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Single-cell variability of growth is a biological phenomenon that has attracted growing

interest in recent years. Important progress has been made in the knowledge of the

origin of cell-to-cell heterogeneity of growth, especially in microbial cells. To better

understand the origins of such heterogeneity at the single-cell level, we developed a

newmethodological pipeline that coupled cytometry-based cell sorting with automatized

microscopy and image analysis to score the growth rate of thousands of single cells.

This allowed investigating the influence of the initial amount of proteins of interest on the

subsequent growth of the microcolony. As a preliminary step to validate this experimental

setup, we referred to previous findings in yeast where the expression level of Tsl1, a

member of the Trehalose Phosphate Synthase (TPS) complex, negatively correlated

with cell division rate. We unfortunately could not find any influence of the initial TSL1

expression level on the growth rate of themicrocolonies.We also analyzed the effect of the

natural variations of trehalose-6-phosphate synthase (TPS1) expression on cell-to-cell

growth heterogeneity, but we did not find any correlation. However, due to the already

known altered growth of the tps11mutants, we tested this strain at the single-cell level on

a permissive carbon source. This mutant showed an outstanding lack of reproducibility of

growth rate distributions as compared to the wild-type strain, with variable proportions of

non-growing cells between cultivations and more heterogeneous microcolonies in terms

of individual growth rates. Interestingly, this variable behavior at the single-cell level was

reminiscent to the high variability that is also stochastically suffered at the population level

when cultivating this tps11 strain, even when using controlled bioreactors.

Keywords: stochastic gene expression, Saccharomyces cerevisiae, single-cell analysis, gene expression noise,

phenotypic heterogeneity, TPS1, TSL1

INTRODUCTION

The increasing number of studies describing phenotypic heterogeneity in microbial
populations, opened a new look at biological phenomena that were thought to be
far more homogeneous from cell-to-cell. Genetically identical microbial cells indeed
display heterogeneity in their morphology, the composition of their cellular components,
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and their growth dynamics (Ackermann, 2015). Especially,
while decades of research deciphered the molecular mechanisms
underlying growth control, particularly upon the availability of
key nutrients (Broach, 2012), population-based assays concealed
cell-to-cell variations upon growth stimuli or inhibitors such as
various stresses (Petrenko et al., 2013).

High-throughput microscopy made it possible to observe and
quantifymicrobial growth heterogeneity at the single-cell level on
thousands events (Levy et al., 2012; Ziv et al., 2013, 2017; Kiviet
et al., 2014; Van Dijk et al., 2015; Cerulus et al., 2016; Li et al.,
2018; Dhar et al., 2019). A pioneering work in Saccharomyces
cerevisiae demonstrated that growth rate heterogeneity could
serve as a bet-hedging mechanism, providing a benefit to the
population across changing environments, especially in yeast
(Levy et al., 2012). Clonal S. cerevisiae populations displayed
broad distributions of growth rates with slow growth being
predictive of resistance to heat killing in a probabilistic manner
(Levy et al., 2012). Cell-to-cell heterogeneity in growth rate
was also observed across laboratory strains, natural and clinical
isolates, and that independently of differences in population
growth rate (Ziv et al., 2013).

Metabolic heterogeneity is acknowledged to be intrinsically
linked to growth rate heterogeneity in microbial populations
(Takhaveev and Heinemann, 2018; Wehrens et al., 2018). A role
for the DNA damage response has also been suggested in the
generation and maintenance of proliferation heterogeneity (Van
Dijk et al., 2015; Yaakov et al., 2017). Toward the understanding
of the molecular and cellular basis for such heterogeneity, it
has been shown that the slow-growing subpopulation in S.
cerevisiae expresses more genes in general (Van Dijk et al.,
2015). These results suggested a more permissive chromatin
leading to more stochastic and plastic gene expression, which
may, in turn, allow cells to explore a larger phenotypic space
(Van Dijk et al., 2015). This is detrimental for single cells in
terms of growth rate in constant environments, yet advantageous
when the cells need to shift to alternative carbon sources, for
example, for faster transcriptional reprogramming and shorter
lag phases (Venturelli et al., 2015). This phenomenon of pervasive
gene expression in a subpopulation is very similar to what was
observed in undifferentiated mammalian stem cells that exhibit
permissive chromatin allowing widespread and highly variable
gene expression (Efroni et al., 2008; Gaspar-Maia et al., 2011),
which is associated with a specific metabolic state (Ryall et al.,
2015). These data suggested that metabolism, along with stress
response andmitochondrial activity, could emerge as a key player
in epigenetics, with metabolites used as substrates for chromatin
modifiers (Gut and Verdin, 2013).

By looking for genes that first were previously found to be
expressed with high noise (Newman et al., 2006) (that could
account for their contribution to growth heterogeneity), and
second whose deletion strongly affect population growth rate
in S. cerevisiae, Levy et al identified TSL1, which encodes a
member of the Trehalose Phosphate Synthase (TPS) complex.
Using a GFP-tagged version of Tsl1, they revealed that expression
of this gene negatively correlated with cell-division rate in
microcolonies, with high Tsl1-GFP fluorescence being associated
with cells that undergo few or no cell divisions over the first

8 h after spreading (Levy et al., 2012). Interestingly, other genes
encoding members of the TPS complex (TPS1 and TPS2), were
also identified as potential markers of growth state, without
further investigations in their work. The same group then found
that different levels of intracellular cyclic AMP (cAMP) between
single cells underlid, at least in part, growth rate heterogeneity
and stress tolerance, highlighting the importance of cell signaling
leading to stress-related transcription factors Msn2 andMsn4 (Li
et al., 2018).

These authors also related growth heterogeneity to energetic
metabolism when they observed that CIT1, encoding citrate
synthase that catalyzes the first step in the TCA cycle, was a
marker that also correlated with growth rate. Interestingly, CIT1
expression was negatively correlated with growth rate across all
conditions (acetate, glucose, galactose) (Ziv et al., 2013), while a
positive correlation was observed within populations in different
carbon sources and different glucose concentrations, even if this
might be an indirect relationship (Ziv et al., 2013). A recent
study that screened the S. cerevisiae gene deletion library for the
consequences of gene deletion on single-cell variability of growth
also found relationships with energetic metabolism. The authors
revealed that deletion of mitochondrial functions produced the
most important changes in the fraction of slow-growing cells, this
phenotypic heterogeneity being especially impacted by variation
in mitochondrial membrane potential (Dhar et al., 2019).

