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High-throughput cell-data technologies such as single-cell RNA-seq create a demand

for algorithms for automatic cell classification and characterization. There exist several

cell classification ontologies with complementary information. However, one needs to

merge them to synergistically combine their information. The main difficulty in merging

is to match the ontologies since they use different naming conventions. Therefore,

we developed an algorithm that merges ontologies by integrating the name matching

between class label names with the structure mapping between the ontology elements

based on graph convolution. Since the structure mapping is a time consuming process,

we designed twomethods to perform the graph convolution: vectorial structure matching

and constraint-based structure matching. To perform the vectorial structure matching,

we designed a general method to calculate the similarities between vectors of different

lengths for different metrics. Additionally, we adapted the slower Blondel method to work

for structure matching. We implemented our algorithms into FOntCell, a software module

in Python for efficient automatic parallel-computed merging/fusion of ontologies in the

same or similar knowledge domains. FOntCell can unify dispersed knowledge from one

domain into a unique ontology in OWL format and iteratively reuse it to continuously adapt

ontologies with new data endlessly produced by data-driven classification methods,

such as of the Human Cell Atlas. To navigate easily across the merged ontologies, it

generates HTML files with tabulated and graphic summaries, and interactive circular

Directed Acyclic Graphs. We used FOntCell to merge the CELDA, LifeMap and LungMAP

Human Anatomy cell ontologies into a comprehensive cell ontology. We compared

FOntCell with tools used for the alignment of mouse and human anatomy ontologies task

proposed by the Ontology Alignment Evaluation Initiative (OAEI) and found that the Fβ

alignment accuracies of FOntCell are above the geometric mean of the other tools; more

importantly, it outperforms significantly the best OAEI tools in cell ontology alignment in

terms of Fβ alignment accuracies.

Keywords: ontology alignment, ontology merging, automatic ontology merging, cell ontology, Human Cell Atlas
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INTRODUCTION

Precision biomedicine technologies produce overgrowing

quantities of information from of high throughput data from
finer-grained biomedical samples reaching single-cell (Hwang

et al., 2018) and subcellular (Grindberg et al., 2013) levels that

allow to discover new cell types (Boldog et al., 2018; Gerovska
and Araúzo-Bravo, 2019; Sas et al., 2020). This increasingly
precise cell data render existing cell classification systems
obsolete and create the demand for automatic comprehensive
data-driven cell classification methods. Among the structures to
classify knowledge domain items are the ontologies; they can be
defined in several ways depending on the context of use (Busse
et al., 2015). In information science, an ontology is defined as a
seven-tuple, O:= {L, C, R, F, G, T, A}, where L:=LC

⋃

LR is a
lexicon of concepts LC and relations LR; C is a set of concepts; R
is a set of binary relations on C; F and G are functions connecting
symbols F: LC → C, G: LR → R; T is a taxonomy for the partial

ordering of C, T(Ci, Cj), and A is a set of axioms with elements
C and R (Busse et al., 2015). A critical question in the design
of an ontology is the level of detail covered by the ontology.
Thus, different ontologies of the same knowledge domain
use different conceptualizations to obtain the desired level of
granularity. In the case of cell ontologies, there are several cell
type classifications in various formats; the most frequently used
being the Web Ontology Language (OWL) (Smith et al., 2004)
format, that encompass the vast majority of Open Biomedical
Ontologies (OBO) Foundry (Smith et al., 2007) ontologies.

Cell classification relies on human data curation, however
the growing number of discovered new cell types boosted by
high throughput data generation such as single cell RNA-Seq
and international research initiatives such as the Human Cell
Atlas (HCA) (Rozenblatt-Rosen et al., 2017) creates a necessity
to develop automatic computational methods that assist the
creation of cell ontologies and the classification of these new cells
as branches of existing cell ontologies (Osumi-Sutherland, 2017).
New cell ontologies can be created by reusing and merging the
information dispersed inmultiple cell ontologies. Before merging
two ontologies, it is necessary to find the correspondences
between their concepts in a process named ontology alignment
or matching. There exist numerous tools for the alignment
and merging of ontologies (Table 1). The majority of them are
semi-automatic since they require an initial input and some
intermediate user inputs for performing the alignment; some
tools focus only on the alignment.

In order to minimize human supervision of the ontology
alignment and automate the ontology merging, we developed an
algorithm and implemented it into FOntCell, a software package
in Python for automatic merging of ontologies. We applied
FOntCell to create a new more comprehensive and fine-grained
ontology of the cellular development by merging cell ontologies
giving rise to all cell types of the human body.

There are multiple ontologies with biomedical information
(genomics, proteomics, and anatomy) (Lambrix et al., 2007). Two
of the largest cell ontologies are CELDA (Seltmann et al., 2013)
and LifeMap (Edgar et al., 2013). CELDA integrates information
about gene expression, localization, development and anatomy

of in vivo and in vitro human and mouse cells, as well as
cell development. Therefore, we focused on the “development”
annotation information of CELDA stored in the fields CL
(Cell Ontology) (Bard et al., 2005), CLO (Cell Line Ontology)
(Sarntivijai et al., 2014) and EFO (Experimental Factor Ontology)
(Malone et al., 2010). Another important repository for cell
information is LifeMap (Edgar et al., 2013); which includes cell
type and gene expression annotations of cells in different stages
of embryonic development. LifeMap provides contrasted data
and enough cell types to be synergistically merged with CELDA,
as each might have cell types missing in the other. A hurdle
in the merging CELDA and LifeMap is their different labeling
systems. Also there are more specific ontologies such as the
Cell Ontology for Human Lung Maturation [LungMap Human
Anatomy (LMHA)] that is a specific ontology of cells for lung
development. Theseontologies use different labels for the same
cell type and simple word matching cannot find equivalences.
Therefore, it is necessary to align the ontologies (Lambrix and
Tan, 2008), i.e., identify the classes of one ontology equivalent to
the classes of the other ontology. We developed an algorithm that
can find equivalence between two classes from two ontologies,
taking into account not only the class labeling but also the
internal structure of the ontologies.

MATERIALS AND METHODS

The main steps for ontology merging implemented in FOntCell
are file ingestion, ontology parsing, ontology pre-processing,
alignment, and merging. The internal relations of the ontologies
that will be merged and the alignment parameters are specified in
a configuration file (Figure 1A). The format of the configuration
file is described in detail in the Supplementary Material. An
instance of the configuration file for the merging of CELDA and
LifeMap and their result with LMHA are also provided in the
Supplementary Material. The equivalent classes are detected by
a combination of name matching and graph-topology/structure
similarity matching (Figure 1B). The merging works through
expansion of the non-common relationships/edges branching
from the equivalent classes. FOntCell searches for similar (to
match them) and different (to append them during the merging)
classes (Figure 1C).

