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Cervical cancer is the fourth most prevalent cancer in women, which decreases quality
of life of the patients. Traditional interventions have failed to improve the overall survival
period of patients due to high tumor recurrence after treatment or late diagnosis.
Fortunately, preliminary evidence suggests that anti-angiogenic and immunotherapy
can efficiently treat against cervical cancer. However, there is no clear evidence on
the efficacy of immunotherapy in cervical cancer. Therefore, in this study, we classified
cervical cancers in the TCGA dataset using various algorithms and explored the
relationship between the immune profile and corresponding sensitivity of the tumors
to immunotherapy. Results showed that patients with tumors had higher expression of
immunocytes and longer overall survival time. In addition, we build a scoring system
based on the immune landscape of the tumor microenvironment of cervical cancer.
Tumors with higher scores exhibited better survival outcomes and were more sensitive
to immunotherapy. In this study, the immune landscape of cervical cancer was analyzed,
and the subtype of cervical cancer based on that difference was proposed. Besides, the
subtype of cervical cancer showed different sensitivity to immunotherapeutic response
which further confirmed its relationship with tumor immune landscape.

Keywords: cervical cancer, immunocytes, tumor microenvironment, immunotherapy, PD-1

INTRODUCTION

Cervical cancer is the fourth most prevalent cancer among women. In the developing countries,
it is the leading cause of cancer-associated mortalities (Canfell, 2019). The median age for
patients diagnosed with cervical cancer is 49 years. In general, cervical cancer lowers the
quality of life of the affected persons (Canfell, 2019). It has been established that prolonged
infection with human papillomavirus (HPV) type 16 and 18 is a risk factor for cervical cancer
(Crosbie et al., 2013). Prophylactic vaccines against high-risk HPV types minimize the risk of
developing cervical cancer. However, due to the limitations associated with HPV vaccines, reliable
therapeutic options for cervical cancer, particularly recurrent or advanced tumors, are required
(Shanmugasundaram and You, 2017). Current therapeutic options include surgical removal of the
tumors based on the FIGO staging system, incorporated with chemo- or radiotherapies (Bhatla
et al., 2019; Koh et al., 2019). As for recurrent cervical cancer, bevacizumab in combination with
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other therapies can significantly prolong patients’ survival time
(Tewari et al., 2017). In addition, immunotherapy is a viable
option for cervical cancer treatment.

Immunotherapy is effective against various solid tumors.
Mechanistically, immunotherapy enhances immune responses
by utilizing immune checkpoint inhibitors and adoptive cellular
transfer (O’Donnell et al., 2019). However, immunotherapeutic
depends on the tumor microenvironment (Gasser et al., 2017).
Immunocyte infiltration degree, tumor mutational load, and
T cell functions affect tumor sensitivity to immunotherapy.
Programmed death ligand 1 (PD-L1) has been reported in over
90% of cervical cancer and tumors. Higher infiltration ratios of
CD8+ T cells and CD4+ T regulatory cells confer better survival
outcomes for tumor patients (Ramanathan et al., 2018; Otter
et al., 2019). The immune system is also involved in HPV-induced
tumorigenesis (Orbegoso et al., 2018). HPV has been known
to trigger chronic inflammation, escape immune surveillance by
hiding in keratinocytes, suppress cellar immunity, and wall itself
with recruited immunocytes (Piersma, 2011). Based on these
features, immunotherapy presents the best strategy for managing
cervical cancer (Piersma, 2011; Smola, 2017; Kagabu et al., 2019).

Establishment of reliable biomarkers for the best choice
of immunotherapy as well as an improved understanding of
immune infiltration features with regard to cervical cancer are
key to immunotherapy. Therefore, this study aimed at exploring
cervical cancer-induced immune infiltration characteristics based
on different clustering algorithms, with the aim of providing a
strong foundation for research and rationale for immunotherapy.
The ratio of immunocytes, overall survival outcomes, mutation
burden, and immunotherapeutic responses between different
groups were compared.

MATERIALS AND METHODS

CESC Data and Preprocessing
A total of 291 samples from publicly available cell carcinoma
(CESC) gene-expression datasets in The Cancer Genome Atlas
(TCGA) were utilized in our analyses (Supplementary Table 10).
The TCGA dataset was downloaded from UCSC Xena1, and
subsequent analysis was performed using the R software (version
3.6.1) and R Bioconductor packages.

