damage. First, new retinal progenitor cells (RPCs) formed in the
INL migrate along MG processes to the ONL (Raymond and
Rivlin, 1987; Vihtelic and Hyde, 2000; Wu et al., 2001; Raymond
et al., 2006). Second, MG become mitotic after damage (Braisted
et al., 1994; Vihtelic and Hyde, 2000; Wu et al., 2001; Faillace
et al., 2002; Yurco and Cameron, 2005; Raymond et al., 2006).
Third, gene expression profiles of MG and RPCs are very similar
(Hoang et al., 2020). Most directly, the Raymond lab showed
that zebrafish MG produce rod precursors during development
and also produce RPCs that can differentiate into any retina cell
type following damage (Bernardos et al., 2007). The mechanism
by which MG produce RPCs is by dedifferentiation of the MG,
owing to the fact that shortly after damage, zebrafish MG begin
to producemarkers of neural progenitors such as Pax6, α-tubulin,
and BLBP (Fausett and Goldman, 2006; Raymond et al., 2006;
Thummel et al., 2010).

Following damage in zebrafish, signaling cascades induce MG
to dedifferentiate to a stem cell-like state and reenter the cell
cycle, followed by asymmetric division for self-renewal and for
the generation of proliferating RPCs (Nagashima et al., 2013).
These cells cluster along MG processes and then migrate to
sites of damage where they exit the cell cycle and differentiate
into new cells that can replace any damaged cell type (Figure 1;
Fausett and Goldman, 2006; Bernardos et al., 2007; Thummel

et al., 2008b, 2010; Montgomery et al., 2010; Ramachandran
et al., 2010; Qin et al., 2011; Powell et al., 2012; Taylor et al.,
2012). Though the current understanding of retina regeneration
is ongoing, a number of factors have been identified that
transition the retina through the various stages of MG-derived
retina regeneration (Wan and Goldman, 2016; Lahne et al.,
2020; Figure 2). Here, we will focus on the identification
and role of miRNAs during MG reprogramming and
retina regeneration.

miRNAS

miRNAs are highly conserved ∼22 nucleotide (nt) RNAs that
post-transcriptionally regulate gene expression (Krol et al.,
2010; Bartel, 2018; Gebert and MacRae, 2019). Primary miRNA
transcripts are initially processed in the nucleus into ∼70 nt
precursor structures by amulti-protein complex referred to as the
Microprocessor, the main component of which is Drosha (Kim,
2005). After export from the nucleus, cytoplasmic processing is
accomplished by anothermulti-protein complex that includes the
enzyme Dicer, which yields ∼22 nt double stranded RNAs. One
of the strands is subsequently assembled into an RNA Induced
Silencing Complex (RISC) (Schwarz et al., 2003; Filipowicz,
2005) containing one or more members of the Argonaute
protein family (Peters and Meister, 2007). miRNA-mediated
gene silencing occurs by pairing between miRNAs and their

target mRNAs, usually in the 3
′

UTR. Once paired, miRNAs
inhibit translation and induce deadenylation leading to mRNA
degradation (Giraldez et al., 2006; Guo et al., 2010).

miRNAS AND RETINA REGENERATION

miRNAs were first discovered in C. elegans where they control
development (Lee et al., 1993; Wightman et al., 1993), but they
have now been shown to play important roles in a number of
biological processes including metabolism, cancer, metastasis,
and regeneration (Alvarez-Garcia and Miska, 2005). miRNAs
have been implicated in regeneration in a number of biological
models ranging from planaria to mice (Yin and Poss, 2008;
Williams et al., 2009; Thatcher and Patton, 2010) and in zebrafish
have been shown to regulate regeneration of the heart, fin,
muscle, liver, lens, and inner ear hair cells (Tsonis et al., 2007;
Liu et al., 2008, 2012; Thatcher et al., 2008; Yin et al., 2008;
Song et al., 2010). Knockdown of Dicer in the adult zebrafish
retina prior to constant intense light damage reduced the ability
of MG to produce proliferating RPCs in response to damage
(Rajaram et al., 2014a). This indicated a general requirement
for miRNAs during retina regeneration. After damage, most
miRNA expression levels remain unchanged or undergo only
small changes during regeneration. However, specific subsets
of zebrafish miRNAs show both up- and down-regulation
throughout the regenerative process (Figure 3; Rajaram et al.,
2014a). Similarly, a small subset of miRNAs have been implicated
in controlling the reprogramming of mammalian Müller glia
(Wohl and Reh, 2016b; Wohl et al., 2019).
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FIGURE 1 | Retina Regeneration in Zebrafish. In response to retinal damage or cell loss, zebrafish Müller Glia (MG) are activated and undergo dedifferentiation.