Ontology Parsing
The parsing of the input ontologies generates two two-column
matrices, A2 and B2, each one with a number of rows equal to
the number of class relations in the respective ontology. The first
column contains the name of each class, and the second column,
the name of one of its children. The matrices A2 and B2 are
needed for the structure-mapping. FOntCell can merge any two
ontologies in an .owl file in an OWL format, or in .ods files in
parent-child relationship format compatible with the pyexcel-ods
Python module. Additionally, FOntCell can read as input the
matrices A2 and B2 in tabulated text files.

Ontology Pre-processing
FOntCell can merge ontologies that share some classes
and knowledge domain; however, our main interest is to
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TABLE 1 | Tools for the alignment and merging of ontologies and their features, adapted from Table 9 from Lambrix and Tan (2006).

Tool Linguistic Structure Constraints Auxiliary Automatic Merging References

ArtGen Name Parents, children WordNet Semi or fully Mitra and Wiederhold,

2002

ASCO Name, label,

description

Parents, children, siblings,

path from root

WordNet Fully Le et al., 2004

Chimaera Name Parents, children Semi Merging McGuinness et al., 2000

FCA-Merge Name Semi Merging Stumme and Maedche,

2001

FOAM Name, label Parents, children Equivalence Semi Ehrig and Staab, 2004

GLUE Name Semi Doan et al., 2004

HCONE Name Neighborhood WordNet Semi Merging Kotis and Vouros, 2004

IF-Map Parents, children Reference ontology Semi Kalfoglou and

Schorlemmer, 2003

iMapper Domain, range WordNet Semi Su et al., 2004

Onto Mapper Name Parents, children Semi Prasad et al., 2002

Anchor-PROMPT Name Direct graphs Semi Merging Noy and Musen, 2000

SAMBO Name, synonym Is-a a part-of, descendants

& ancestors

WordNet UMLS Semi Merging Lambrix and Tan, 2006

S-Match Label Fully Giunchiglia et al., 2004

AML Label, instances Direct graph, logical repair

algorithm

WordNet Fully Faria et al., 2013

LogMap Label, name Linguistic alignment,

principle of locality

WordNet,

UMLS-lexicon

Semi or fully Jiménez-Ruiz and Cuenca

Grau, 2011

AGM Name, label Graphs Semi or fully Lütke, 2019

ALIN Label Wordnet Semi da Silva et al., 2019

DOME Label doc2vec Fully Hertling and Paulheim,

2019

FCAMap-KG Label, synonym Part-of Semi or fully Zhao et al., 2018

Lily Name, label Direct graphs Semi or fully Wang and Xu, 2008

LogMapBio Label, name Linguistic alignment,

principle of locality

WordNet,

UMLS-lexicon,

BioPortal

Semi or fully Jiménez-Ruiz, 2019

LogMapLite Label, name WordNet,

UMLS-lexicon

Semi or fully Jiménez-Ruiz, 2019

POMAP++ Lame, label Ontology attribute,

linguistic match

Semi Laadhar et al., 2017

FOntCell Label, synonym Direct graphs, attribute

relation

Ontology attribute,

linguistic match

Fully Merging This work

Tool: Algorithm name. Linguistic: type of data used by the linguistic based method. Structure: type of data used by the structure based method. Constraints: type of data used to

perform a constraint-based alignment. Auxiliary: external tool used to improve the alignment. Automatic: automation level; fully, if only is required an initial input; semi, if some additional

intermediate user inputs are required. Merging: if merging is done in addition to the alignment. Tools like ATOM (Raunich and Rahm, 2011) are omitted since they are ontology merging

methods that require a mapping as input and they do not use alignment methods.

apply FOntCell to augment cell ontologies by merging
known cell ontologies. Different ontologies use diverse
description formats and data structures; additionally, some
ontologies are ill-formed with redundant (duplicates) or
missing relationships (disconnected branches). FOntCell
robustly merges such ill-formed ontologies. However, we
implemented an optional pre-processing functionality
allowing to repair the input ontologies, select the data
relation type (instances, children, parents) used as an input
argument, and edit labels to modify the original ontology

relationships by addition, deletion and/or merging of classes
and relationships.

The pre-processing stage of FOntCell is implemented as an
“Automatic ontology editor” that takes as an input an ontology
edition .txt file (format given in the Supplementary Material)
describing the pre-processing modifications of the pre-processed
ontology. FOntCell uses such description to modify the class
names and/or rewire the ontology. Among the implemented pre-
processing functions of the “Automatic ontology editor” are: (a)
Selection of classes by their name, i.e., select classes including
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FIGURE 1 | FOntCell algorithm. (A) FOntCell software flux diagram with the main functionalities of files ingestion, ontologies preprocessing, ontology parsing,

ontologies alignment, ontologies merging, and generation of output files. Together with the ontology files, the user feeds the alignment parameters: W, window length,

and the similarities threshold vector θ = {θN, θT , θLN}. (B) Flux diagram of the FOntCell alignment algorithm combining the name mapping (left) and the structure

mapping (right) using five alternative mapping methods. {Ai} and {Bj} denote the sets of subgraphs around nodes i and j of ontology A and B, respectively. The rhombi

and octagons mark two or three alternative decisions, respectively. (C) Conceptual example of merging of ontologies. For merging two ontologies A and B into an

ontology C, FOntCell aligns equivalent classes between A and B, and then merges the non-common relations that branch from the equivalent classes. Equivalent

classes are marked with same colors in the two ontologies A and B.
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TABLE 2 | Sizes of the processed ontologies before and after preprocessing.

Before pre-processing After pre-processing

#Classes #Relations #Classes #Relations

CELDA 15,439 203,058 841 966

LifeMap 796 924 796 924

CELDA + LifeMap 1,408 1,855 – –

LMHA 80 130 45 65

(CELDA + LifeMap) + LMHA 1,437 1,919 – –

a certain word. (b) De-selection of classes to exclude classes
from the resulting ontology. (c) Connection of two previously
unrelated classes. (d) Merging of two classes with the resulting
class “inheriting” the ID of one of the classes, and the relations
and attributes of both classes. (e) Class label preconditioning to
edit the class names and class synonyms, and eliminate general
terms such as “the,” “cell,” “cells,” “human,” “mouse” or “-.”
The “Automatic ontology editor” was used to pre-process the
ontologies in this work as follows.

CELDA Pre-processing
CELDA uses information from other ontologies and its original
structure is disconnected; split into several trees, and contains
information related to tissues, immortal cell lines, species, etc.
Since we are only interested in the developmental cell type
information, we need to parse to cell types. Thus, to generate a
connected graph of cell development from CELDA, we used the
“Automatic ontology editor” to: (1) Introduce new relationships
between classes to eliminate discontinuities, some of which are
due to the word “human” or “mouse” in the name of their classes.
(2) Merge duplicated classes due to the same cell type appearing
simultaneously from “human” and “mouse”. (3) Eliminate the
classes associated to immortalized cell lines selected as they
contained “human” or “mouse” in the name, label or synonyms.

