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The aggregation of α-synuclein is a hallmark of Parkinson’s disease (PD) and a variety of

related neurological disorders. A number of mutations in this protein, including A30P

and A53T, are associated with familial forms of the disease. Patients carrying the

A30P mutation typically exhibit a similar age of onset and symptoms as sporadic PD,

while those carrying the A53T mutation generally have an earlier age of onset and an

accelerated progression. We report two C. elegans models of PD (PDA30P and PDA53T),

which express these mutational variants in the muscle cells, and probed their behavior

relative to animals expressing the wild-type protein (PDWT). PDA30P worms showed a

reduced speed of movement and an increased paralysis rate, control worms, but no

change in the frequency of body bends. By contrast, in PDA53T worms both speed and

frequency of body bends were significantly decreased, and paralysis rate was increased.

α-Synuclein was also observed to be less well localized into aggregates in PDA30P worms

compared to PDA53T and PDWT worms, and amyloid-like features were evident later in the

life of the animals, despite comparable levels of expression of α-synuclein. Furthermore,

squalamine, a natural product currently in clinical trials for treating symptomatic aspects

of PD, was found to reduce significantly the aggregation of α-synuclein and its associated

toxicity in PDA53T and PDWT worms, but had less marked effects in PDA30P. In addition,

using an antibody that targets the N-terminal region of α-synuclein, we observed a

suppression of toxicity in PDA30P, PDA53T and PDWT worms. These results illustrate the

use of these two C. elegans models in fundamental and applied PD research.

Keywords: C. elegans, Parkinson’s disease, alpha-synuclein, drug discovery, protein aggregation, protein
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INTRODUCTION

α-Synuclein (α-syn) is an intrinsically disordered protein
expressed at high levels in the human brain, which in Parkinson’s

disease (PD) and related disorders aggregates to form Lewy
bodies (Gómez Tortosa et al., 1998; Spillantini et al., 1998;
Dawson and Dawson, 2003; Chiti and Dobson, 2006, 2017;
Knowles et al., 2014; Dettmer et al., 2016). Because the aberrant

assembly of α-syn is a common feature in the development of
these diseases (Chiti and Dobson, 2006), intense efforts have been
devoted toward understanding and inhibiting this phenomenon
(Lee and Trojanowski, 2006; Tóth et al., 2014). Growing evidence

shows that the formation of α-syn aggregates may be induced
by aberrant protein-protein or protein-membrane interactions
(Auluck et al., 2010; Galvagnion et al., 2015; Dettmer et al.,
2016), by malfunctions of molecular chaperones (Witt, 2013; Cox
et al., 2014), and by the effects of post-translational modifications
(Fujiwara et al., 2002; Hasegawa et al., 2002; Saito et al., 2003;
Bendor et al., 2013) and familial mutations in the α-syn gene (Li
et al., 2001; Zarranz et al., 2004; Emmer et al., 2011; Sacino et al.,
2013). The pathological phenotype of non-heritable idiopathic
PD has been shown to be close to that associated with familial
PD. However, familial forms of PD, which account for a 10–15%
of all PD cases, can have a different age of onset, severity of the
disease, and resistance to treatments (Kasten and Klein, 2013).