Asymmetric division allows for self renewal and the generation of proliferating retinal progenitor cells (RPCs) which cluster along MG processes. As regeneration

proceeds, the RPCs migrate to the site of damage before differentiating into any lost or damaged cell types.

FIGURE 2 | Pathways and factors involved in retina regeneration. Following damage in the zebrafish retina, multiple pathways are activated controlling

dedifferentiation of MG, re-entry into the cell cycle, asymmetric cell division, generation of proliferating RPCs, and eventual differentiation into replacement cell types.

Green arrows represent factors that are active at the given step, whereas red arrows represent factors that are repressed or inactive at that time.
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FIGURE 3 | miRNAs and Retina Regeneration. The adult zebrafish retina expresses ∼200 miRNAs but only a small subset of these miRNAs are differentially

expressed during regeneration. RNAseq and other analyses after damage or during distinct stages of regeneration have identified miRNAs and select target mRNAs,

as indicated. Green arrows represent miRNAs that are expressed or active at that given step, and red arrows represent miRNAs that are not expressed or inactive.

let-7/LIN-28

One of the first demonstrations of a role for miRNA involvement
in retina regeneration was by the Goldman lab focusing on
let-7 (Ramachandran et al., 2010). Using a puncture damage
model in zebrafish, they used a candidate gene approach to
identify pluripotency factors whose expression changes during
retina regeneration. One of those factors was Lin-28, an
RNA-binding protein that was first discovered to regulate
development in C. elegans as part of a double negative feedback
loop with let-7 (Moss et al., 1997; Reinhart et al., 2000).
After retina damage, Lin-28 is induced downstream of the
transcription factor Ascl1 and knockdown of Lin-28 inhibits
retina regeneration (Ramachandran et al., 2010; Zhao et al.,
2017). Lin-28 activation leads to the repression of let-7 expression
which in turn derepresses the expression of multiple regeneration
and pluripotency factors including Ascl1a (Ramachandran
et al., 2010). Let-7 has 12 family members; Lin-28 inhibits
the production of most let-7 family members by recruiting a
uridylyl transferase to pre-let-7 transcripts leading to uridylation,
inhibition of processing, and subsequent decay (Hagan et al.,
2009; Heo et al., 2009). For MG, it appears that expression of let-
7 maintains the differentiated state, but that induction of Lin-28
after injury allows dedifferentiation by reducing let-7 levels. This
is consistent with a role for regulation of Lin-28 by let-7 during
development as well (La Torre et al., 2013; Fairchild et al., 2019).

miRNA-203/PAX6B

In a screen to identify differentially expressed miRNAs during
zebrafish MG-derived retina regeneration,miR-203 was found to
be downregulated and that artificially maintaining its expression

blocked retina regeneration (Rajaram et al., 2014b). Previously,
miR-203 downregulation had been shown to be required for
caudal fin regeneration and it is similarly downregulated during
mouse skin regeneration (Lena et al., 2008; Thatcher et al.,
2008; Yi et al., 2008). These data supported a role for miR-203
in promoting differentiation and repressing stemness. Elevated
levels of miR-203 inhibit proliferation of RPCs and are essential
for the formation of clusters of RPCs that are commonly observed
along MG processes (Figure 1; Rajaram et al., 2014b). However,
miR-203 does not play a role in dedifferentiation of MG during
earlier stages of regeneration, indicating a temporal expression
pattern throughout the regenerative processes.

In a search for potential mRNA targets for miR-203,
bioinformatic and reporter analyses identified the Paired-box
gene 6b (Pax6b) (Rajaram et al., 2014b). Pax6 expression is
essential for eye development across species (Shaham et al.,
2012; Baker et al., 2018). There are two Pax6 paralogs in
zebrafish (Pax6a and Pax6b) with distinct roles during retina
regeneration (Thummel et al., 2010). Misregulation or loss of
Pax6 expression can lead to multiple mammalian visual system
defects, most commonly aniridia or nystagmus (Lima Cunha
et al., 2019). Consistent with a role for miR-203 controlling
progenitor proliferation and cluster formation, the Hyde lab had
previously shown that pax6b in zebrafish is expressed in NPCs
and is required for the formation of clusters (Thummel et al.,
2008a). miR-203 must be repressed during regeneration to allow
for pax6b expression and the formation of RPC clusters on MG.