LifeMap Pre-processing
The pre-processing of LifeMap is required since LifeMap is
an online database in non-OWL format, where its information
about cell development is available at the LifeMap website
repository (Edgar et al., 2013). We automatically searched the
LifeMap website and obtained all the information related to cell
name and synonyms, development hierarchy and cell localization
and saved it to a two-column matrix file in .ods format. We used
the “Automatic ontology editor” to perform string normalization
by eliminating the symbols {“-,” “/,” “,”} and the words {“cell,”
“cells,” “human”) from cell names and synonyms.

LMHA Pre-processing
LMHA presents in its “natural” ontology a series of cell types
from the lung, but without a direct relationship in the cell
development of the tissue itself. We used the “Automatic
ontology editor” to: (1) Remove classes that do not provide
information about specific cell types such as the “immune cell” or
“cell type” classes. (2) Provide some new relations and synonyms.

The sizes of the processed ontologies before and after
preprocessing and shown in Table 2. The same pre-processed
ontologies files were used in the rest of the work by all the
merging ontology tools.

Calculation of the Name Mapping Matrix
Before performing the intra-ontology name matching, FOntCell
processes the string of each label class of each ontology.
Among other string processing tasks, FOntCell performs string
normalization, removes mismatching words, splits words, selects
substrings, selects only the class name, or optionally uses lists
of synonyms representing variation of the class names. Next, it
builds a name mapping matrix SAB

(

a× b
)

, where a and b are
the number of classes of ontologies A and B, respectively. Each
element SAB(i,j) is a measurement of the similarity between the
labels of class i from ontology A and class j from ontology B.
Additionally, the user can trigger a FOntCell option that takes
into account synonym attributes for the calculation of the name
mapping matrix SAB.

In the simplest case of not activating the option of using
synonyms, to measure the similarity between each class label of
two ontologies A and B, FOntCell builds a namemappingmatrix,
SAB, based on the Levenshtein metric (Levenshtein, 1966), which
measures the minimum number of insertions, deletions and
necessary replacements to make two strings equal. To obtain the
similarity in the range [0, 1], we use the opposite of the scaled
Levenshtein metric:

SAB
(

i, j
)

= 1−
lev

(

LabelAi , Label
B
j

)

max
(

∣

∣LabelAi
∣

∣ ,
∣

∣

∣
LabelBj

∣

∣

∣

) (1)

where lev is the Levenshtein distance between two strings. For
two strings a and b of lengths |a| and |b|, respectively, the
Levenshtein distance lev(|a|,|b|) is:

lev
(

|a| ,
∣

∣b
∣

∣

)

=















max
(

i, j
)

if min
(

i, j
)

= 0,

min







lev
(

i− 1, j
)

+ 1
lev

(

i, j− 1
)

+ 1
lev

(

i− 1, j− 1
)

+ 1(ai 6=bj)

otherwise.

(2)

where 1(ai6= bj) is the indicator function equal to 0 when ai = bj,
and equal to 1 otherwise, and lev(i,j) is the distance between the
first i characters of a and the first j characters of b. LabelAi and
LabelBj are the labels of the class i and j of the ontologies A and

B, respectively, and | | is the length of the string. Applying the
pairwise Equation (1) for each stripped label class i of A, and
the stripped label class j of B, FOntCell builds the name mapping
matrix SAB between A and B.

In the case of selecting the option to use the classes synonyms,
the similarity between two classes i, j is calculated using the lists
of synonyms, {i}∈A and {j}∈B that include also the principal
label of the class. With these lists is calculated a name matching
matrix S{i}{j}

(

|{i}| × |{j}|
)

between each synonym of class list
{i} and each synonym of class list {j} based on the Levenshtein
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distance (Equation 2), |{i}| and |{j}| are the lengths of the lists
{i} and {j}, respectively. Finally, the highest score of S{i}{j} as
the matching between the two classes is taken to be used in
the final name mapping matrix SAB(i,j) = max S{i}{j}. FOntCell
considers that two labels have a name matching, if their score
given by Equation (1) is greater than a name score threshold
θN (default 0.85).

Calculation of the Structure Mapping
Matrix
Not all classes of an ontology are identifiable as classes of the
other ontology by name mapping. For example, in the CELDA
and LifeMap merging, when using only the name mapping,
approximately 60% of the classes from CELDA are initially not
assigned to LifeMap. One of the functionalities of FOntCell is
to recognize matches between two ontologies and merge them
into a unique class, i.e., two labels of two classes having very
different name labeling but corresponding to the same concept.
FOntCell discovers synonymous classes between two ontologies
using structure mapping, i.e., two classes match if the subgraphs
corresponding to their descendants have similar structures.

To relate the nodes of two ontologies, FOntCell extracts a
local subgraph centered on each node, that we name generator
nodes i from ontology A and generator nodes j from ontology
B. The set of all subgraphs from the ontologies A and B are
designated as {A} and {B}, respectively. The subgraphs extracted
from the generators nodes i and j are denoted {i} and {j},
respectively. The size of these subgraphs is given by the parameter
W, which indicates the number of upstream and downstream
relationships from the generator node that FOntCell takes to
create the subgraphs (Figure 2A).

FOntCell measures the structure similarity mapping between
two graphs using different methods to build a structure mapping
matrix TAB

(

a× b
)

, where a and b are the number of classes
of ontologies A and B, respectively. Once a window length W
(default 4) is selected, for each node i fromA FOntCell constructs
the surrounding subgraph of nodes {i} ∈ Aw(i) and calculates its
similarity with all subgraphs {j}∈ Bw(j), whereAw(i) and Bw(j) are
the subgraphs of length W centered in i and j, respectively. Each
subgraph Aw(i) is defined by a center node i and all the nodes
inside a window length W upstream or downstream of i. Thus,
FOntCell performs a structure convolutional matching, tailoring
different metrics to calculate the similarity between subgraphs
Aw(i) and Bw(j).

The Blondel method (Blondel et al., 2004), initially developed
to measure the similarity between graph vertices can be used to
assess the structure matching between two networks, however
it is quite computationally demanding (Figure 3C). To improve
the speed of the structure mapping, we designed two new
methods that calculate the structure matching of ontologies
in a convolutional fashion: Vectorial structure matching and
Constraint-based structure matching; additionally, we adapted
the Blondel method to work for such new convolutional structure
matching approach. An example of a convolution window sliding
across a graph is depicted in Figure 2B.