Among the disease-associated mutations (Li et al., 2001;
Zarranz et al., 2004; Emmer et al., 2011; Sacino et al., 2013),
the amino acid substitutions A30P and A53T (Li et al., 2001)
have been shown to be linked with familial PD (Thomas and
Beal, 2007). It has been observed that patients carrying the A30P
mutation typically exhibit a similar age of onset and symptoms
as sporadic PD, while those carrying the A53T mutation have an
earlier age of onset and an accelerated progression of the disease
(Polymeropoulos et al., 1997; Krüger et al., 2001; Schiesling
et al., 2008). Biophysical studies have shown that these mutations
significantly affect the in vitro mechanism of aggregation of α-
syn (Flagmeier et al., 2016), and in particular, A53T α-syn was
shown to aggregate more rapidly than the A30P or wild-type α-
syn (Narhi et al., 1999; Li et al., 2001, 2002). Less agreement,
however, exists as to whether the A30P variant aggregates more
rapidly (Narhi et al., 1999; Li et al., 2001), at a similar rate
(Lemkau et al., 2012) or more slowly (Conway et al., 2000),
than the wild-type protein. Recently, we utilized a three-pronged
strategy to characterize the influence of these mutations on
the mechanism of the aggregation of α-syn in vitro (Flagmeier
et al., 2016) and found that the rates of fibril amplification,
but not of lipid-induced nucleation, were slightly enhanced in
the case of the A30P variant, and were markedly increased
in the case of the A53T mutant compared with the wild-type
protein (Flagmeier et al., 2016). The importance of studying
these mutational variants in animal models has been investigated
using a variety of different animal models such as mice, fish
or flies (Dehay et al., 2015; Jagmag et al., 2016; Visanji et al.,
2016). In several transgenic mice lines, overexpressing human
wild-type, A53T, or A30P α-synuclein showed high correlation
with transgene expression, in combination with toxic gain
of function mechanism for α-synuclein pathogenesis (Visanji

et al., 2016). Overexpression of these genes can indeed lead to
neurodegeneration, loss of striatal dopamine, and locomotors
dysfunction (Dehay et al., 2015). Nevertheless, invertebrates such
as Drosophila have also proven powerful very tools to investigate
the molecular mechanisms of toxicity associated with α-syn
aggregation (Mizuno et al., 2010) due to their 75% homology with
human disease genes, rapid generation cycle (10–14 days), short
life span and cost-effectiveness to maintain (Mizuno et al., 2010).
α-Syn expression in Drosophila can cause dopaminergic neuron
loss, Lewy body-like inclusion body formation and locomotor
dysfunction (Feany and Bender, 2000) making this invertebrate
an attractive model to study PD.

In order to extend these analyses further to another animal
model of α-syn aggregation, we have used the nematode worm
Caenorhabditis elegans (C. elegans), which is characterized by
a simple anatomy, short lifespan, and well-established genetics.
For these reasons, this system has become a powerful tool in
biomedical research, in particular for genetic (Dillin et al., 2002;
Jorgensen and Mango, 2002; Morley et al., 2002; Lee et al.,
2003; Nollen et al., 2004; Hamilton et al., 2005; Kim and Sun,
2007; Sarin et al., 2008; Van Ham et al., 2008, 2010; Van der
Goot et al., 2012) and drug (Wu et al., 2006; Alavez et al.,
2012; Habchi et al., 2016; Perni et al., 2017a, 2018c; Limbocker
et al., 2019). In particular, worms expressing the A30P and
A53T variants in dopaminergic neurons have been reported in
a previous study (Kuwahara et al., 2006) exhibiting accumulation
of α-syn in the cell bodies and neurites of dopaminergic neurons,
failure in modulation of locomotory rate in response to food,
and reduction in neuronal dopamine content. These cell-specific
dysfunctions caused by accumulation of α-syn appear relevant to
the genetic and compound screenings aiming at the elucidation
of pathological cascade and therapeutic strategies for PD. Further
models were developed to evaluate the effect of the α-syn
overexpression in other cell tissues, such as the muscle cells
(Van Ham et al., 2008), and have been widely used for genetic
screenings (Van der Goot et al., 2012).