miR-9/miR-124/PTB/nPTB

The Fu laboratory discovered that repression of the hnRNP
protein Polypyrimidine tract-binding protein 1 (PTB1) can
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convert fibroblasts into a neuronal cell type fate (Xue et al.,
2013). PTB1 is a ubiquitously expressed regulator of alternative
splicing that itself undergoes alternative splicing to autoregulate
its levels (Wollerton et al., 2004). A neuronal paralog of PTB
(PTB2 or nPTB) controls multiple neuronal alternative splicing
events and its levels are regulated by an alternative splicing
event controlled by PTB1 (Boutz et al., 2007; Makeyev et al.,
2007). PTB1 is expressed in neuronal precursor cells and glia;
nPTB is expressed during neuronal induction and maturation,
with the expression of both paralogs decreasing during neuronal
differentiation (Boutz et al., 2007; Hu et al., 2018). Two regulatory
loops control PTB and nPTB expression through the action of
miR-9 and miR-124, respectively, along with the transcription
factors REST and BRN2 (Makeyev et al., 2007; Hu et al., 2018).
Intriguingly, it was recently shown that targeted destruction
of mRNAs encoding PTB in the mouse retina can cause
MG to dedifferentiate (Zhou et al., 2020). Using an NMDA
damage model in mice, targeting of mRNAs encoding PTB by
CRISPR/CasRx led to MG dedifferentiation and replacement
of damaged ganglion cells. Also, targeted depletion of mRNAs
encoding PTB by antisense oligonucleotides led to the conversion
of astrocytes to dopaminergic neurons (Qian et al., 2020).
Together, the data support the surprising finding that targeting a
single, widely expressed regulator of alternative splicing can drive
the conversion of glia to neurons.

Even though targeting of PTB provides an attractive single
gene approach for retina regeneration, an alternative would be
to deliver miR-9 and miR-124 to not only regulate PTB and
nPTB expression, but also to upregulate the transcription factors
REST and BRN2 (Hu et al., 2018). It will be crucial to determine
whether the expression of PTB and nPTB are controlled in
the retina by the miR-9 and miR-124 regulatory loops. If so,
regulation of REST by these regulatory loops could control
expression of NeuroDwhich plays a role in neuronal cell fate, and
Ascl1 which is required for retina regeneration (Ramachandran
et al., 2010; Cherry et al., 2011). Similarly, regulation of BRN2
could in turn control expression of neuronal maturation genes
including NEUN and NLGN2. Gene profiling experiments did
not observe significant changes in PTB between control and
neurogenic MG (Hoang et al., 2020) so it may be that increased
expression or delivery of miR-9 and miR-124 mimics might
drive broader overall gene expression changes to induce retina
regeneration rather than just targeting PTB (Wohl and Reh,
2016b).

miR-9/miR-124/ASCL1

The Reh lab used dissociated mouse MG cultures to identify
factors and miRNAs that can stimulate reprogramming of retinal
cell fate (Pollak et al., 2013; Wohl and Reh, 2016b). Induced
overexpression of the transcription factor Asc1 can reprogram
mouse MG into neurogenic RPCs and the effects of Ascl1
overexpression can be augmented by parallel overexpression of
both miR-124 and miR-9 (Wohl and Reh, 2016b). This agrees
nicely with the regulatory loops controlling neuronal induction
and maturation controlled by miR-124 and miR-9 but to date,

whether these loops control gene expression in the retina is not
clear (Hu et al., 2018).

miR-25/let-7/miR-124/miR-9

In a follow up study to the effects of miR-9 and miR-124
on reprogramming of mammalian MG, the Reh lab profiled
miRNA expression patterns in sorted mouse MG and RPCs,
and also utilized a conditional mouse model with a MG-specific
deletion of Dicer (Wohl and Reh, 2016a; Wohl et al., 2017,
2019). After Dicer knockdown, the most significantly altered
gene was Brevican (BCAN) which is targeted by miR-9. More
broadly, loss of Dicer led to a dramatic loss of retinal architecture
indicating an important role for miRNAs in the maintenance
of homeostasis, and also supporting the overall importance of
miRNAs in regeneration, a process which is blocked by the loss
of Dicer (Rajaram et al., 2014a). When comparing sorted MG
and RPCs, Ascl1 expression was found to be enhanced by either
overexpression of miR-25 and miR-124 or by downregulation of
let-7 (Wohl et al., 2019). Targeting of Lin-28 by let-7 can explain
indirect regulation of Ascl1.