FOntCell takes as generator nodes those without name
assignment during the calculation of the name mapping
matrix SAB. The subgraphs generated from these nodes from
both ontologies are evaluated using one of the metrics
explained below.

Vectorial Similarity Based on Graph
Convolution as a Structure Matching
Metric
For each possible pair of nodes i ∈ A and j ∈ B, and window
length W, FOntCell extracts the subgraphs AW(i) and BW(j) of
length W centered in i and j, and adjacency matrices ÃW(i) and
B̃W(j) with number of nodes aWi and bWj, respectively. For all
possible pairs of nodes k ∈ AW(i) and l ∈ BW(j), FOntCell takes

the corresponding rows ĩk and j̃l of the adjacency matrices ÃW(i)
and B̃W(j), and calculates their similarity using one of the M =

{1 − cosine, Euclidean, 1 − Pearson} metrics. Since the lengths
aWi and bWj of those rows are not necessarily equal, FOntCell
calculates all nc possible convolution similarities, pc

ik,jl of the

shorter row over the longer row, where nc = abs(aWj - bWi) +
1 is the number of convolutions and c ∈ [1, nc] (Figure 2B), and
selects the maximum similarity: pMax

ik,jl = max pc
ik,jl. Then, for each

(i,j) pair, it assigns to the (i,j) position of the structure mapping
matrix TAB(i,j) the maximum similarity pMax

ik
= max pMax

ik,jl

for jl across B̃W(j). For brevity, throughout the whole text, we
name the vectorial structure matching using the (1 − cosine)
and (1 − Pearson) metrics as cosine and Pearson structure
matching, respectively.

Constraint-Based Similarity as a Structure
Matching Metric
We developed the constraint-based structure matching based
on three assumptions: (i) The matches obtained from the name
matching are correct. (ii) The degree of structural similarity of
two generator nodes is proportional to the number of matches
between the subgraphs generated by them. (iii) Two generator
nodes are more likely to be equivalent if their close relatives have
name matches.

To calculate the similarity between two generator nodes, i and
j, FOntCell first obtains the number of name matches between
the two subgraphs {i} and {j}. Next, it weighs them according to
the proximity to the generator nodes i or j. The matches closer
to the generator node score higher. To implement the method,
for all possible pairs of nodes i ∈ A and j ∈ B, and for a window
lengthW, FOntCell searches for all possible name matched pairs
between the lists of nodes {k} ∈ Aw(i) and the list {l} ∈ Bw(j),
where Aw(i) and Bw(j) are the subgraphs of lengthW centered in
the generator nodes i and j, respectively, with the condition that
at least one node of the list {k} ∈ Aw(i) has a name match with a
node of the list {l} ∈ Bw(j). Then, for each node k in the list {k},
FOntCell calculates the shortest path ski to i, and produces a list
{ski} of shortest paths to estimate the proximities to the generator
node i. FOntCell assigns to each shortest path ski a constraint
cki = W + 1 − Ski. Finally, it sums the list of constraints {cki}
to produce an accumulated constraint Ci and assigns it to the
structure mapping matrix TAB(i,j).
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FIGURE 2 | Convolutional graph matching of FOntCell. (A) Example of three consecutive steps of the sliding window of length W = 2 used in the calculation of the

structure convolutional matching. For each central (generator) node, marked with a colored circle, the nodes involved in the calculation of the structure convolutional

matching are framed with a rectangle of the same color as its corresponding central node. (B) Example of graph convolution, for a sliding window of length W = 1,

between two subgraphs AW (i) and BW (j) (left) with generator nodes i and j, adjacency matrices ÃW (i) and B̃W (j) (center), and number of nodes aWi = 7 and bWj = 4,

respectively. The connected nodes are represented by dark cells in the adjacency matrices. For each row k of ÃW (i) , and l of B̃W (j), a vectorial convolution is

calculated. The step for the rows k = 3 of ÃW (i) , and l = 2 of B̃W (j) , is marked in blue as an example. The nc = abs(aWj - bWi ) + 1 = 4 sliding windows of the shorter

row jl of B̃W (j) over the longer row ik of ÃW (i) are marked in red (right), and the respective nc convolution similarities pcik,jl for each slide c are calculated using one of the

metrics M = {1 - cosine, Euclidean, 1 - Pearson}.

Blondel Similarity as a Structure Matching
Metric
To perform graph structure matching FOntCell adapts the
original Blondel metric:

TAB
k+1 =

B̃T
AB
k Ãt + B̃tT

AB
k Ã

∥

∥B̃TAB
k

Ãt + B̃tTAB
k

Ã
∥

∥

, (3)

where t is the transpose operator. Equation (3) is calculated

iteratively until an even number of steps k of convergence to
a stable structure matching TAB is reached. As with the other
metrics, FOntCell takes sets of subgraphs generated from each
generator node and calculates the similarity between these nodes
using the Blondel metric. For each node i from A, FOntCell
constructs the surrounding subgraph {i}∈A and calculates its
similarity with all subgraphs {j}∈ B using Equation (3) with
the adjacency matrices of each subgraph. FOntCell performs
a structure convolution, tailoring Equation (3) to the case of
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FIGURE 3 | FOntCell performance merging CELDA with LifeMap. (A) Heat maps of the matches obtained with two-parameter combinations, window length and

name score threshold, using five structure matching methods: the three vectorial structure matching {cosine, Euclidean, Pearson}; constraint-based structure

matching, and Blondel structure matching. The two optimized parameters are the window length W and the local sequence threshold θLN in the ranges [0.1, 0.8] and

[1, 8], respectively, using steps of 0.1 for θLN, and 1 forW. Bluer color corresponds to higher number of synonyms. (B) Percentages of matches, new classes and new

relations, obtained with the five structure matching methods with merging alignment parameters W = 4, θN = 0.85, and θLN = 0.7. (C) Run time for the five

structure-matching methods for θN = 0.85, and θLN = 0.7, and window sizesW in the range [1, 8]. The vectorial structure matching {cosine, Euclidean, Pearson} have

similar run time lines and are represented by a single line.
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subgraphs {i} and {j}.

T
{i}{j}

k+1 =
˜{j}T

{i}{j}

k
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t
+ ˜{j}

t
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k
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∥
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∥

˜{j}T
{i}{j}

k
˜{i}
t
+ ˜{j}

t
T
{i}{j}

k
˜{i}

∥

∥

∥

(4)

where ˜{i} and ˜{j} are the adjacency matrices of the respective
subgraphs {i} and {j}. Finally, the structure score on the position

of i and j in the T
{i}{j}

k+1 matrix is assigned to TAB(i,j).
Each of the above defined structure matchingmethods returns

a structure score between two nodes (i,j) defined by TAB(i,j)
where i ∈ A and j ∈ B. This convolution improves the result of
the structure mapping over the whole graphs since it reduces
the influence of distant nodes and edges. Name mapping
and structure mapping carry complementary information and
FOntCell regains information from both.