Finally, other works found connections between single-cell
variability of growth and sugar transport. Cerulus et al. (2016)
examined gene expression and single-cell growth on palatinose
and showed, by hypothesizing that genes necessary for growth
on this sugar might affect the observed growth variability, that
overexpressingMal11 an alpha-glucoside transporter, reduces the
division time variability. Similarly, works by Ziv et al. (2017)
mapped genetic loci determining variation in lag duration and
exponential growth rate using high-throughputmicroscopy assay
in various glucose concentrations, and found that sequence
variation in the gene coding for the high-affinity glucose
transporter Hxt7 contributes to such variation.

These works revealed a variety of potential pathways and
markers that are involved in single-cell variability of growth
and that all contribute in part to this complex phenomenon.
As mentioned, the candidate molecular markers of slow-
dividing cells in S. cerevisiae are enriched in genes involved
in bioenergetics (Levy et al., 2012), especially those involved
in the metabolism of trehalose. Beyond Tsl1 whose expression
particularly anti-correlated with individual growth phenotypes
(Levy et al., 2012), Tps1 is also of interest because it appears
to have alternative functions in metabolism and cell physiology.
While this enzyme catalyzes the first step in the trehalose
synthesis pathway, converting UDP-glucose and glucose-6-
phosphate to trehalose-6-phosphate, it is proposed to control
glycolytic flux through trehalose-6-phosphate inhibition of the
hexokinase-mediated phosphorylation of glucose at the gate of
glycolysis (Blazquez et al., 1993). Thus TPS1 overexpression
could reduce the amount of glucose entering glycolysis and the
yeast fermentative capacity (Rossouw et al., 2013). This protein
is especially involved in controlling ATP levels (Walther et al.,
2013) but also indirectly other metabolites. It was also found to
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generate equilibrium between two glycolytic states (Van Heerden
et al., 2014) and spontaneous, non-genetic variation between cells
could create a continuous probability distribution for metabolite
concentrations and metabolic fluxes (Van Heerden et al., 2014).
Finally, the involvement of Tps1 in many cellular processes led
authors proposing that it could be considered as a moonlighting
protein (Gancedo et al., 2016). Taken altogether, these data
strongly suggest thatTSL1 andTPS1 have an incidence on growth
rate at the population and the single-cell levels through their roles
in stress response and metabolism control.

In this work, we developed a new methodological pipeline to
gain insight on the putative relationship between yeast single-cell
variability of growth and Tsl1 and Tps1 function, especially
because variations of the cell metabolic state may originate from
TPS1 expression variability, which has never been studied in
this context. We adopted a strategy consisting of first sorting
cells depending on high or low expression level of these genes,
then scoring the growth rate of thousands microcolonies during
the first hours after plating and fixing cells on Concanavalin A
(ConA)-coated glass slides. ConA is a plant lectin, enabling fixing
yeast α-mannose residues of glycoproteins that are present on
the yeast cell wall surface (So and Goldstein, 1968). This strategy
allowed us to study growth in a homogenous cell population in
terms of size and morphology, and to measure the impact of
the initial expression level on the future growth rate. Overall,
our results suggested that the initial amount of members of
the TPS complex does not influence the future growth rate of
the microcolony.

MATERIALS AND METHODS

Strains and Culture Conditions
The tagged yeast strains used in this study derived from the S.
cerevisiae laboratory auxotrophic strain BY4741 (MATa his311
leu210 met1510 ura310) (all the strains used in this study
are listed in Supplementary Table 1). The tps11 strain used on
microchambered culture slides came from the Open Biosystem’s
YKO strains collection. The Wild-Type (WT) and tps11 mutant
strains used in batch cultures were previously constructed in the
CEN.PK background (Guillou et al., 2004).

For tdTomato tagging, the tdTomato sequence (1514 bp)
was amplified by PCR from the plasmid pFA6a-tdTomato-His
(team collection) (all the primers used in this study are listed
in Supplementary Table 2). For N-terminal fusions (i.e., Ntd-
Tsl1 and Ntd-Tps1 strains), we used primers containing 50
bp extensions that overlapped the downstream and upstream
sequences of the start codon of the ORF of interest (respectively
−50 to −1 and +4 to +53 for Ntd-Tsl1, −50 to −1 and
+20 to +69 for Ntd-Tps1). For the C-terminal fusion of
Tsl1 (Ctd-Tsl1 strain), the primers were designed with 50
bp extensions overlapping the downstream and upstream
sequences of the stop codon. Homologous recombination was
facilitated by using the CRISPR-Cas9 strategy. A plasmid
derived from pML107 (Addgene) and carrying the gRNA
expression cassette inserted at the Sap1 cloning site (sequence
in Supplementary Table 2), the Cas9 enzyme sequence and
the LEU2 gene for selection, was transformed in the BY4741

strain together with the tdTomato-amplified sequences. For
the Ntd-Tsl1 strain, the Cas9 cleavage site was located
directly on the start codon. For the Ntd-Tps1 strain, this
cleavage site was located 13 nucleotides downstream the
start codon. The PAM sequence and the gRNA expression
cassette design were determined with the CRISPR Direct
webtool (https://crispr.dbcls.jp/).

For overexpression of TSL1, we replaced the native TSL1
promoter with the promoter of the S. cerevisiae gene TDH3.
Briefly, 767 bp of the TDH3 core promoter (−767 to −1) were
amplified by PCR from the BY4741 genomic DNA, with primers
carrying 50 bp extensions mapping on the TSL1 core promoter
sequence of the Ntd-Tsl1 strain (−800 to −760 and +1 to +50).
By using the CRISPR-Cas9 strategy and the PAM site used for
the construction of the Ntd-Tsl1 strain, this amplified TDH3
fragment was used to replace 760 bp of the TSL1 core promoter
(−760 to −1), upstream the tdTomato ORF in the Ntd-Tsl1
strain. Increased TSL1 expression in this new pTDH3-tdTomato-
Tsl1 strain was checked by cytometry analysis.