Estimation of TME Infiltrating Cells
The respective proportions of the immune infiltrating cells in
the cervical squamous CESC samples were quantified using
the ssgsea algorithm (Hanzelmann et al., 2013). The gene sets
comprised of 782 genes that could predict the abundance of 28
TIICs in individual tissue samples2. CESC was selected because
it allows for the determination of sensitivity and specificity of
immune cell phenotypes. It can be used to discriminate up to 28
human infiltration immune cell phenotypes.

1https://xenabrowser.net/
2http://software.broadinstitute.org/gsea/msigdb/index.jsp

Unsupervised Consensus Clustering of
TME-Infiltrating Cells
In order to generate more groups for further analyses,
Partitioning Around Medoid (PAM) (Tahiri et al., 2018) was
used to classify tumors with qualitatively diverse TME-infiltrating
patterns. The optimal number of clusters in the TCGA cohort was
determined using the ConsensuClusterPlus R package (Monti
et al., 2003). The consensus ESTIMATE algorithm was performed
to assess the infiltration of stromal and immune cells in CESC
samples (Yoshihara et al., 2013).

Identification of TME-Associated
Differentially Expressed Genes
The patients were grouped into two distinct TME clusters based
on the expression of immune infiltrating cells. The R package
limma was used to determine differentially expressed genes
(DEGs) between the two TME cell-infiltrating clusters (Ritchie
et al., 2015). Adjusted p-value < 0.01 and | logFC| > 1
were considered to be statistically significant for DEGs between
the TME subtypes.

TME Gene Signatures Generations and
Dimension Reduction
The DEGs between TME clusters were standardized for all the
samples in the TCGA CESC cohort. Prognostic associated DEGs
were filtered out by performing the Univariate Cox regression
analysis (p-value < 0.05). The unsupervised clustering method
(Hartigan and Wong, 1979) was used to classify patients into
either of the TME gene clusters. Annotation of the TME
gene pattern was performed using the clusterProfiler R package
(Ghasemi and Zahediasl, 2012). The clustering algorithm (Monti
et al., 2003) was used to define the gene clusters. Principal
component one that served as the signature score was obtained
using the principal component analysis (PCA). The TME score
for each patient was determined based on the prognostic value of
the gene signature (Sotiriou et al., 2006):

TME score =
∑

PC1i−
∑

SPC1j

where “i” is the signature score of clusters with HR > 1, while “j”
represents the expression of genes with HR < 1.

Pathway Enrichment Analysis
The gene sets for pathway enrichment analysis were downloaded
from the MSigDB database (Subramanian et al., 2005). Gene
set variation analysis (GSVA) was performed on the TME
score and the TME clusters using the clusterProfiler R package
(Ghasemi and Zahediasl, 2012). Genes for the enriched Pathways
in TME were identified using Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG), with an adjusted
p < 0.05.

Immunotherapeutic Response Prediction
The Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm was used to link individual responses to
immunotherapeutic responses (Jiang et al., 2018; Lu et al., 2019).
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Differences in anti-PD-1 and CTAL-4 therapeutic response
were evaluated using the Submap analysis. For the melanoma
data set (GSE78220, N = 28), the expression profiles (FPKM
normalized) of GSE78220 were transformed into TPM values
which were then used to calculate the TME score (Wagner
et al., 2012). With regard to the urothelial cancer data set
(IMvigor, N = 298), the data package was downloaded from
http://research-pub.gene.com/IMvigor210CoreBiologies.
Quality control and trimming of the mean of M-values were
performed using the R package arrayQualityMetrics to normalize
the numerical data (Ritchie et al., 2015).

Statistical Analysis
The Shapiro–Wilk normality test was used to establish
variable normality (Ghasemi and Zahediasl, 2012). For
normally distributed variables, the unpaired Student t-test
was used to compare differences between the two groups,
whereas the Wilcoxon test was used to compare abnormally
distributed variables. One-way analysis of variance (ANOVA)
and Kruskal–Wallis tests were used for comparison of
multiple groups.