Building on this evidence, we aimed to create a worm
transgenic model expressing A30P and A53T variants that could
be applied also in high-throughput drug screening studies.
To achieve this goal, we chose to overexpress the A30P and
A53T variants in the big muscle cells of the worms to affect
directly the worms motility. We were then able to directly
monitor the impact of the α-syn mutational variants on the
worm fitness by using our recently developed high-throughput
machine vision system (Perni et al., 2018a,b). We describe
here the creation of two C. elegans models of familial PD
that express the human α-syn gene carrying the A30P and
the A53T mutations, indicated here as PDA30P and PDA53T,
respectively. We used for comparison a well-characterized PD
worm model, which is based on the overexpression of wild type
α-syn tagged with the yellow fluorescent protein (YFP) in the
muscle cells of the worms (Van Ham et al., 2008), indicated
here as PDWT. In order to facilitate a direct comparison between
the variants and the wild-type worms, we also generated a
fusion construct of YFP with the A30P and A53T variants. The
control healthy worms, which express only YFP in the big muscle
cells, are indicated here as the YFP strain. The PDWT reference
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model, in which the presence of α-syn causes characteristic
phenotypic changes (Van Ham et al., 2008), has been used
successfully to probe the nature of a range of neurodegenerative
conditions and has been employed in high-throughput screens
to identify genes and to search for α-syn-related phenotypes
(Van Ham et al., 2010; Van der Goot et al., 2012).

The aggregation of α-syn has been shown to be enhanced
dramatically by its binding to lipid membranes (Flagmeier
et al., 2016), and we recently showed that disrupting this
interactions can be achieved with small molecules (Perni et al.,
2017b; Limbocker et al., 2020). We reported in particular that
the aminosterol squalamine (Moore et al., 1993; Rao et al.,
2000; Zasloff et al., 2001, 2011), and related compounds (Perni
et al., 2018c) can inhibit the binding of α-syn to membranes,
reduce the initiation of its aggregation in vitro, and decrease
its toxicity in human neuroblastoma cells and in a C. elegans
model of PD (Perni et al., 2017b). Squalamine is currently in
clinical trials for the treatment of symptoms associated with
PD (ClinicalTrials.gov Identifier: NCT03781791). In order to
explore the value of these worm models in the context of familial
forms of PD, we used our recently developed high-throughput
screening strategy (Perni et al., 2017b, 2018a,b) to investigate
the effects of squalamine on the A30P and A53T worm variants
developed in this study. We complemented these studies by also
administering to our worm models an antibody that binds to a
region of α-syn that has previously been identified to play a key
structural role in its membrane-associated aggregation (Fusco
et al., 2016) and to mitigate the toxicity of α-syn oligomers
(Fusco et al., 2017).

RESULTS

Effects of the Mutations on the Fitness of
the PDA30P and PDA53T Worms
We first characterized the behavior of the PDA30P and PDA53T

worms in combination with the definition of the aggregation
profile of α-syn in these two strains, and compared the results
with the corresponding data for PDWT worms. We observed that
well-established behavioral characteristics, such as body bends
per minute (BPMs) (Van Ham et al., 2008; Gidalevitz et al., 2009;
Van der Goot et al., 2012; Habchi et al., 2016, 2017; Aprile et al.,
2017; Perni et al., 2017a,b), speed of movement (Morley et al.,
2002; Van Ham et al., 2008; Gidalevitz et al., 2009) and paralysis
rate (Link, 1995; Lublin and Link, 2013; Perni et al., 2017b), were
all affected to different extents by the overexpression of the A30P
and A53T variants (Figure 1). In particular, the PDA30P worms
showed reduced speed of movement and an increased paralysis
rate, but no relevant change in the frequency of body bends
(BPMs) (Figure 1A). By contrast, both the frequency of body
bends and speed of movement were found to be significantly
decreased (P < 0.005) in the PDA53T worms relative to the
YFP and PDWT worms. PDA53T worms also showed a higher
level of reduction in bend frequency and speed of movement,
and higher paralysis rate, when compared with the PDA30P

and PDWT worms (Figure 1A). These results suggest that the
observed effects of the modified protein are related to different
mechanisms of induced dysfunction compared to wild-type

protein. Despite the observed phenotypical differences, the levels
of expression of α-syn present in the PDWT, PDA30P and PDA53T

worms were found to be similar (Supplementary Figure 1).
To assess the influence of the amino acid substitutions on