Yeast strains were routinely grown in shake flasks, in YNB
medium at 30◦C with shaking (250 rpm). YNB medium was
composed of 1.71 g/L Yeast Nitrogen Base without amino
acids (Euromedex), 0.79 g/L Complete Synthetic Medium (CSM,
MP Biomedicals), 5 g/L ammonium sulfate (Sigma). Liquid
cultures were supplemented with 20 g/L glucose (Sigma). For
experiments including the tps11 strain, 20 g/L galactose (Sigma)
was used as the carbon source, as this strain could not grow on
fermentable sugars like glucose. During strain constructions, for
the selection of LEU2 complemented transformants (CRISPR-
Cas9 plasmid), plates were prepared with 0.69 g/L CSM-
LEU (MP Biomedicals) instead of CSM. Batch cultures of the
WT and tps11 mutant in controlled bioreactors (unpublished
results from the team) had been carried out as described in
Jules et al. (2005). For a real independency of the replicates,
shake-flask pre-cultures and cultures were performed on
different weeks.

Slides Preparation for Microchambered
Cultures
For growth assay experiments, microscopy slides (Superfrost
Plus, Thermo Scientific) were plasma-treated [0.5 mbar of O2,
5min at 70% generator power (200w)], in the Plasma O2 Pico
µW UHP (Diener Electronic) for cleaning and enabling a better
coating and spreading of cells. Glass slides were then coated
with 200 µL of 1 mg/mL ConA per slide (ConA type VI from
Canavalia ensiformis, Sigma L7647). These steps were carried out
under hood at room temperature and slides were left overnight
before being dried for 24 h at 4◦C. Prior to use, slides were
warmed up at 30◦C and adhesive spacers were added (Gene
Frame 65 µL, Thermo Scientific AB0577), delimiting a 100 mm2

area on the slide. Finally, these devices were rehydrated for
∼10min with 100 µL of medium. This liquid was then replaced
by 65 µL of cell suspension, diluted in the appropriate medium
to spread ∼1,000 single cells / mm2, then closed with a coverslip
(D263M, Schott).
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Cell Sorting
The cell sorting experiments were carried out on the MoFlo
Astrios EQ cell sorter with the Summit v6.3 software (Beckman
Coulter). For pre-cultures, cells were inoculated from stationary
phase cells (colony from plate) and were cultivated for 48 h
at 30◦C with rigorous shaking (200 rpm), with dilutions to
5.105 cells/mL every 12 h to get exponentially growing cells
(that is 0.5 to 1.106 cells/mL) at the time when the sorting was
performed. The sorting device was set at 30◦C. Cell sorting was
carried out with 70µm nozzle and 60 psi operating pressure.
The sorting speed was kept around 30,000 events per second.
We set the purity mode for the sort mode and 1 drop for the
droplet envelope. As is shown in Supplementary Figure 1A, we
first selected single cells with similar cell size and granularity
based on the FSC-Area vs. SSC-Area and the FSC-Height vs.
FSC-Area plots (488 nm laser). Then, based on the histogram
of the tdTomato fluorescence (560 nm laser, 614/20 filter),
we simultaneously sorted 5% of cells on both sides of the
distribution, that is presenting either the highest or the lowest
fluorescence intensities (Supplementary Figure 1B), to recover
two subpopulations of 50,000 single cells, respectively named
“Plus” and “Minus.” To analyze the dynamics of gene expression
recovery, 200,000 cells were collected for each “Plus” and “Minus”
subpopulation and the fluorescence was followed from 20,000
cells aliquots, for 6 h, by using standard cytometry analysis
(see below).

Cytometry Analysis
To analyze the fluorescence profile of GFP and tdTomato strains,
we used the MACSQuant R© VYB with the MACSQuantifyTM

Software (Miltenyi Biotec). A total of 20,000 cells were analyzed
per sample, by using the Y2-A Channel (615/20 nm) for
tdTomato strains and the B1-A channel (525/50 nm) for the GFP
strains. The fsc files were exported and analyzed by the FlowJo
software. All the figures were drawn based on log-transformed
values of fluorescence intensity.

Microcolonies Growth Measurement
Microcolony growth analysis was performed on the Morphologi
G3-S microscope (Malvern Panalytical). The parameters used
for the microscope (x20 magnification, Nikon CFI60 camera,
bright field, brightness 70%) and the pre-filtering of the acquired
data were the same for all the experiments. A manual pre-
filtering was indeed performed directly during image acquisition
using the microscope software (Malvern Morphologi v7.21), all
the particles with a diameter of <1µm being considered as
background noise and hence excluded from the analysis.

For non-sorted cells, a quick sonication was applied to
dissociate clumps before plating (two times 10 s sonication at
20% amplitude). Sorted fluorescent cells did not require this
preliminary step and were directly spread on rehydrated slides. In
both case, an appropriate dilution was applied to cell suspensions
and ∼1,000 cells were spread per mm2. After 10min at 30◦C,
slides were cautiously rinsed once with synthetic medium to
wash-out unfixed cells. From our observations, about 10% of the
spread cells remained on the slides after washing. These adherent
cells were then immersed in 65 µL of synthetic medium (glucose

or galactose as carbon source, depending on the strains), and the
culture microchamber was sealed with a coverslip.

Growth on the slides was followed for 8 h, with microscope
scanning of an area of 49 mm2 every 2 h, (15-min scan per
sample), after a first control scan just after spreading and closure
of the chamber. For each event of the analyzed population (i.e.,
the initial single cell or its subsequent microcolony), area (µm2)
and X, Y coordinates were recorded and compiled in excel files,
for further treatment and analysis.