Pearson and distance correlation analyses were performed to
calculate correlation coefficients. The χ2 contingency test was
performed to determine the interrelationships between TME
score and anti-PD-1 response. The overall survival and TME
score were determined using the R package. The threshold for
survival values was determined. Based on the dichotomized TME
score, patients were grouped into either high or low TME clusters,
while at the same time reducing the computational batch effect
by the R package sva. The data were visualized using the ggplot2
for R package. In the analysis of differential gene expression, we
used the Benjamini–Hochberg method that converts p-values to
FDRs to identify significantly expressed genes (Schreiber et al.,
2011). OncoPrint was used to delineate the mutation landscape
in the TCGA dataset using the maftools R package (Wang
et al., 2020). Survival curves for the subgroups were generated
using the Kaplan–Meier method. Statistical significance between
different data sets was determined using the log-rank test. The
univariate and multivariate Cox proportional hazard regression
models were performed using the R package to determine
independent factors associated with prognosis. Survivorship
curves were generated using the R package survminer. Heatmaps
were generated based on pheatmap. All statistical analyses
were performed using R3. The tests were two-sided, with
p-values < 0.05 being considered to be statistically significant.

RESULTS

The Landscape and Functional
Annotation of CESC TME
The flowchart for this study is shown in Supplementary
Figure 1A. Analysis on cluster stability performed on CESC in the
TCGA dataset using ConsensusClusterPlus package to select the
optimal cluster number is shown in Supplementary Figure 1B.

3https://www.r-project.org/, version 3.6.1

PAM of the 291 tumors with corresponding TME cell expression
profiles in the TCGA cohort on its part is shown in Figure 1A.
Two TME phenotypes were established based on immune
cell infiltration. They conferred significantly different OS for
outcomes (log-rank test, p < 0.001) as shown in Figure 1B. PCA
showed a clear separation between the two established groups
in the TCGA dataset (Figure 1C). Figure 1D shows the distinct
TME infiltration patterns for the two clusters. Based on the
ESTIMATE algorithm, TME cluster 1 was strongly associated
with the estimated, immune, and stromal scores compared
with TME cluster 2 (Figure 1E). Furthermore, 20 immune-
related signaling pathways and DNA regulation-related pathways
in GO analysis (Supplementary Table 1) were identified in
the TCGA data set (Supplementary Figure 2A). Intrinsic
immune escape was attributed to the expression of seven
immune checkpoint molecules including antigen presenters, co-
stimulators, co-inhibitors, receptors, ligands, and cell adhesion
proteins, among others (Schreiber et al., 2011; Wang et al.,
2020). There was an elevated expression of immune checkpoint
molecules around TME cluster 1 of the CESC that aid the
respective tumor cell escape from immune killing in TCGA
(Supplementary Figure 2B). Moreover, the correlation of TME
clusters, hypoxia, and metabolism was explored. TME cluster 2
was found to correlate with more metabolism-related signaling
pathways (Figure 2A). TME cluster 2 also positively correlated
with hypoxia-related gene signatures, indicating a malignancy of
TME cluster 2 (Figure 2B).

Generation of TME Gene Signatures and
Functional Annotation
A total of 383 DEGs (Supplementary Table 2) were identified
and used to classify the patients into genomic types, to further
investigate the potential biological characteristics of each TME
infiltration cell pattern. The clustering stability established
by ConsensusClusterPlus package for the optimal number of
clusters (Supplementary Figure 1C) was in tandem with the
two CESC gene clusters (gene clusters 1 and 2) generated
in TCGA (Figure 3A). Survival analysis of the two clusters
revealed that the expression of gene cluster 1 was associated
with better survival outcome (Figure 3B). Compared to cluster
2 genes, cluster 1 gene expressions were also associated with
immune, stromal, and estimate scores (Figure 3C). Furthermore,
cluster 1 genes were correlated with higher expression levels of
infiltrating immune cells (Figure 3D). Compared to cluster 2
genes, CESC in gene cluster 1 were significantly associated with
the immunosuppressive process that was mediated by a higher
expression of immune checkpoint molecules (Figure 4A).