Ontology Alignment
To match classes, FOntCell initially selects the best match for
each node i from ontology A with a node j from ontology B,
using the name mapping matrix SAB. If SAB(i,j) > θN , FOntCell
considers classes i and j as matched and classifies this assignment
as a ‘name match’. If SAB(i,j) ≤ θN, FOntCell takes the element
TAB(i,j) from one of the aforementioned structure matching
methods selected by the user to calculate the structure mapping
and considers the nodes i and j matched if TAB(i,j) ≥ θT , where
θT is a structure mapping threshold selected by the user.

Ontology Local Name Matching
To improve the result achieved with the structure matching
method, FOntCell performs a further local name comparison
using the name mapping matrix SAB to calculate the mean of
the name match S{i}{j} of each subgraph pair {i} {j}, with the
same window size W used to calculate T{i}{j}. FOntCell takes
the best name scores from SAB(i,j), calculates the mean of these
name matching scores for the pair {i} {j}, and then builds a new
name matching matrix of {i}{j}: S{i}{j}. If S{i}{j} > θLN , where θLN
is a local name matching threshold (default value θLN = 0.7),
FOntCell considers nodes i and j as synonyms and classifies the
corresponding classes as a structure match (Figure 1B). FOntCell
creates a file with the relevant information about each node
from A with five columns: (1st) native node label in A, (2nd)
translated node label assigned from B, (3rd) name score, (4th)
structure score, and (5th) type of assignment (Name/Structure).
In case of no assignment, the type of assignment is marked
as Non-matched.

Ontology Merging
Once the matched classes between two ontologies are detected,
FOntCell translates the name/labels of all classes from ontology
B to their equivalent names, if any, in ontology A. Next,
FOntCell appends the translated classes from B to A and their
corresponding offspring relationships. Then, it performs an
ordered-set operation to eliminate all the possible class-relations
repeats generated from the appendage. The resulting relation
array represents the merging of the two ontologies. In addition,
FOntCell creates an OWL format file with the result of the

merging by reading the .owl file of ontology A and appending
the new classes from B at the start of the ontology class site.
The information of these new classes is stored in four columns:
(1st) new ID, (2nd) class label, (3rd) class synonyms, and (4th)
ascendant relationship. Finally, FOntCell creates an .html file
with an interactive circular Directed Acyclic Graph (DAG) of the
original and merged ontologies, and statistical information of the
merging, i.e., percentage and number of added classes/relations
and type of matches in textual and graphical form.

Alignment Performance Scores
To evaluate the performance of FOntCell during alignment
and to compare it with other alignment methods, we used
the Precision (Equation 5), Recall (Equation 6) and Accuracy
(Equation 7) in terms of Type I and Type II errors:

Precision =
TP

TP+ FP
(5)

Recall =
TP

TP+ FN
(6)

Fβ =

(

1+ β2
)

· Precision · Recall
(

β2 · Precision
)

+ Recall

=

(

1+ β2
)

· TP
(

1+ β2
)

· TP+ β2 · FN+ FP
(7)

where β is real positive number that accounts for howmany times
the precision is considered more important than the recall in
the measurement of the accuracy, and TP, FP and FN are the
numbers of True Positives, False Positives and False Negatives,
respectively. We calculated three accuracies: F1, harmonic mean
of the precision and the recall; F0.5 which gives double weight
to the precision compared to the recall, attenuating the false
negative influence; F2, which gives double weight to the recall
compared to the precision, giving more emphasis on false
negatives.

To assess the alignment performance for the cases of
CELDA+LifeMap and CELDA+LifeMap+ LMHA which are de
novo alignments without reference ones, we built manually the
references and used them to compare the performance of all the
alignment tools.

RESULTS

Cosine Is the Best Structure Method for
the CELDA + LifeMap Merging
To find the optimal parameters of FOntCell for the merging of
CELDA with LifeMap, we performed a bidimensional scanning
of the alignment parameters: local name threshold θLN and
window length,W, in the range [0.1, 0.8] and [1, 8], respectively,
using steps of 0.1 for θLN , and 1 for W for all structure
mapping metrics: the three vectorial structure matching methods
(Euclidean, Pearson, and cosine), the constraint-based structure
matching, and the Blondel structure matching (Figure 3A). The
constraint-based method does not involve local name matching,
therefore θLN was not used. A name mapping threshold θN =

0.85 produces an accuracy F1 > 0.9 for almost all the metrics
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(Supplementary Table 1), thus, we keep θN = 0.85 for the rest
of the analysis. θN > θLN recovers some meaningful cases
during the structure mapping and helps to overcome the graph
isomorphism problem arising during subgraph comparisons.
The name mapping threshold θN = 0.85 assigns as similar
class labels those labels that differ in orthographic variations,
such as “s” endings, apostrophes, etc. Therefore, we set for the
remaining analysis θN > θLN = 0.7 since we expected more
name variability in nodes between subgraphs comparisons than
in class-to-class comparison. It is important to reduce the θLN
sensitivity since a more sensitive method finds more isomorph
subgraphs. SmallerW produces smaller subgraphs, increasing the
possibility to slip into isomorph subgraphs making the structure
metric more sensitive to θLN , while for very large W, FOntCell
merges unrelated subgraphs of the two ontologies. For the
CELDA and LifeMap merging, the window size that minimizes
the sensitivity to θLN is W = 4. The constraint-based method
with W = 4 slips into subgraph isomorphism, i.e., it finds too
many synonyms and has higher sensitivity to the change of W
than other vectorial methods (Figure 3A). The Euclideanmethod
is more restrictive than the other vectorial methods but more
sensitive to θLN (Figure 3A). The Pearson and cosine methods
produce almost the same number of matches for all combinations
of alignment parameters (Figure 3A). The cosinemethod obtains
exactly the same number of synonyms as the Blondel method for
all pairs of parameters (Figure 3A).

To analyze the effect of each of the five structure mapping
methods on the percentages of matches, new classes and new
relations between them, and to find the best structure mapping
method, we performed a FOntCell merging of CELDA and
LifeMap for the optimized alignment parameters: W = 4, θN
= 0.85 and θLN = 0.7, for each structure matching method.
We found similar number of classes and relations added by the
different structure matching methods, and similar number of
matches (Figure 3B).

We studied the run time of the five structure mapping
methods for the optimized alignment parameters θN = 0.85
and θLN= 0.7, and window sizes W in the range [1, 8], and
we found that the vectorial methods (cosine, Euclidean and
Pearson) are the fastest, and at least one order of magnitude
faster that the Blondel method (Figure 3C). Since the vectorial
methods are much faster than the Blondel method, and among
them the cosine method obtains the same number of synonyms
as the Blondel, we chose to use the cosine method in the
remaining analysis.