the behavior of the different worm strains, we first calculated
the total fitness values, in both cases defined by a sum of the
behavioral parameters, and compared these values to these of the
PDWT worms (Perni et al., 2017b, 2018b). The total fitness score
is calculated as the sum of the frequency of body bend, speed of
movement, and paralysis rate, normalized by the value at day
1. In the case of the PDA30P worms, we observed a moderate
reduction in the fitness value compared to the control YFP
worms (Figure 1). A comparison of PDA53T worms with control
YFP worms after day 6 of adulthood, however, demonstrated a
significantly increased level of dysfunction that correlates with
the higher degree of formation of inclusions in the former model
(Figures 2A,B). This dysfunction appeared also more extensive
than the one observed in the case of PDWT and YFP control
worms. This observation is consistent with the reported effect of
the A53T mutation, which is to increase the aggregation of α-
syn in vitro. In particular, in these latter experiments we found
that the lipid-induced nucleation and fibril amplification steps
that result in the formation of an increased number of new
aggregates, are accelerated for the A53T variant compared to the
wild-type protein (Flagmeier et al., 2016), in accord with the in
vivo findings.

Effects of A30P and A53T Mutations on the
in vivo Aggregation of α-syn
Protein aggregation can be studied in vitro by means of a range
of well-established biophysical techniques (Arosio et al., 2014;
Buell et al., 2014; Galvagnion et al., 2015; Flagmeier et al., 2016;
Habchi et al., 2016). As direct observations of the nature and
kinetics of the aggregation processes taking place in vivo provide
opportunities to extend such findings to physiological conditions
(Morley et al., 2002; Nollen et al., 2004; Van Ham et al., 2008;
Van der Goot et al., 2012; Habchi et al., 2016), we investigated
here the development of aggregates in both PDA30P and PDA53T

worms, and compared their aggregation profiles with those of
PDWT worms (Van Ham et al., 2008) (Figure 2). We observed
that until day 6 of adulthood, inclusions in PDWT and PDA30P

worms showed a diffused fluorescence intensity pattern similar
to that of the control worms expressing only YFP, indicating
that they are largely unstructured and diffuse (Figures 2B,D).
After that, we could observe the presence of more well-defined
aggregates (Figures 2B,D).

We further analyzed the nature of the aggregates using
fluorescence lifetime imaging (FLIM), a technique that enables
the specific kinetics of protein aggregation to be followed in vivo
(Schierle et al., 2011; Laine et al., 2019). This methodology is
based on a fluorophore covalently linked to the amyloidogenic
protein of interest (Schierle et al., 2011). We have previously
shown that a reduction in the fluorescence lifetime of a
reporter fluorophore, such as YFP, correlates with the degree of
aggregation of the protein to which it is attached, and that this
effect provides a quantitative measure of the degree of protein
aggregation in vitro, in live cells and in C. elegans (Schierle et al.,
2011). This decrease in lifetime is thought to be associated with
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FIGURE 1 | Behavioral characterization of the PDA30P and PDA53T worm strains. (A) Three common readouts of worm fitness were investigated for each strain using

an automated worm tracking procedure (Perni et al., 2017b). The results are presented with a behavioral time-course map of PDA30P and PDA53T worms over 14 days

of adulthood. The speed of movement, number of body bends per minute (BPMs), and the rate of paralysis were followed during aging; data are normalized with

respect to day 1 to illustrate the progressive decline in all readouts. PD worms overexpressing wild-type α-syn:YFP in the body-wall muscle cells (PDWT ) were used as

a positive control, while worms expressing only YFP were used as negative healthy controls (Control). Shadowed areas represent standard errors of the mean (SEM).

(B) The rate of body bends, speed and paralysis rate were combined into a single score of total fitness and evaluated during the duration of the experiment. For each

experiment, about 1,000 worms were analyzed and each experiment was carried out in triplicate; one representative experiment of three experiments is shown. At

each time point, the mutant worms exhibited lower fitness (p < 0.0005) when compared to healthy worms; error bars represent the standard error of the mean (SEM);

the statistical significance was assessed using the 2-way ANOVA method with Dunnett’s multiple comparison test.

the fluorescence energy transfer to electronic states associated
with the amyloid structure (Schierle et al., 2011). Taken together,
these results indicate that the process of aggregation in vitro
and the ability of A53T to induce dysfunction in nematode
worms from day 6 of adulthood is significantly faster than that of
A30P and that of the wild-type protein, as also observed in vitro
(Flagmeier et al., 2016).