Data Treatment
Detailed methodology for microcolony growth analysis
performed in this project can be found in the Supplementary
Methods section in Supplementary Material. In brief,
we developed a Python script to calculate individual
microcolony growth rates from the experimental datasets
(see “individual_cluster_growth_rates_code.zip” in the
Supplementary files in Supplementary Material that includes
the input data and the Python script called “analysis.py”). The
raw experimental datasets include the ID number, area, center
X coordinate, and center Y coordinate for each cell cluster (i.e.,
single cell or microcolony) at each timepoint. As the cluster
ID numbers are different at each timepoint, they could not be
used to match clusters across timepoints. The first goal of our
Python script was therefore to match clusters across timepoints.
In most cases, the matching process was straightforward (see
Supplementary Figure 2A), and each cluster coordinate set
could be simply matched to the nearest coordinate set at the
previous timepoint for colony growth rate calculation. Several
issues, shown in Supplementary Figures 2B,C, nevertheless
required further improvement of the script (see details in
Supplementary Methods in Supplementary Material).

The R code used for Hierarchical Cluster Analysis
(HCA) of microcolony growth profiles can be found in
the Supplementary files in Supplementary Material [see
“hierarchical_cluster_analysis.zip” that includes the input data,
the R code and an example of data reading and HCA on Ntd-Tsl1
growth rates (Replicate #1)].

For batch cultures in bioreactors, raw OD curves were
first treated with time translation (x-axis) to homogenize the
initial lag-time and make growth curves as concomitant as
possible during their early exponential phase. We then fitted the
curves using the smooth.spline function of R, which fits a cubic
smoothing spline to the supplied data. The smoothing parameter
(typically between 0 and 1) was set to 0.4 to keep as natural as
possible the main variations of these complex growth curves,
yet decreasing noise. Finally, we applied the predict.smooth.spline
function to calculate the fitted OD at 30 time points equally
distributed between 0 and 60 h. The matplot function was then
used to plot these fitted curves.

RESULTS

Study of Yeast Single-Cell Variability of
Growth on ConA-Coated Glass-Slides
We developed a new methodological pipeline (Figure 1) to
follow the growth of thousands of individual yeast cells. For
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FIGURE 1 | Methodological pipeline for single-cell growth analysis. We developed a methodological pipeline to compare the growth of two subpopulations of cells

that are characterized by different levels of expression of a gene of interest. This microscopic device was also used to analyze directly, i.e., without former cell sorting,

the growth of strains of interest at the single cell level. (A) The first step was to sort cells based on high and low expression of a gene of interest (protein labeled with a

fluorescent tag). After sorting, ∼5,000 cells were fixed and grown in microchambered slides filled with liquid medium. A scan of the slides was performed every 2 h for

8 h, to follow the growth of every single microcolony. The collected data give us access to several parameters as areas (µm2) and XY coordinates on the slides. After

data treatment [see (B)], the distribution of the growth rate of thousand microcolonies could be plotted and samples compared. (B) Data treatment to estimate growth

rates. This relied on customized Python scripts that allowed: Colonies realignment, which provided a corrective to the shift of the XY coordinates, due to the manual

repositioning of the glass slides under the microscope objective at each time point; Cells gathering to correct splitting of the microcolony; Growth rate calculation

between time points, from log(area) values, for each microcolony. (C) For each time interval, the distribution of growth rates of thousands microcolonies was presented

as density plots. By excluding the first 2 h (initial lag phase, t1–t2 interval) and taking the median value of the three growth rates calculated for the following time

intervals, for each microcolony, we obtained a smoothed distribution of growth rate in the sample.

this purpose, we used optical microscopy to scan a large
number of cells fixed onto ConA-coated glass slides (Figure 1A).
These slides were previously cleaned by a plasma treatment,
to increase the hydrophilicity of the surface, hence improving

ConA surface functionalization and cell suspension spreading.
Immediate image acquisition was essential to determine the
initial position of the ∼5,000 cells detected on scanned area of
the slide. Further scans were then performed every 2 h, for 8 h,
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keeping the micro-chambers at 30◦C between time points for
optimal growth conditions.

The raw microscopy datasets included the ID number,
area, center X and Y coordinates for each object (i.e., single
cell or microcolony) at each time point. The ID numbers
were different after each scan, so they could not be used to
follow a specific object across time points. Also, the manual
repositioning of the glass slides on the microscope at each
time point led to a slight shift of the XY positions, with an
average of few micrometers, which prevented direct use of this
parameter for objects filiation across time points. Our strategy
was therefore to merge the datasets from the different time points
and use XY position plots to identify cell (or microcolonies)
clusters as a function of time (Supplementary Figure 2A). This
colony realignment step hence relied on the development of
customized Python scripts (see Supplementary Methods in
Supplementary Material, analysis.py script).

Adjustments were also required for more complex
situations found in some of the datasets. As is shown in
Supplementary Figure 2B, the coordinates cannot easily be
matched at first glance, and attempting to match them based on
the simple method of minimal distance failed. For realignment,
we evaluated a cost function for each time point based on
how closely it overlays the coordinates of the first time point.
We shifted each time point around in each direction and
selected the linear adjustment that minimizes the cost function
(see Supplementary Methods in Supplementary Material,
analysis.py script).

The second adjustment originated from another issue that
can interfere with the matching strategy described above. Here,
even if time points appeared to be grouped together in well-
defined clusters, the problem came from some clusters that had
more than one coordinate for a time point, mainly for time point
5 (Supplementary Figure 2C). We could attribute these extra-
events to either rare, yet possible dissemination of new-born
cells from growing colonies, or to artificial splitting of the signal
during image acquisition by the microscope. In both cases, these
events were very often separated by a small gap, i.e., less than
a micrometer. As these co-localized events might be considered
as a single object arising from a single cell after spreading, the
script was improved to gather corresponding signals into a single
event, which leads to more accurate area estimation relative to
the development of the single cell of interest (see Supplementary
Methods in Supplementary Material, analysis.py script).