The Merging of CELDA With LifeMap
Expanded CELDA by 67%
The merging of CELDA and LifeMap with θLN = 0.7 and
W = 4 resulted in an ontology integrating all the 841
classes from CELDA with 567 classes from LifeMap. Thus,
the merged ontology increased the cell ontology information
of CELDA by 67% (Figure 4A) with accuracy F1 = 0.9
(Supplementary Table 1). The generated by FOntCell interactive
DAGs of CELDA, LifeMap and the resultant merged ontology
are presented in Figure 5. Zooms of regions where FOntCell

performed both name and structure mapping (Figure 6)
illustrates some of the challenges arising during alignment of cell
ontologies, and how the structural matching rescues information
from one ontology to augment the other ontology and enhanced
the final merged ontology: Two or more classes of CELDA can
align with one class of LifeMap, a rather common phenomenon
when activating the use of synonyms. In the zoomed regions
CELDA (Figure 6A) and LifeMap (Figure 6B) have similar but
not identical structures. CELDA starts with “hypoblast cell,” with
children “yolk cell” and “extraembryonic endoblast cell,” with the
latter further having as a child “secondary yolk sac”, whereas in
LifeMap the same developmental region starts with “hypoblast
cell,” followed by “extraembryonic endoderm cells,” “yolk sac
endoderm cells”, and finally “allantois cell.” The merging shows
a consensus (Figure 6C) that starts with “hypoblast cell” (as in
CELDA and LifeMap), that as child cell has “yolk cell” from
(CELDA and LifeMap) and incorporates as an additional child
the “extraembryonic endoblast cell” owing to the information
provided by LifeMap. From these two children, resulting from
the merging of similar but not identical cells follows the
“secondary yolk” that additionally incorporates as a child the
“allantois cell” owing to the structural information provided
by LifeMap.

For a less restrictive pair of parameters θLN = 0.1 and W
= 1 using the cosine metric, 39.1% of classes from CELDA
have a structure matching in LifeMap independently of the
used structurematchingmethod. Formore restrictive parameters
θLN = 0.7 and W = 7, we obtained 32.2% of classes with
structure mapping.

Aligning CELDA and LifeMap, FOntCell Has
Precision of 99% With Name Mapping, and
Mean Precision of 55% With the Five
Structure Mapping Methods
We calculated the precision of the different mapping methods of
FOntCell when merging CELDA and LifeMap with the optimal
parameters W = 4, θLN = 0.7 and θN = 0.85 (Figure 7A).
The results obtained through name mapping and the different
structure mapping methods were validated checking failures,
false positives (FP) and successes, true positives (TP) on the
matching of the cell types and calculating the precision using
Equation (5). The name matching shows 98.63% precision
(Figure 7A) and has the highest number of matches (Figure 7B),
512, in comparison with the other matching methods of
FOntCell. Among the structure mapping methods, highest
precision of 62.10% is shown by the constraint-based method,
followed by the cosine and the Pearson, 56.42%, Blondel, 50.27%,
and the Euclidean, 48,99%, methods (Figure 7C). Evaluating the
whole FOntCell mapping process, name and structure mapping
methods taken together, we observe similar total precision with
all the methods: ∼87% using the vectorial methods, 86.1% with
the Blondel method, and 86% with the constraint-based method.
Anyway, the vectorial methods produce higher total precision
values due to the contribution of fewer matches than in the
constraint-based and in the Blondel methods.
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FIGURE 4 | Statistics of the merging of CELDA and LifeMap with the cosine

structure matching metric. (A) Donut plot of the percentages of classes added

by name mapping vs. the classes added by structure mapping to CELDA

(outer circle) from LifeMap (inner circle). (B) Square Euler-Venn diagram with

the number of classes before and after merging. The blue and light green

rectangles frame the number of classes in CELDA and LifeMap, respectively,

before the merging, the dark green rectangle frames the sum of name and

structure equivalent classes, and the orange rectangle frames the total number

of classes in the resultant CELDA and LifeMap merged ontology. Alignment

parameters W = 4, θLN = 0.7 and θN = 0.85.

When considering only structure mapping precision, the
Blondel method is the second worst one, slightly better than
the Euclidean method (Figure 7C). However, when combined
with name mapping, all the vectorial methods, including the
Euclidean method, surpass the precision of the Blondel method
(Figure 7A) due to the Blondel method producing more matches
during the structure matching than the Euclidean (Figure 7B).
This indicates that the synergies arising between name mapping
and structure method combinations are stronger for the vectorial
methods than for the Blondel method, at least in the case of
CELDA and LifeMap merging.

Considering only the structure mapping precision, the
Euclidean method has the lowest one, 48.99% (Figure 7C),
while combined with name mapping it has precision of 87.44%,
similar to the combined precision of the other vectorial methods,
cosine and Pearson (Figure 7C), because of the low number of
matches obtained during structure matching, which is actually
the lowest (Figure 7B). This indicates that the synergies arising
between name mapping and structure method combinations
equilibrate for all the vectorial methods. The constraint-based
method contributes the highest number of matches (Figure 7B),
and although it has the highest precision of 62.1% among the
structure mapping methods (Figure 7C), it has the lowest total
precision among the combined methods (Figure 7A).

The Pearson and cosine methods show equal performance,
both with the same number of matches, 179 (Figure 7B), and
the same structure mapping precision of 56.42% (Figure 7C),
which results a total precision of 87.69%when combined with the
name mapping, a total precision of 87.69% when combined with
the name mapping (Figure 7A). In conclusion, the cosine and
Pearson methods in combination with name matching achieve
the highest total precision and the smallest number of matches.
Therefore, we chose the cosine method as default structure
matching method of FOntCell. Anyway, we could have chosen
the Pearson structure method with equally good results.

The Merging of CELDA and LifeMap Has
an Accuracy F1 of 0.91
We calculated the precision (Equation 5), the recall (Equation 6)
and the family of accuracies Fβ: F1, F0.5 and F2 (Equation 7) with
the optimal parameters:W = 4, θLN = 0.7 and θN = 0.85, for each
of the structure metrics (cosine, Euclidean, Pearson, constraint-
based, Blondel), and an additional metric that only measures the
string similarity.

All metrics produce CELDA and LifeMap alignments with
similar Fβ accuracies. The Pearson and cosine obtain slightly
higher F1 and F2 accuracies than the Euclidean for F1 and F2
due to the Euclidean slightly lower recall. The Blondel method
exhibits similar to the vectorial methods behavior with a slight
decrease in precision and a recall similar to cosine and Pearson.
The constraint-based method has lower precision but higher
recall (Supplementary Table 1).