Univariate Cox regression analysis for TME scores and
the corresponding transcriptome traits as well as clinical
characteristics for the top98 DEGs are shown in Supplementary
Table 3, respectively. GO enrichment analysis revealed that 98
genes were associated with T cell activation and proliferation,
regulation of macrophage activation, positive regulation of
tumor necrosis factors, and neutrophil-mediated immunity.
Combined, these pathways regulate the immune system
(Figure 4B and Supplementary Table 4). KEGG enrichment
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FIGURE 1 | The landscape of CESC TME, and the characteristics of TME subtypes in TCGA. (A) Unsupervised clustering of TME cells for 291 patients in TCGA.
(B) Kaplan–Meier curves for 291 patients in TCGA, showing the association between TME infiltration patterns and OS (log-rank test, P < 0.001). (C) PCA for the two
TME clusters. (D) The distribution of immunocytes in the two TME clusters. Within each group, the scattered dots represent values for cellular expression at TME
whereas the thick line represents the median value. The bottom and top (lines) in the boxes are the 25th and 75th percentiles (interquartile range). The whiskers
encompass 1.5 times the interquartile range. The statistical difference of the two TME clusters was compared using the Kruskal–Wallis test. **, P < 0.01; ****,
P < 0.0001; ns, not statistically significant. (E) The differential expression of Estimate, Immune, and Stromal Score for TME clusters in the TCGA dataset.

analysis was consistent with GO analysis, with 98 genes found
to be associated with immune system regulation (Figure 4C
and Supplementary Table 5). TME scores for patients with
CESC in the TCGA dataset are shown in Supplementary
Table 6. GO analysis revealed that high TME scores were
significantly associated with immune-related pathways,
including T cell selection, T cell activation, regulation of
macrophage activation, negative regulation of lymphocyte-
mediated immunity, mast cell activation, regulation of myeloid
dendritic cell activation, regulatory T cell differentiation, and
immune response activation (Figure 5A and Supplementary

Table 7). Furthermore, CESC with high TME scores exhibited
higher immune checkpoint expression levels (Figure 5B).
High TME scores were also associated with macrophage, mast
cells, MDSC, and regulatory T cell infiltration, all of which
induce an immunosuppressive environment. Moreover, a high
TME score was also a predictor for a more activated immune
environment. This is because high TME scores were correlated
with a higher infiltration of multiple T cells and natural killer
cells (Figure 6A). The two-sided role of high TME score
could be attributed to the complexity of multiple immune
cell-infiltrated tumor microenvironment. High TME scores were
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FIGURE 2 | Functional annotation of TME clusters. (A) Heatmap depicting the correlation of TME clusters and metabolic pathways. (B) Heatmap depicting the
correlation of TME clusters and hypoxia-related gene signatures. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not statistically significant.

also positively correlated with Estimate, Immune, and Stromal
Score (Figure 6B).

TME Score Is Associated With Unique
Patterns of Genomic Alterations
CNA and somatic mutation analysis performed on the TCGA
dataset to determine the association between TME score and
CESC genomic profiles revealed that samples with high TME
scores frequently amplified several genomic regions particularly
drivers of oncogenesis and immune regulatory genes including

NRAS (1p13.27), DUP3Q29 (3q29), LYZ (5p11), HLA-DQA1
(6p21.32), CHEK2P2 (15q11.1), STAT3 (17q21.2), and KLK3
(19q13.33). These gene sets were associated with COL11A1
(1p21.1), MCL1 (1q21.2), UGT2B7 (4q13.2), ANGPT2 (8p23.1),
PTEN (10q23.31) TNFRSF13B (17p11.2), TNNI3 (19q13.42),
and GSTT1 (22q11.23) gene deletions as shown in Figure 6C.
Different genomic profiles were observed in low TME score
as shown in Supplementary Figure 3A. Furthermore, somatic
mutation profiling revealed a high frequency of mutations in
TTN (51%), MUC4 (35%), PIK3CA (32%), MUC17 (25%),
MUC16 (24%), and SYNE1 (23%) among genes with high TME
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FIGURE 3 | TME signatures and functional annotation constructs. (A) Unsupervised analysis and hierarchical clustering of common DEGs based on expression data
of CESC derived from the TCGA: Gene clusters 1 and 2. (B) Kaplan–Meier curves for the two TME gene clusters (log-rank test showed an overall P < 0.001).
(C) The differential expression of Estimate, Immune, and Stromal Score in TME clusters in the TCGA dataset. (D) The distribution of cells in TME gene clusters.
*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not statistically significant.
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FIGURE 4 | (A) The expression pattern of seven types of immune checkpoints in TME gene clusters for the TCGA dataset. (B) The GO enrichment analysis of the 98
DEG for TME signatures. (C) KEGG enrichment analysis of the 98 DEG for TME signatures. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not
statistically significant.

score (Figure 6D), whereas TTN (32%), MUC4 (29%), PIK3CA
(29%), and MUC16 (27%) were the frequently mutated genes in
the low TME score cluster (Supplementary Figure 3B).