We then used area (µm2) measurements as a proxy of cell
division and microcolony growth as mentioned in Levy et al
and described in methods. Growth rates (µ) observed with
this method ranged from 0.10 to 0.32 h−1 and are consistent
with yeast growth rates generally observed in standard flask
cultures. In several cases however, a bimodality in growth rate
distribution was observed (Figure 1C), with a principal peak
corresponding to “growing cells” and a secondary minor peak,
which resulted from cells having a much weaker growth than
the median growth rate of the population (see below). This
observation of slow-growing cells, led us to verify the impact
of cell proximity on microcolony development, as previously
done in Levy et al. (2012) (see Supplementary Methods and

“cluster_distance_code.zip” in Supplementary Material). We
therefore counted, for each single cell, the number of neighbors
that could be found within a radius of 100µm. As is shown in
the histogram presented in Supplementary Figure 3A for one
representative dataset, we noticed that using a cell density of
1,000 cells/mm2 during slides preparation, 20% of cells presented
0 or 1 neighbor, while 17% presented five or more neighbors
within this area. Interestingly, the good superposition of the
cumulative plots of growth rate values for these two categories of
cells (Supplementary Figures 3B–D; three different strains taken
as representative examples), demonstrated that the proximity of
other microcolonies had no significant impact during the first
divisions, which was confirmed by the non-parametric Wilcoxon
tests used to compare these groups. As a conclusion, we could not
associate non- or slow-growing cells to cells with a high number
of neighbors after plating.

The heterogeneous distribution of growth rates in each sample
of about 5,000 cells led us to perform clustering analysis to
highlight different growth patterns. The Hierarchical Cluster
Analysis (HCA) method with Euclidean distance was used as
a clustering technique on area data as a function of time (see
Supplementary Methods in Supplementary Material). The plot
of the class center profiles for a typical sample from this study
illustrated the diversity of growth patterns within the population
(Supplementary Figure 4). We almost systematically observed
clusters of slow-growing cells (Supplementary Figure 4, Cluster
5), which represented up to 25% of cells within some samples, yet
generally around a few percent in most experiments. These cells,
which were associated with a very low growth rate, were located
under the left peak in bimodal distributions of growth rates.
Other clusters gathered together cells growing with a constant,
significant rate, i.e., as a quasi-straight line on this log plot
(Supplementary Figure 4, Cluster 4). However, many cells also
presented an initial lag phase (Supplementary Figure 4, Cluster
17), which could be expected from cells that were transferred in a
very different growth environment, here a microculture chamber
on glass side, sometimes formerly sorted. Clusters with an initial
lag phase during the first 2 h of growth gathered from 37 to 78%
of the cells of the samples, which often affected the shape and
median growth rate of the distributions on the first time interval,
just after spreading (t1 to t2). Hence, to get more representative
distributions and reliable estimators of individual growth rates in
a sample of interest, the growth rate has been estimated for each
microcolony by excluding the first 2 h interval, and taking as final
value the median growth rate among the three remaining, almost
stabilized values (example in Figure 1C).

Sorting of Subpopulations on Both Low
and High Gene Expression
Isolation of subpopulations with extreme Tsl1 levels, that is
low vs. high abundance, was carried out by cell sorting. As
TSL1-GFP gene fusion was not bright enough to discriminate
the fluorescence signal of the low-expressing cells from the
autofluorescence background of yeast (Levy et al., 2012)
(Supplementary Figure 5A), we used tdTomato which is an
improved variant of the red fluorescent protein isolated from
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FIGURE 2 | Growth rates of BY4741 and tdTomato tagged strains. (A) Growth rate distributions of untagged BY4741 cells (gray), Ntd-Tsl1 cells (green) and Ntd-Tps1

cells (blue) from three replicates. As described in Figure 1C, growth rates were calculated for each single event after excluding the first time interval (lag phase).

Median growth rates of the populations ranged from 0,22 to 0,28 h−1, with an average SD from the different replicates of ∼0,005 h−1 (replicate #1 ∼0,006 h−1,

replicate #2 ∼0,005 h−1 and replicate #3 ∼0,004 h−1). (B) Results from the three independent replicates for the BY4741 strain, the 5 independent replicates for the

Ntd-Tsl1 strain and the seven independent replicates for the Ntd-Tps1 strain used to study whether increasing the number of replicates may help reducing the

standard deviation and estimating better the growth rate of a strain of interest.

Discosoma sp. (Shaner et al., 2004) that is brighter than GFP.
We found that N-terminal tagging (Ntd-Tsl1 strain) provided a
higher fluorescence with about 1-log shift as compared to the
GFP tagged strain (Supplementary Figure 5B), which allowed
us sorting cells on both high- and low-TSL1 expression, two
subpopulations called, respectively “Plus” and “Minus,” whereas
tagging at C-ter of the Tsl1 protein did not. A similar, satisfying
result relative to cell-sorting purpose was obtained with the N-
terminal fusion of Tps1 with this tdTomato tag (Ntd-Tps1 strain)
(Supplementary Figure 5C).

As the main objective of this work was to study growth at
the single-cell level, a prerequisite was to show that the fusion of
such tags to proteins did not affect the growth rate. The growth
of Ntd-Tsl1 and Ntd-Tps1 strains was then compared to the
one of WT untagged BY4741 cells. For each of the 3 replicates,
no significant differences in median values of the distribution
were observed between BY4741 and the tagged strains (average
standard deviation (SD) between the three strains of ∼0.005,
Figure 2A), indicating that these N-terminal fusions could be
used as reliable tools for studying growth as a function of TSL1

or TPS1 expression. However, this control experiment revealed
a low reproducibility between independent experiments carried
out at different days, with high variability of median growth rates
for a strain of interest, as illustrated by the mean SD of ∼0,02,
based on a triplicate.