For all FOntCell alignment methods, the precision ranges
between 0.847 and 0.877, and the recall between 0.982 and
0.915 (Supplementary Table 1). In the name mapping case
(StringEquiv), where structural alignment is not used, the
precision is close to 1 but the recall nevertheless decreases
considerably (Supplementary Table 1); thus the name mapping
misses to align numerous classes and many of them are aligned
by the structure alignment methods.

After merging the aligned the ontologies, the resulting
ontologies with the cosine and Pearson methods have a greater
number of matches and a greater growth in the number of classes
(Figure 3C) compared to the Euclidean method. The parameters
that influencemore the process in terms of increasing the number
of classes and the number of matches in the final ontology
are W and θLN . For all values of θN , the number of structure
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FIGURE 5 | Merging of CELDA and LifeMap ontologies. Screenshots of the interactive circular Directed Acyclic Graphs (DAGs) of (A) CELDA, (B) LifeMap and (C) the

merged CELDA + LifeMap ontology, respectively. The orange and blue nodes are the non-matched contributions from ontology A and ontology B, respectively. The

green and red nodes are the nodes with name and structure mapping, respectively. The ontology labels associated to the nodes appear when hovering over the

nodes. The concentric red rings are zoom guides.

matches found have an inflection point when W = 4 and θLN
= 0.7 (Figure 3A). This is the midpoint where the method is not
restrictive enough and not excessively permissive.

The CELDA + LifeMap merging with the optimal
configuration parameters: W = 4, θLN = 0.7, and the cosine
vector method found 691 synonyms between the two ontologies
and generated a final cell ontology with 1,408 classes, 841 from
CELDA and 1,408 – 841 = 567 added classes from LifeMap
(Figure 4B).

The Fβ Alignment Accuracies of FOntCell
Are Above the Geometric Mean When
Comparing With Other Alignment Tools of
the OAEI
To compare the alignment capability of FOntCell with other
tools in a different problem, we selected the alignment of mouse
and human anatomy ontologies task proposed by the Ontology
Alignment Evaluation Initiative (OAEI) in 2019. We used the
optimized parameters: W = 4, θLN = 0.7 and θN = 0.85, and
performed the analysis for all the structural metrics implemented
in FOntCell. For all metrics and the whole family of accuracies Fβ,
FOntCell performs above the geometric mean of the other tools
(Table 3). The simple name matching, incorporated in FOntCell
as a complementary alignment, is more precise but with lower

recall, leading to lower F1 and F2 but higher F0.5 accuracies.
The different types of structural alignment of FOntCell find new
classes undiscovered by the name mapping alignment.

FOntCell Outperforms Significantly the
Best OAEI Tools in the CELDA and LifeMap
Alignment in Terms of Fβ Alignment
Accuracies
We selected the best performing tools that we found during the
alignment of mouse and human anatomy ontologies (Table 3):
StringEquiv, AML and LogMap, and ran them with their default
parameters to compare their performance with FOntCell in the
case of the alignment of CELDA and LifeMap. They showed
higher precision but a lower recall than FOntCell, especially in
the case of AML and LogMap. The lower recall penalized their
accuracy leading to lower F values (Table 4).

The F1 accuracies of StringEquiv and the different methods of
FOntCell alignments are similar,∼0.9. For the accuracy that gives
more weight to the precision, F0.5, StringEquiv outperformed
the other methods. For the accuracy that gives more weight to
the recall, F2, FOntCell that combines a name matching with a
structure matching obtained a better result. Importantly, when
merging is oriented at complementing two ontologies, the recall
is a key value to be able to rescue many new cell types, and
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FIGURE 6 | Zooms of regions of CELDA, LifeMap and the merged ontology where FOntCell performs name and structure mapping. (Left) Screenshots of the

interactive circular Directed Acyclic Graphs (DAGs) of (A) CELDA, (B) LifeMap and (C) the merged CELDA+LifeMap ontology. (Right) Zoomed regions with

corresponding lists of cell types. The synonymous names in each list are separated by commas. The orange and blue nodes are the non-matched contributions from

CELDA and LifeMap, respectively. The green and red nodes are the nodes with name and structure mapping, respectively. The numbers inside circles indicate the

relative parent-child relationship in ascending order.

all metrics of FOntCell outperform the other methods in this
case. Noteworthy, for the whole family of accuracies Fβ, all
FOntCell metrics outperform significantly the best OAEI tools
in the CELDA and LifeMap alignment (Table 4).

The Merging of CELDA + LifeMap With
LMHA Generates 65 New Relations and 39
New Classes
One of the applications of FOntCell is to merge an ontology
from a broad, general description, with another ontology
with very specific knowledge within the same knowledge
domain. In order to illustrate this functionality, we merged
the ontology resulting from CELDA + LifeMap merging with
LMHA, a specific ontology of cells for lung development
starting ∼36 weeks of human fetal gestation and continuing
after birth with some variation in when the alveolar stage
commences and when it is complete. The .owl file used
in the merging was generated by Susan E Wert, Gail H.
Deutsch, Helen Pan, and the National Heart, Lung and
Blood Institute (NHLBI) Molecular Atlas of Lung Development
Program Consortium Ontology Subcommittee (LungMAP)
[U01HL122642] and downloaded from (www.lungmap.net) of
the LungMAP Data Coordinating Center (1U01HL122638)
of the NHLBI, on April 7, 2018. The merging of CELDA
+ LifeMap and LMHA produced 65 new relations and

39 new classes related to endothelial and lymphoid cells
(Figure 8).

DISCUSSION

The discovery of new cell types such as those produced by the
HCA consortium or their better characterization by single cell
transcriptomics (Gerovska and Araúzo-Bravo, 2016) can render
old cellular development ontologies obsolete. We developed
FOntCell to address this problem with a novel algorithm that
by merging ontologies adds new relationships and classes to
a base ontology. Such algorithm allows us to construct from
two ontologies a cell ontology that is as complete and up-to-
date as possible. We implemented FOntCell as a new Python
module that merges efficiently ontologies in the same or similar
knowledge domains. It processes intra- and inter- ontology
synonyms. To process intra-synonyms, its name similarity search
engine is equipped with a name list processing functionality.
To search for inter-ontology synonyms, FOntCell integrates
the name similarity search engine with a structural similarity
search based on graph convolution. Since the structural similarity
assessment is a lengthy process that takes the highest percentage
of the running time of the merge process, to perform the graph
convolution we designed two methods to perform structural
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FIGURE 7 | Alignment performance of the different mapping methods of FOntCell when merging CELDA and LifeMap. (A) Precision, recall and Fβ alignment

accuracies of the different structure mapping methods combined with name mapping (FOntCell), and of name mapping applied separately (StringEquiv). (B) Number

of matches during ontology matching with the different mapping methods. Name mapping is shown in blue and the structure mappings in different hues of orange.