Effects of the Aminosterol Squalamine on
PDA30P and PDA53T Worms
The aminosterol squalamine (Rao et al., 2000; Zasloff et al.,
2001, 2011) was shown to be an effective inhibitor of in vitro
(Perni et al., 2017b), and to suppress α-syn-mediated toxicity
in neuronal cells and in a C. elegans model of PD (Perni et al.,
2017b). The primary mode of action of this compound is the
displacement of monomeric and oligomeric forms of α-syn from
lipid membranes both in lipid vesicles and in cell membranes.

In order to investigate the use of the PDA30P and PDA53T

worm models and obtain insights into the nature of familial
forms of PD, we administered squalamine to both PDA30P and
PDA53T worms by evaluating its effect on the rate and degree of
aggregation of the α-syn variants within the worms.We observed

that squalamine had a smaller effect on the behavior of the
PDA30P compared to PDWT worms, but increased substantially
the rate of body bends, speed of movement and the paralysis
rate of the PDA53T worms, as found with PDWT worms, and
effectively restored their behavior to that of the control YFP
worms (Figure 3A). These results are illustrated further by
comparison of the values of the total fitness in each case
(Figure 3B).

We next investigated the effects of squalamine on the
formation of aggregates of α-syn in the PDA53T and PDA30P

worms (Figures 3C,D). In the presence of squalamine, the
number of α-syn inclusions was reduced in the PDA53T worms,
but less so in the PDA30P worms, despite the fact that the
levels of α-syn expression in PDA30P and PDA53T worms in the
presence of squalamine were similar to that of the PDWT animals
(Supplementary Figure 1). We also found that squalamine did
not significantly affect the lipid-induced aggregation process of
the A30P variant in vitro (Supplementary Figure 2), while it
did so for the wild-type protein (Perni et al., 2017b). As the
A30P variant has been shown to have reduced binding to cell
membranes (Jo et al., 2002), the observation of the reduced
effects of squalamine in the A30P variant compared to the A53T
and wild-type variants further supports the conclusion that the
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FIGURE 2 | Age-dependent formation of inclusions in PDA30P and PDA53T worms. (A) Schematic description of the lifespan of C. elegans. Days 6 and 12 of adulthood

are reported here as representative for the formation of α-syn inclusions in vivo. (B) Quantification of the number of α-syn inclusions in PDA30P and PDA53T worms,

compared to PDWT worms (Van Ham et al., 2008). (C) PDA30P and PDA53T amyloid-like aggregation profiles measured using TG-FLIM (Laine et al., 2019), (left) day 6

and (right) day 12. The average fluorescence lifetime (in ps) was measured for PDA30P (blue) and PDA53T (green) worms, and compared to control worms (gray) and

PDWT worms (red) (Van Ham et al., 2008), and to Q40 (pink) polyglutamine worms, which have a high propensity to form amyloid-like aggregates (Morley et al., 2002).

The FLIM analysis shows no amyloid-like features in the α-syn inclusions in PDA30P worms at day 6 of adulthood, unlike PDA53T, PDWT and Q40 worms. A statistically

significant increase in amyloid-like aggregation was observed in all the strains after day 12 of adulthood (insets) (p < 0.05). For each experiment, 25 worms were

analyzed. (D) Representative images showing the inclusion profile in PDA30P and PDA53T worms and compared to PDWT worms and YFP controls at day 6 and 12 (Van

Ham et al., 2008).

mechanism of action of this small molecule in vivo is mediated by
its competitive binding to cell membranes (Perni et al., 2017b).