TME Score Predicts Therapeutic
Responses
In the analysis of the association between prognosis and TME
score for the CESC cohort, it was found that high TME scores

and targeted therapy were respective markers and intervention
for positive prognosis of CESC in the TCGA dataset. Univariate
and multivariate analyses revealed that patient ages, tumor stage,
and radiation therapy were correlated with poor CESE prognosis
(Figure 7A). A high TME score was associated with better
survival outcomes for patients with CESC, BRCA, and OV in
the TCGA dataset (Figure 7B). TME scores for BRCA and OV
patients in the TCGA dataset included in this study are shown in
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FIGURE 5 | Immune-related functional annotation for the TME score. (A) GSVA for the TME score based on GO for TCGA. (B) The expression pattern of seven
types of immune checkpoints in the TME score-based clusters for TCGA. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not statistically significant.

Supplementary Tables 8, 9, respectively. Analysis of the probable
response to immunotherapeutic response for CESE in the TCGA
based on the TIDE algorithm revealed that low TME score
tumors responded better to immunotherapy compared to high
TME score tumors (Figure 7C). Subsequently, anti-PD-1 and
anti-CTLA-4 therapeutic responses were analyzed. Tumors in
the two TME score clusters were found to respond differently
to immunotherapies. Tumors in the high TME score clusters
exhibited a better response to anti- than those with low TME
scores (Figure 7D). In the melanoma dataset, GSE78220 patients
with high TME scores exhibited significantly longer OS outcomes
than patients with lower TME scores (Figure 7E). High TME
scores were also correlated with complete and partial anti-PD-1

responses (Figure 7F). In the urothelial cancer dataset, patients
with high TME scores exhibited significantly longer OS outcomes
than those with low TME scores in the IMvigor210 cohort
(Figure 7G). Additionally, high TME scores were also associated
with strong anti-PD-1 responses (Figure 7H).

DISCUSSION

The component of the cervical cancer microenvironment can
affect cervical cancer progression, but potential mechanisms
are still elusive. In this study, we analyzed the influence
of immunocyte infiltration shed on tumor response to
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FIGURE 6 | Genomic profiles associated with the TME score. (A) The distribution of immune cells in TME score clusters for TCGA. (B) The differential expression of
Estimate, Immune, and Stromal Score for TME score in the TCGA dataset. (C) GISTIC 2.0 amplifications and deletions in CESC with high TME score. Chromosomal
locations of peaks of significantly recurring focal amplification (red) and deletions (blue). (D) Differential somatic mutations in CESC with a high TME score.
*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not statistically significant.

immunotherapy by applying different algorithms and proposed
the subtype of cervical cancer based on immunocyte infiltration.
CESC in the TCGA dataset were grouped into two clusters
based on the differential expression of immunocytes, and lower
immunocyte infiltration ratio samples showed worse survival
outcome. In the meantime, several metabolic related pathways
and hypoxia-associated genes were also differentially activated
or expressed between the low-risk group (TME cluster 1) and
the high-risk group (TME cluster 2). Therefore, the immune
subtype of cervical cancer, TME cluster 1, and TME cluster 2 can
affect the formation of the tumor microenvironment and cervical
cancer progression.

To step further, 383 DEGs in total were identified and used
to deeply explore this immune subtype of cervical cancer.