We therefore analyzed whether increasing the number
of replicates may help reducing the standard deviation and
estimating better the growth rate of a strain of interest, here
referred as to the median value of the distribution. By taking
independent replicates from this study, that is experiments
carried out over different weeks, we could gather three replicates
for the BY4741 strain, five replicates for the Ntd-Tsl1 strain and
up to seven replicates for the Ntd-Tps1 strain (Figure 2B). The
average median growth rates and calculated SDwere, respectively
0.251 ± 0,022 h−1, 0.238 ± 0,027 h−1 and 0.258 ± 0,023 h−1.
Increasing the number of replicates did not convincingly reduce
the SD that was highly dependent on the occurrence of outlier
values, as illustrated by the highest SD of the study (0,027)
that was obtained from five replicates of the Ntd-Tsl1 strain.
The BY strain (three replicates) and Ntd-Tps1 (seven replicates)
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returned approximately the same SD (0,022 vs. 0,023). By using
the mean and SD determined from these three datasets, the
confidence intervals for the growth rates at 95% confidence level
are respectively (0.196, 0.306), (0.204, 0.271), and (0.236, 0.279).
Even in the best situation, random realization of seven replicates
for a strain of interest hence gave an estimation of the mean
growth rate that is not really satisfying from the yeast physiologist
view point (µ±0.02). Unfortunately, lowering this margin to a
more acceptable window (e.g., µ ± 0.01) may require more than
20 replicates at 95% confidence level. The origin of this inter-
experiment variability is still unexplained, but overall from these
data, the much lower SD between experiments carried out in
parallel (∼0,005 when comparing the three strains) makes the
direct comparison between objects of interest possible.

As cell size could influence significantly the cellular amount
of tagged proteins under constant gene expression, we applied
stringent parameters in terms of cell size and morphology to sort
as homogeneous cells as possible (Supplementary Figure 1A).
When comparing median sizes right after sorting and spreading
of the cells (Supplementary Figure 6A), the ‘Plus’ and ‘Minus’
subpopulations showed median areas of 20.6 ± 1.0 and 17.1
± 0.8 µm2, respectively (mean ± SD over the four replicates).
Estimated cell diameters were therefore 5.1 and 4.7µm, leading
to cell volumes of 70 and 53 µm3, respectively. This volume ratio
of ∼1.32 was rather low and could not explain the much higher
fluorescence observed in “Plus” cells as compared to ‘Minus’ cells
(ratio of ∼7) in the sample shown in Supplementary Figure 1B,
indicating that the higher abundance of Tsl1 in the “Plus”
subpopulation primarily relied on higher expression of the gene.

Finally, the last point that we assessed was the dynamics of the
recovery of fluorescence heterogeneity in cell samples, from both
the “Plus” and “Minus” subpopulations. Since the measurement
of the fluorescence during growth on glass slides was not possible
with our microscopy device, we analyzed the stability of the
TSL1 expression in sorted subpopulations by cytometry. After
hardly 6 h, the initial distribution was recovered from both
subpopulations (Supplementary Figure 6B), whose fluorescence
almost perfectly overlapped. However, based on previous data
(Levy et al., 2012), we assumed that the initial difference in
TSL1 expression between “Plus” and “Minus” subpopulations
could potentially have a short-term, knock-on effect on the
microcolony development (see below). From methodological
viewpoint, this observation of rapid expression noise recovery
led us sorting not less than the extreme 5% of cells from
the distribution to reduce the time passed in the collect tube
before spreading. Widening the sorting gates at both ends of the
distribution was indeed the best compromise, as we wanted to
continue using the ‘puritymode’, which ismore precise yet slower,
settings that altogether allowed sorting 50,000 cells of each type
in∼10 min.

Relationship Between TSL1 Expression
and Growth
We tested this experimental setup firstly on Tsl1 as the expression
level of the gene encoding this protein negatively correlated
with cell division rate (Levy et al., 2012). As shown in Figure 3,

we found a high variability in growth rates between replicates.
Especially, we observed that in the first two replicates, the
“Minus” cells had higher median growth rates, consistent with
published data (Levy et al., 2012). However, the reverse was also
observed in replicate #4, while no significant difference could
be seen in the replicate #3. Relative to the inter-experiment
variability discussed above, we confirmed the high SD on median
growth rates for both subpopulations, i.e., 0, 013, and 0.031
for the “Minus” and “Plus,” respectively. About direct, two by
two comparison of “Minus” and “Plus” subpopulations in each
replicate, the difference could be also significant. As these cells
came from the same culture, the source of this variability may
arise from intrinsic characteristics of the cells (e.g., expression
level). However, the shift that was observed when comparing the
“Minus” and “Plus” subpopulations, the one faster than the other
and the reverse amongst our four replicates, did not support the
existence of a robust physiological determinant of the growth
rate of the microcolony, as could have been the initial expression
level of genes of interest, that is TSL1 in this specific case study.
Instead, more stochastic, undefined factors seem to fix growth
rate distributions. Another notable point that supported this
claim was the varying percentage of cells with a slow-growing
phenotype, both for the “Minus” and the “Plus” subpopulations,
from almost zero up to 14 and 25%, respectively. Interestingly,
still in favor of some unpredictable behavior, this phenotype did
not systematically co-occur in the subpopulations.

To test whether a more significant change in TSL1 expression
level can influence subsequent growth rate of microcolonies, we
replaced the native TSL1 promoter by the strong promoter of
the yeast gene TDH3. This choice was driven by a systematic
analysis of yeast promoter strength (Peng et al., 2015), where
TDH3 was characterized as one of the strongest promoters in
yeast. Cytometry analysis showed that the pTDH3-Tsl1 strain
was about 10-times more fluorescent than the strain with the
native TSL1 promoter (Supplementary Figure 7A). Growth of
these TSL1 overexpressing cells was then compared to the one of
the wild-type cells after direct spreading of exponentially growing
cells on glass slides device. This experiment was duplicated and
no clear tendency was observed (Supplementary Figure 7B). On
the first replicate, pTDH3-Tsl1 cells were growing faster than
control cells with a higher median growth rate of the distribution
(0.26 vs. 0.24 h−1, Wilcoxon test p-value = 9.1 e−76). On the
second replicate, pTDH3-Tsl1 cells contrarily grew much slower
than control cells (0.17 h−1 vs. 0.24 h−1, Wilcoxon test p-value
= 1.8 e−75). To conclude, although often significant from a
statistical viewpoint due to the huge number of microcolonies
that were analyzed, the differences that fluctuate sometimes in
one direction and sometimes in the other, when comparing either
two extreme subpopulations or overexpressing vs. WT strains,
suggest that the initial TSL1 expression level in a cell does not
influence the subsequent growth rate of the microcolony.