miR-25 is expressed as part of the highly conserved miR-
106b/25 cluster with roles in DNA damage response, cell
cycle regulation, cell proliferation, migration, and differentiation
(Sarkozy et al., 2018). Additional potential target mRNAs for
miR-25 include REST, Tpm1, Itgb1, Ctdsp1, Rcor1, and Ccnd2
(Sarkozy et al., 2018; Wohl et al., 2019). Besides targeting
the protein components of the REST complex, another key
predicted target of miR-25 (and let-7) is the Wnt inhibitor
Dickkopf 3 (Dkk3) (Huo et al., 2016; Wohl et al., 2019). This is
consistent with the requirement for Wnt activation during retina
regeneration in zebrafish and possibly mice (Osakada et al., 2007;
Ramachandran et al., 2011; Kara et al., 2019).

miR-124 is one of the most abundant miRNAs in the adult
brain and is thought to be a master regulator of neuronal
differentiation, including its role in regulating PTB expression
(Yeom et al., 2018) and targeting of REST (Wohl et al.,
2019). miR-124 is known to reduce the expression of a small
phosphatase specific for phosphoserines in the C-terminus
of RNA Polymerase II called SCP1, which is a repressor of
neuron-specific transcription in nonneuronal cells and is also
a component of REST (Cao et al., 2007; Makeyev et al., 2007;
Visvanathan et al., 2007).

miR-216a/DOT1L

miR-216a is another well-known miRNA that plays a role
in gliogenesis during retinal development by indirectly
regulating Notch signaling (Olena et al., 2015). For MG-
derived regeneration,miR-216a can be thought of as a gatekeeper
miRNA in reprogramming events, as its expression holds MG in
a quiescent state until the retina is damaged (Kara et al., 2019).
One mechanism for how miR-216a can serve as a gatekeeper
controlling the early steps of regeneration is by targeting
mRNAs encoding the Disruptor of telomeric silencing 1-like
(DOT1l) gene (Kara et al., 2019). Dot1l plays a role in many
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chromatin-associated functions such as gene-transcription,
heterochromatin formation, and DNA repair, as well as the
response to DNA damage and chemotherapy responsiveness
(McLean et al., 2014). After retinal damage in zebrafish,miR-216a
is downregulated allowing increased expression of Dot1l which
leads to activation of Wnt target genes, presumably by altering
chromatin accessibility surrounding these genes (Kara et al.,
2019). The idea that dedifferentiation of MG involves changes in
chromatin accessibility is expected and has been experimentally
supported (Jorstad et al., 2017; Mitra et al., 2018; VandenBosch
et al., 2020). When combined with Ascl1 overexpression in an
NMDA damage model in adult mice, the addition of the general
histone deactylase inhibitor trichostatin A (TSA) stimulated
neuronal regeneration which was otherwise only observed in
developing mice <12 days old (Jorstad et al., 2017). Also, after
puncture damage in zebrafish, inhibition of histone deacetylases
by valproic acid suppressed the formation of MG-derived
NPCs (Mitra et al., 2018). Further work is needed to identify
specific genes whose chromatin accessibility changes during MG
dedifferentiation and eventual re-differentiation, but miRNA
control is an attractive regulatory mechanism that might allow
for fine-tuned control of signaling cascades that are induced after
cellular damage.

miR-7/miR-27/miR-31

In a screen to identify differentially expressed miRNAs during
zebrafish retina regeneration, miR-7, miR-27, and miR-31
were all found to be upregulated at 72 h post light damage
and targeted knockdown of these miRNAs led to decreased
numbers of proliferating cells (Rajaram et al., 2014a). The
timing of overexpression and the effects of loss of function
of these miRNAs during regeneration suggest that they
function during continued RPC proliferation and migration,
similar to the proposed role for Pax6a (Thummel et al.,
2010; Rajaram et al., 2014b). Exact targets for these miRNAs
remain to be identified but related experiments summarized
below might provide hints to possible mRNA targets for
these miRNAs.

miR-7 regulates multiple signaling pathways including
epidermal growth factor receptor (EGFR), insulin-like growth
factor (IGF), Hedgehog, Notch, and the mammalian target of
rapamycin (mTOR) pathways, as well as being a key regulator of
pax6a in mice (Needhamsen et al., 2014; Baba et al., 2015; Zhao
et al., 2015). In the forebrain, miR-7 regulates pax6 to spatially
control the origin of dopaminergic neurons (de Chevigny et al.,
2012).