(C) Precision of the name matching and the different structure mapping methods. Name mapping is shown in blue and the structure mappings in different hues of

orange. Alignment parameters W = 4, θLN = 0.7 and θN = 0.85.
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TABLE 3 | Performance scores of FOntCell and other tools in the alignment of the anatomy ontologies of OAEI 2019.

Precision Recall F1 F0.5 F2

FOntCell (cosine) 0.861 0.720 0.784 0.829 0.744

FOntCell (Euclidean) 0.909 0.726 0.807 0.865 0.756

FOntCell (Pearson) 0.859 0.724 0.786 0.828 0.748

FOntCell (constraint) 0.846 0.718 0.777 0.817 0.740

FOntCell (Blondel) 0.860 0.724 0.786 0.829 0.748

StringEquiv 0.997 0.622 0.766 0.890 0.673

AML 0.950 0.936 0.943 0.947 0.939

LogMap 0.918 0.846 0.881 0.903 0.859

AGM 0.152 0.195 0.171 0.159 0.185

ALIN 0.974 0.698 0.813 0.903 0.740

DOME 0.996 0.615 0.760 0.886 0.666

FCAMap-KG 0.996 0.631 0.773 0.893 0.681

Lily 0.873 0.796 0.833 0.856 0.810

LogMapBio 0.872 0.925 0.898 0.882 0.914

LogMapLite 0.962 0.728 0.829 0.904 0.765

POMAP++ 0.919 0.877 0.898 0.910 0.885

SANOM 0.888 0.844 0.865 0.879 0.852

GeoMean 0.807 0.683 0.735 0.775 0.702

In the case of FOntCell, the name of the used structure mapping method is inside parentheses. GeoMean are the geometric mean values of the performance scores of the other tools

with which FOntCell is compared.

TABLE 4 | Performance scores of FOntCell and other tools in the alignment of CELDA and LifeMap.

Precision Recall F1 F0.5 F2

FOntCell (cosine) 0.877 0.925 0.900 0.886 0.915

FOntCell (Euclidean) 0.874 0.915 0.894 0.882 0.906

FOntCell (Pearson) 0.877 0.925 0.900 0.886 0.915

FOntCell (constraint) 0.847 0.982 0.910 0.871 0.952

FOntCell (Blondel) 0.861 0.924 0.891 0.873 0.911

StringEquiv 0.986 0.829 0.901 0.950 0.857

AML 0.971 0.269 0.422 0.639 0.315

LogMap 0.983 0.317 0.480 0.692 0.367

GeoMean 0.980 0.413 0.567 0.749 0.463

In the case of FOntCell, the name of the used structure mapping method is inside parentheses. GeoMean are the geometric mean values of the performance scores of the other tools

with which FOntCell is compared.

convolution: vectorial topological similarity and constraint-
based topological similarity. To calculate the vectorial topological
similarities we designed a general method to calculate the
similarities between vectors of different lengths for different
metrics. Additionally, we adapted the Blondel method to work
for such new topological convolution approach.

Different ontologies could benefit from different alignment

parameters; e.g., for the CELDA + LifeMap merging, we

found the vectorial methods produce similar results, with a
slight advantage for the cosine method. All the functionalities
of FOntCell allow the unification of dispersed knowledge in
one domain into a unique ontology. FOntCell produces the
results in commonly used ontology format files that can be
re-used by FOntCell in an iterative way to adapt continuously
the ontologies with the new data, endlessly produced by

data-driven classification methods. To navigate across the
merged ontologies, it generates HTML files with interactive
circular DAGs.

FOntCell is a targeted tool for merging cell development
ontologies. The objective behind this tool is the production
of a cell-type ontology, which bases its relationships on
development and serves as the basis for other works that require
a holistic vision of cell development. FOntCell helps us collect
the information within the different cell-type ontologies and
contrasts them against each other without requiring standards
or supervision, and grants us a final ontology that contains the
cell types that are common and those that are not common
between the two. FOntCell, being devised with this objective,
does not obtain the same results when it tries tomerge other types
of ontologies which correspond to other internal hierarchies.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 15 February 2021 | Volume 9 | Article 562908

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Cabau-Laporta et al. FOntCell

FIGURE 8 | Merging of CELDA + LifeMap with LungMAP Human Anatomy (LMHA) ontology. (A) Circular Directed Acyclic Graph (DAG) of the merged ontology. The

orange and blue nodes are the non-matched contributions from CELDA+LifeMap and LMHA, respectively. The green and red nodes are the nodes with name and

structure mapping, respectively. In the interactive application generated automatically in html by FOntCell, the ontology labels associated to the nodes appear when

hovering over the nodes. The concentric red rings are zoom guides. (B) Donut plot of the percentages of classes added by name mapping vs. the classes added by

structure mapping to the merged CELDA + LifeMap (outer circle) from LMHA (inner circle). (C) Square Euler-Venn diagram with the number of classes before and after

the merge. The blue and light green rectangles frame the number of classes in CELDA + LifeMap and LMHA before the merging, respectively, the dark green

rectangle frames the sum of name and structure equivalent classes, and the orange rectangle frames the total number of classes in the resultant CELDA + LifeMap +

LMHA merged ontology. Alignment parameters W = 4, θLN = 0.7 and θN = 0.85.

Then, the performance scores obtained when merging two
ontologies from domains other than cell types are above the
average with respect to the rest of the OAEI tools. However,

for these cases, there are less specific algorithms that are
capable of aligning the ontologies, some of them better than
FOntCell.
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IMPLEMENTATION AND SOFTWARE
AVAILABILITY

FOntCell is developed in Python v3.7 and uses the Python library
NetworkX to derive the digraph relation of the ontology and to
transform each class to a node and each hierarchy step to an
edge. NetworkX graphs allows FOntCell access the sorted list of
nodes without repeats, and produce digraphs compatible with
graph visualization tools such as graphviz and matplotlib. For
specific data manipulation, FOntCell uses numpy, pyexcell_ods,
argparse, stringdist, and basic Python libraries such as os,
collections and itertools. As other merging algorithms (Faria
et al., 2018) the algorithm complexity (Big O) is quadratic time
O(n2), however it is possible to reduce the time complexity in
the matching problem from quadratic to linear implementing
a hash-based searching strategy. For parallelization and the
structure-mapping, FOntCell uses BigMPI4py (Ascension and
Araúzo-Bravo, 2020).We added a demo function to the FOntCell
distribution package merging CELDA with LifeMap.

The automatic installation installs all the dependencies.
Additional installation information is provided at https://
www.arauzolab.org/tools.html and at https://pypi.org/project/
fontcell/. Full instructions of the prerequisites for installation, the
downloading of FOntCell, the user manual, an example of how
to run FOntCell and an example of the html output created by
FOntCell are provided in the Supplementary Material.
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