Effects of an Antibody Targeting the
N-Terminal Region of α-syn on PDA30P and
PDA53T Worms
In order to probe further the behavior of the various α-syn
forms in C. elegans, we administered to the PDA30P worms a
previously described antibody (Fusco et al., 2016) that binds to
theN-terminal region of the α-syn sequence (residues 1–25). This
region was found to play a key structural role in the membrane-
associated aggregation of α-syn (Fusco et al., 2016) and in

the toxicity of α-syn oligomers (Fusco et al., 2017). When the
antibody was incubated with PDA30P, a reduction in the toxicity
that resulted from the overexpression of α-syn was observed, to
an extent similar to that observed in the case of PDWT (Perni
et al., 2017b). The effect of the antibody on PDA30P appeared to
be slightly greater than that induced by squalamine (Figure 4),
which could be a result of the more specific action of the antibody
in suppressing the toxicity associated with overexpression of
α-syn molecules in the worms, particularly showing a direct
interaction with the exposed N-terminal region of α-syn in the
oligomeric species. By contrast, the antibody was observed to
exert effects similar to those resulting from the addition of
squalamine on the toxicity observed in PDA53T worms, as shown
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FIGURE 3 | Effects of squalamine on the formation of α-syn inclusions and the fitness of PDA30P and PDA53T worms. (A) Behavioral time-course map reporting thee

rate of body bends, swimming speed and paralysis rate for PDA30P and PDA53T worms exposed to 10µM squalamine. (B) Calculation of the total fitness corresponding

to the three readouts in (A) (Perni et al., 2017b, 2018b). The effects of squalamine on control worms were negligible (Perni et al., 2017b), and only a small protective

effect could be observed in PDA30P, while strong protective effects were observed in PDA53T worms consistently with the effects on the PDWT worms (Perni et al.,

2017b). Each experiment was carried out in triplicate, and about 1,000 worms were analyzed in each replicate; one representative experiment of the three is shown.

(C) Quantification of the number of inclusions in PDA30P and PDA53T worms with or without squalamine; squalamine reduced significantly the number of inclusions in

PDA53T worms **P ≤ 0.01, ***P ≤ 0.001 and ****P ≤ 0.0001. (D) Representative images showing a substantial decrease in the number of α-syn inclusions in the

presence of squalamine in PDA53T worms. In order to show the inclusions more clearly, the image focus on only the heads of the worms, although the quantification

was carried out using the whole worms. This result is consistent with previous observations for PDWT worms (Perni et al., 2017b). In the YFP worms, the expression

pattern is not significantly affected while in PDA30P worms the number of inclusions appears mildly reduced. All measurements were carried out at day 12 of adulthood.

by an increase in the rate of body bends and in the speed of
movement, and by a decrease in the paralysis rates (Figure 4).

DISCUSSION AND CONCLUSIONS

We have created and characterized two C. elegans strains, PDA30P

and PDA53T, expressing the A30P and A53T mutational variants,
respectively, which are associated with familial forms of PD.
We have then demonstrated that these two mutational variants

affect the worms in different ways and to different extents. The

expression of the A30P species was shown to reduce specifically
certain aspects of worm behavior, notably speed of swimming,

compared with the wild-type protein. Overexpression of the
A53T mutation, however, had a more dramatic effect than that

found for the wild-type protein, and the worms expressing this

variant behaved in a dysfunctional manner at a significantly
younger age than did those expressing the A30P or the wild-type
forms. Overall, the expression of the A53T variant resulted in a
more significant decrease in the bends, and speed of movement
compared with the A30P and wild-type proteins. We note that
worms expressing the A30P and A53T variants in dopaminergic
neurons exhibited a less severe phenotype (Kuwahara et al.,
2006), suggesting that the overexpression of α-syn in muscle cells
may lead to increased toxicity through additional mechanisms
with respect to those involved in PD.