miR-27 promotes blood vessel development, particularly in
the eye (Liu et al., 2020). miR-27 also plays an important role in
mitochondrial dynamics as it inhibits degradation of damaged
mitochondria by regulating PINK1 and also by inhibiting
mitochondrial fission factor (MFF) expression, which increases
mitochondrial membrane potential (Tak et al., 2014; Kim et al.,
2016). Loss of miR-27c in the retina decreases proliferation
of MG-derived RPCs during regeneration, a similar phenotype
to what occurs with loss of miR-27a and miR-27b in muscle

progenitor cell proliferation (Crist et al., 2009; Lozano-Velasco
et al., 2011; Rajaram et al., 2014a).

miR-31 is a well-studied miRNA with a major target being
transcripts encoding the myogenic determining factor Myf5
(Crist et al., 2012). miR-31 levels affect both satellite cell
differentiation ex vivo and muscle regeneration in vivo, making
miR-31 a miRNA of great interest in regard to stem cell
research. miR-31 is a regulator of many signaling pathways
relevant to developmental biology and cancer including the
Prlr/Stat5, TGFβ, and Wnt/β-catenin pathways (Lv et al., 2017).
Additionally, miR-31 has been shown to coordinate signals
from BMP, TGFβ, and Wnt pathways in intestinal stem cells
to regulate their proliferation, regeneration, and homeostasis,
further reinforcing its impact in progenitor proliferation during
regeneration (Tian et al., 2017).

DISCUSSION

miRNAs regulate gene expression by binding to 3
′

UTR elements
leading to deadenylation and subsequent degradation of mRNA
targets (Giraldez et al., 2006; Guo et al., 2010). Target recognition
typically involves imperfect base pairing, often within the seed
region (nucleotides 2-8) that is commonly used to predict
miRNA targets (Li et al., 2008; Broughton et al., 2016; Bartel,
2018). Because the base pairing interaction is imperfect, miRNA
target prediction algorithms can identify candidate mRNAs, but
experimental validation is necessary to confirm direct silencing.
Thus, for all of the miRNAs discussed above, there are likely
additional mRNA targets that could affect the same processes,
ranging from regeneration to signaling cascades. Further work
is required to identify the complete set of miRNAs that regulate
retina regeneration and the target genes they control.

Because miRNAs are largely conserved among vertebrates, the
expection is that discoveries across species will illustrate general
principles and uncover common mechanisms. Fortunately, it
does not appear that there are hundreds of miRNAs that
regulate MG reprogramming and, for the subset that has
been identified, they comprise an attractive class of regulatory
molecules, especially because retinal architecture and MG gene
expression patterns are evolutionarily conserved suggesting that
elucidating overall gene regulation will help to understand the
inability of mammalian MG to initiate regeneration. It remains
possible that species-specific networks or species-specific factors
might control the passage of MG from quiescence to reactivity
and further to the generation of proliferating RPCs, but the
weight of evidence thus far seems to suggest that activating
MG-derived regeneration cascades in mammals will be possible
by derepression of existing pathways as opposed to delivery of
species-specific genes (Ahmad et al., 2011; Lust and Wittbrodt,
2018; Hoang et al., 2020).

THERAPEUTIC miRNA

The accessibility of the eye and the small size of miRNAs
raises the possibility of delivering miRNA mimics or antisense
RNAs (antagomirs) that block miRNA function for therapeutic
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purposes. The challenges for such experiments are at least three-
fold: (1) how to target injectedmiRNAs toMG; (2) whether single
injections will be sufficient to induce a regenerative response;
and (3), avoidance of off-target effects if high concentrations are
required. While direct injections of miRNAs or antagomirs are
possible, the discovery that extracellular vesicles (EVs) can be
used to deliver therapeutic cargo opens an exciting possibility
for cell-specific delivery (Mead and Tomarev, 2020). Recently, it
has become increasingly clear that miRNAs can engage in cell-
cell signaling via EVs (Maas et al., 2017; O’Brien et al., 2020).
Transfer of miRNAs or other cargo by EVs might play a role
in patterning the retina during development and may also be
a key part of degeneration and regeneration (Bian et al., 2020).
Indeed, retina regeneration can be induced by delivery of EVs
(Didiano et al., 2020). Although EVs were shown to induce
the early stages of retina regeneration, the effects were quite

modest. However, as a therapeutic tool, it may be possible to
load EVs with specific miRNAs or other small molecules for
delivery to MG after intravitreal or subretinal injection. The
miRNAs described in this review may be candidate miRNAs for
the development of designer EVs that could be targeted to MG to
induce retina regeneration.
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