High TME score group samples are usually accompanied
with higher infiltration ratios of immunocytes like NK
cells, T cells, and macrophages and higher immunotherapy-
related gene expression (like HLA-A, HLA-B, HLA-C, CCL5,
CXCL10, CD40, CTLA4, and PDCD1). In addition, immune
activation-related pathways are also differentially activated
in the low and high TME score groups. The previous
study reported that chemokines like CCL5 and CXCL10
can modulate tumor sensitive to immunotherapy (Vilgelm
and Richmond, 2019). Biomarkers like CTLA4, CD40, and
the HLA family have been confirmed to be involved in
immune surveillance (Waldman et al., 2020). Therefore,
tumors with a low TME score group may be more sensitive
to immunotherapy than high-scoring samples. However, its
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FIGURE 7 | Prognosis potential of TME score for immunotherapeutic response. (A) Univariate and multivariate Cox regression model estimating prognostic potential
of TME score, patient age, tumor stage, tumor grade, pregnancy count, radiation therapy, and targeted therapy in TCGA. (The length of horizontal line represents the
95% confidence interval for each group. The vertical dotted line represents the HR of all patients. HR < 1.0 indicates that a high TME score is a biomarker for
positive prognosis). (B) Kaplan–Meier curves for the two groups of patients classified along the TME score for CESC, BRCA, and OV from the TCGA. (Log-rank test
showed an overall P < 0.001). (C) The TIDE value and response to immunotherapy for the TME score clusters. (D) Submap analysis based on the TIDE algorithm for
differential response to CTAL-4 and anti-PD-1 therapy with regard to the TME score for the TCGA dataset. (E) Kaplan–Meier curves for the two groups of melanoma
patients classified based on TME score for GSE78220. (Log-rank test showed an overall P < 0.001). (F) TME scores for groups with different anti–PD-1 clinical
response status (CR/PR and SD/PD) in the GSE78220 dataset. (Wilcoxon, P = 0.019). (G) Kaplan–Meier curves for the two groups of patients classified based on
the TME score in the IMvigor cohort. (Log-rank test: P < 0.001). (H) Distribution of TME scores in groups with different anti–PD-L1 clinical response statuses in the
IMvigor cohort.

prediction ability still requires being examined with more
clinical samples.

Previous studies also discussed the association between
cervical cancer and its immune landscape. A previous study
analyzed the proportion of immunocytes in cervical cancer
and identified prognostic related immunocytes (Wang et al.,
2019). Another study stratified samples based on the expression
profile of differentially expressed immune-related genes and
suggested that samples with higher infiltrated CD8 T cells
and mast cells are more sensitive to immune checkpoint
inhibitors (Yang et al., 2019). Moreover, tumor mutation loads
are also critical intrinsic factors that affect tumor response
to immunotherapy (Gasser et al., 2017; Havel et al., 2019).

For instance, the amplification of HLA-DQA1 and STAT3
(Bae et al., 2020; Zou et al., 2020) and the deletion of ANGPT2
and TNFRSF13B (Rotolo et al., 2016; Lauret Marie Joseph et al.,
2020) from the high TME score group have been proved to
be immunotherapy-associated factors. Therefore, the TME score
may serve as a potential tool to evaluate the tumor sensitivity
to immunotherapy.

Previous studies proposed the “hot” and “cold” tumor
analogy to describe tumor sensitivity to immunotherapy
(Galon et al., 2006; Galon and Bruni, 2019). Given that tumors
with high TME scores exhibited higher infiltrations of activated
immunocytes and inflammatory related cells, tumors in this
group may be referred as “hot” tumors. Moreover, high
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TME score tumors exhibited better PD-L1 receptor therapeutic
response than low TME score tumors. Thus, adopting different
strategies may improve patients’ clinical outcome. For instance,
T-cell-targeted therapy (Buchbinder and Desai, 2016; Hellmann
et al., 2016) or microbiome modulation (Snyder et al., 2015;
Routy et al., 2018) was recommended to “hot” tumors.
Chemotherapy, in combination with T cell enhancement or
stimulatory signals, can improve “cold” tumor sensitivity
(Whiteside et al., 2016). Taking the TME score into consideration
in the choice of cervical cancer treatment may improve patients’
survival outcome.

In this study, infiltration of activated immunocytes was
preferentially enhanced in the high TME score group. A higher
immunocyte infiltration and enhanced immune checkpoint gene
expression in the high TME score cluster implies that these
tumors are more sensitive to immunotherapy. In conclusion, this
study highlights the impact of the tumor microenvironment to
immunotherapeutic sensitivity in tumors.
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