These findings are broadly consistent with the measurement
and analysis of the kinetics of aggregation in vitro. In particular,
the observation that the expression of the A30P variant alters the
phenotype of the wormsmoderately compared to the dysfunction
associated with the expression of the wild-type protein, is in
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FIGURE 4 | Comparison of the effects of the antibody and squalamine administration to PDA30P and PDA53T worms. (A,B) At a concentration of 10µM, the antibody

rescues the motility dysfunction (relative speed) induced by the over-expression of A30P, with squalamine having a slightly smaller effect. The worm motility is also

rescued in the A53T worms by the antibody and squalamine to similar extents. Errors represent the standard error on the mean (SEM) *P ≤ 0.05, **P ≤ 0.01,

***P ≤ 0.001 and ****P ≤ 0.0001. (C,D) Paralysis rate, reported as the fraction of worms that are mobile, corresponding to the time points shown in (A,B); the

variability between biological replicates is in the 2–9% range, and the variability between technical replicates is in the 1–4% range. (E,F) Number of inclusions at day

12 of adulthood *P ≤ 0.05, ***P ≤ 0.001 and ****P ≤ 0.0001. The scale bar indicates 80µm.

agreement with the findings that the overall rate of aggregation
is only mildly affected for the A30P variants when compared
to wild-type in vitro (Conway et al., 2000; Flagmeier et al.,
2016). Initiation of the in vitro aggregation process, however,

has been found to be faster for the A53T variant than for A30P
or wild-type protein (Flagmeier et al., 2016), an observation
consistent with more rapid decline of the fitness of the PDA53T

related to the PDA30P or PDWT worms. Taken together, these
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results are particularly interesting in the context of the clinical
manifestations of the A30P and A53T mutations, where patients
with the A30P mutation appear generally to exhibit similar age
of onset and rate of disease progression to those suffering of
sporadic PD, while patients carrying the A53Tmutation generally
exhibit an earlier age of onset and have a more rapid rate of
progression of the disease (Polymeropoulos et al., 1997; Krüger
et al., 2001; Schiesling et al., 2008).

The degree of dysfunction of the C. elegans model expressing
human α-syn has recently been shown to be reduced substantially
by the administration of squalamine (Perni et al., 2017b), a
naturally active aminosterol, and we have shown here that this
small molecule decreases the amount of fitness reduction and
aggregation to a lower extent in the PDA30P than in the PDWT

worms, but has a more substantial effect in the PDA53T worms,
which is similar to that observed in PDWT worms. These results
are consistent with the finding that squalamine reduces the
membrane-associated initiation of the aggregation of α-syn by
displacing it from the surfaces of lipid bilayers (Perni et al.,
2017b). In addition, we observed that an antibody targeting the
N-terminal region of the protein, which plays a key role in both
the aggregation process and the induction of cellular toxicity
by α-syn oligomers, was also protective in PDWT and PDA53T

worms, while less so in PDA30P worms. Overall, this analysis
provides support to the strategy of reducing the binding of α-syn
to lipid membranes as a potential therapeutics strategy for PD.

MATERIALS AND METHODS

Extended experimental procedures are described in SI Materials

and Methods. In vitro kinetic experiments and purifications
of wild type and mutant α-syn were carried out as previously
indicated (Flagmeier et al., 2016). TG-FLIM imaging was carried
out on a home-built microscopy platform described elsewhere
(Schierle et al., 2011; Laine et al., 2019). In vivo experiments
were carried out by using a well-studied C. elegans model of
PD (Link, 1995) and custom made A53T and A30P strains.
Microinjection was used to create new transgenic strains and
standard conditions were used for the propagation of C. elegans
(Brenner, 1974). Squalamine was synthesized as previously
described (Zhang et al., 1998) and automated behavioral assays
were carried out as previously described (Perni et al., 2017b,
2018a,b). Measurements on inclusions in vivo were performed
using ImageJ software as previously described (Van der Goot
et al., 2012; Perni et al., 2017b). Western blot analysis was
carried out as previously described (Limbocker et al., 2019).
The transduction of the antibody was carried out as previously
reported (Aprile et al., 2017; Perni et al., 2017a).
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