Relationship Between TPS1 Expression
and Growth
As Tps1 was also mentioned as a potential marker of growth
heterogeneity in yeast populations (Levy et al., 2012), we used the
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FIGURE 3 | Relationship between TSL1 expression and growth. (Left) Growth rates distributions of Minus (red) and Plus (blue) sorted subpopulations, from four

independent replicates of the strain Ntd-Tsl1. As explained in Figure 1C, the growth rate of each individual microcolony was calculated from three time intervals (t2 to

t5). (Right) Median growth rates of the distribution for Minus and Plus cells, respectively: replicate #1 ∼0,27 and ∼0,23 h−1; replicate #2 ∼0,25 and ∼0,22 h−1;

replicate #3 ∼0,27 and ∼0,28 h−1; replicate #4 ∼0,26 and ∼0,27 h−1.

same approach with a strain harboring a tdTomato-TPS1 gene
fusion under the control of the native TPS1 promoter, to sort the
“Plus” and “Minus” subpopulations (Figure 4). We first showed
that the fluorescence of the Ntd-Tps1 strain did not overlap
with the autofluorescence background of the wild-type strain
(Supplementary Figure 5C), allowing efficient cell sorting of
both “Minus” and “Plus” subpopulations. Moreover, the growth
rate of this tagged strain was the same as the WT BY4741 strain
(Figure 2A), after direct spreading of exponentially growing cells
on the slides and their incubation in a glucose medium. Taking
into account that mutation in the TPS1 gene, including its
deletion, may cause growth alteration (Thevelein and Hohmann,
1995; Gancedo and Flores, 2004), this result indicated that the
strain bearing the tagged Tps1 version behaves like theWT strain.

Growth of the sorted subpopulations was then analyzed
(Figure 4). We observed a statistically significant advantage of
growth for the “Plus” cells in two of the three replicates, i.e.,
0.25 vs. 0.23 h−1 (Wilcoxon test p-value = 6.1 e−117) and 0.32
vs. 0.30 h−1 (Wilcoxon test p-value = 6.9 e−178), for replicates
#1 and #2, respectively. The third one showed a more complex
situation as the statistically significant advantage of growth for
the “Plus” subpopulation (Wilcoxon test p-value = 0.0245) was
quite insignificant in biological terms (0.290 h−1 vs. 0.289 h−1).
However, as it was already reported for Tsl1 experiments, the
strong inter-replicates variability of the median of growth rate
distributions, ranging from 0.23 to 0.32 h1 (Figure 4), suggested
that these small differences between subpopulations probably
reflect technical bias, more than a true biological effect.

The TPS1 gene is nevertheless singular, its deletion harboring
characteristic phenotypes including an inability to grow on
fermentable sugars (Thevelein and Hohmann, 1995; Gancedo
and Flores, 2004; Walther et al., 2013). This is the reason why this
mutant is currently cultivated on galactose as permissive carbon
source. Interestingly, cultures of this tps11 strain showed non-
predictable growth patterns even when performed in controlled
bioreactors (unpublished growth experiments from our lab).

Indeed, batch cultures on galactose of the tps11 cells led to high
variability between replicates, as compared to the WT strain that
exhibited more reproducible diauxic growth in terms of shape
and quantitative parameters (Figure 5).

Then we asked whether the results obtained at the single-
cell level are relevant and help understanding behavior at the
population level. For that purpose, we investigated its growth
phenotype at the single-cell level. Over the four replicates, the
tps11 strain harbored a reproducible, slower growth phenotype
as compared to the WT strain (Figure 6). Interestingly, tps11
cells showed an important and variable proportion of slow-
growing cells (5.97% ± 2.89), which was never observed for the
WT strain on galactose (Figure 6). Themost noticeable point was
nevertheless the variable shape of the main peak that contains
growing cells. It can appear as a distribution similar to the
one of the WT strain (e.g., replicate #1), but also under wider
and much more irregular distributions, which characterized
a huge heterogeneity in the growth rates of individual cells.
Thus, the great variability of growth patterns and the slower
growth tendency of the tps11 strain at the population level,
may find explanation at the single-cell level. Both the variable
proportion of slow-growing cells between replicates, and the
highly heterogeneous population of growing cells in terms of
individual growth rates, may indeed contribute to the unstable
growth behavior of this mutant strain in batch cultures.

DISCUSSION

Technological advances in recent years led to insights in the
differences between fast and slow-proliferating cells in microbial
populations and tried to identify markers for proliferation rate
at the single-cell level (Levy et al., 2012; Ziv et al., 2013, 2017;
Van Dijk et al., 2015; Cerulus et al., 2016; Li et al., 2018; Dhar
et al., 2019). To help deciphering how yeast single-cell variability
of growth is controlled, we developed in this work a new
methodological pipeline that allowed single-cell growth analysis
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FIGURE 4 | Relationship between TPS1 expression and growth. (Left) Growth rates distributions of Minus (white) and Plus (brown) sorted subpopulations, from three

independent replicates of the strain Ntd-Tps1. Growth rates calculation as in Figure 3. (Right) Median growth rates of the distribution for Minus and Plus cells,

respectively: replicate #1 ∼0,23 and ∼0,25 h−1; replicate #2 ∼0,30 and ∼0,32 h−1; replicate #3 ∼0,28 and 0,29 h−1.

FIGURE 5 | Batch cultures of the tps11 mutant in controlled bioreactors. OD

(600 nm) values as a function of time (hours), for four independent replicates of

the tps11 strain (black; 1–4) and three replicates of the WT strain (red; 5–7).

These strains were grown for several days on galactose minimal medium, in

controlled bioreactors. Both are prototrophic CEN.PK strains. The WT

replicates showed a typical diauxic growth, with a metabolic shift around 25 h.

For the sake of clarity, raw OD curves were fitted as described in methods.

after FACS. We applied stringent criteria on morphological
aspects during cell sorting, which allowed us limiting variability
due to differences in cell states and studying homogeneous
cell populations. From statistical viewpoint, thanks to the huge
size of samples (i.e., several thousand events), significant results
were generally observed in most of the growth experiments,
either between strains or between subpopulations from one
strain. However, the observed differences of growth should
be considered with caution, especially when considering the
high variability between biological replicates for a given strain,

which could be indicative of a day-specific stress on the pre-
culture before sorting, or during incubation of the slides that
nevertheless evolved in parallel. More importantly, reversals
of the situation for these comparisons when replicating the
experiment, i.e., the one faster than the other and the reverse
amongst the replicates, minimized the relevance of these
statistically significant differences in the two by two comparisons.

A limitation of our tool was also the impossibility to check
the expression status of the cells during the growth of the
microcolonies, because of the lack of fluorescence detection
in our microscopy system. To circumvent this last limitation,
we nevertheless performed a recovery experiment showing that
the initial difference in Tsl1 expression was rapidly recovered
after <6 h. This result was different from the one obtained
for other genes such as SIR2 (Liu et al., 2020) for which the
difference in expression was mostly maintained after 6 h, the
initial heterogeneous fluorescence distribution being recovered
after 24 h. Those measurements indicated the TSL1 expression
level is quite unstable overtime. This observation was already
mentioned in Levy et al., while not quantified (Levy et al.,
2012). Indeed, these authors reported that from initially low-
expressing cells, the switching from low to high expression can
occur very rapidly in the first 4 h or later in some cells of
microcolonies that had already grown (Levy et al., 2012). They
therefore concluded that the growth was mainly associated to low
TSL1 expression. However, analyzing the correlation between the
average expression level in the final microcolony and the size
of the microcolony as performed by Levy et al. is not adequate
to determine if the initial TSL1 expression level determines the
future growth rate. The strategy that we adopted in this study
was different because cells were first discriminated depending
on their expression level and it was probably more adapted to
measure the real impact of the initial expression on growth. The
rapid switching of TSL1 expression does not allow to conclude on
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FIGURE 6 | Growth phenotype of the tps11 strain at the single-cell level. (Left) Growth rates distributions of tps11 cells (pink) and control, Ntd-Tps1 cells (green),

with galactose as carbon source, from four independent replicates. Growth rates calculation as in Figure 3. (Right) Median growth rates of the distribution for tps11

and Ntd-Tps1 cells, respectively: replicate #1 ∼0,13 and ∼0,15 h−1; replicate #2 ∼0,10 and ∼0,22 h−1; replicate #3 ∼0,13 and ∼0,16 h−1; replicate #4 ∼0,18 and ∼

0,19 h−1.

such a short or mid-term impact on growth rate, particularly to
find the negative correlation that was previously published.

The discrepancy between our results and those from Levy
et al. (2012) could be also linked to cell sorting by cytometry.
Indeed, sorting cells among a very homogeneous population
in terms of morphological criteria probably limits confounding
effects that take place at the whole population level. By excluding
most of the effects linked to differences in cell size and
other physiological differences, we mostly restrict the sources
of cell-to-cell heterogeneity to the so-called intrinsic noise
(due to the random molecular events that occur for each
gene independently). Concentrating on variations solely due to
these random molecular events might exclude phenomena that
produce a great part of the TSL1 expression variability and
contribute to most of its correlation with growth rate. This
correlation may not exist when considering primarily intrinsic
noise. Finally, evidence for a lack of correlation was reinforced
by the TSL1 overexpression experiment that did not generate any
negative effect on growth.

Additionally, without searching for a causal relationship
between TSL1 expression level and growth rate, recent works
instead attempted to decipher the common pathways that
control both phenomena and may lead to anti-correlation.
Li et al. (2018) showed that natural variations in the Tsl1
cellular amount were especially linked to heterogeneity in
cAMP levels that may trigger cellular heterogeneity in the
activities of the stress-associated transcription factors Msn2
and Msn4. This in turn would be at the origin of both cell-
to-cell variability of growth rate and stress tolerance, Tsl1
expression being considered here as a stress marker. While
Msn2 was also required for both heterogeneous expression of
Tsl1 and slow growth, Msn4 was only required for normal
abundance of slower-growing cells and not for heterogeneous

Tsl1 expression, suggesting that slow growth and stress
tolerance are not inevitably linked. Moreover, there were
both Msn2-dependent and -independent slower-growing cells,
suggesting that slow-growth can also originate frommechanisms
that are not mediated by Msn2 transcription factor (Li
et al., 2018). Thus, depending on the weight of these
different mechanisms in the generation of slow-growth, the
variable Msn2/Msn4-associated expression of TSL1 from cell-
to-cell could not be necessarily associated with single-cell
variability of growth if non-stress-related mechanisms were
predominant, and partly explain the high variability we observed
between replicates.

Cellular amounts of other members of the TPS complex were
also suggested to be associated with single-cell variability of
growth (Levy et al., 2012). Among them, Tps1 is particularly
interesting because it could be a key component of yeast
metabolism, with possible alternative functions apart from its
essential role in trehalose synthesis (Walther et al., 2013; Van
Heerden et al., 2014). However, as for Tsl1, natural variations in
the initial abundance of Tps1 did not produce single-cell growth
variability, as did cellular processes such as cell signaling through
cAMP (Li et al., 2018), energetic metabolism with the TCA cycle
(Ziv et al., 2017) and sugar transport (Cerulus et al., 2016).

Nevertheless, we further investigated the behavior at the
single-cell level of the mutant defective of TPS1 due to
its singular phenotypes such as lack of growth on glucose
(Walther et al., 2013; Van Heerden et al., 2014). Another
interesting phenotype of this mutant strain is the highly
variable growth pattern in batch culture experiments, even
on permissive carbon sources. It is interestingly to stress that
the experiments that were reported in this work have been
performed with strains from the CEN.PK family that has
been selected and increasingly used as offering an acceptable
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compromise between the criteria set by different yeast research
disciplines, including the robustness of its growth kinetics (Van
Dijken et al., 2000). At the single-cell level, the highly variable
proportion of slow-growing cells that were not present in a
WT strain, together with more heterogeneous growth rates
of individual growing cells, might partly generate the highly
variable behavior of this tps11 mutant at the whole population
level, which had been observed in controlled bioreactors. Thus,
we showed once again the interest of single-cell analysis to
decipher complex and sometimes stochastic phenotypes at the
population level.
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