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Multiple organ failure is one of the most severe consequences in patients with septic
shock. Liver injury is frequently observed during this pathophysiological process. In the
present study we investigated the contribution of Brahma related gene 1 (BRG1), a
chromatin remodeling protein, to septic shock induced liver injury. When wild type (WT)
and liver conditional BRG1 knockout (LKO) mice were injected with lipopolysaccharide
(LPS), liver injury was appreciably attenuated in the LKO mice compared to the WT
mice as evidenced by plasma ALT/AST levels, hepatic inflammation and apoptosis.
Of interest, there was a down-regulation of sterol response element binding protein
1a (SREBP1a), known to promote liver injury, in the LKO livers compared to the WT
livers. BRG1 did not directly bind to the SREBP1a promoter. Instead, BRG1 was
recruited to the toll-like receptor 4 (TLR4) promoter and activated TLR4 transcription.
Ectopic TLR4 restored SREBP1a expression in BRG1-null hepatocytes. Congruently,
adenovirus carrying TLR4 or SREBP1a expression vector normalized liver injury in BRG1
LKO mice injected with LPS. Finally, a positive correlation between BRG1 and TLR4
expression was detected in human liver biopsy specimens. In conclusion, our data
demonstrate that a BRG1-TLR4-SREBP1a axis that mediates LPS-induced liver injury
in mice.

Keywords: liver injury, LPS, septic shock, transcriptional regulation, inflammation, apoptosis

INTRODUCTION

Septic shock, or septicemia, is a common pathophysiological process taking place in a wide range
of occasions including infection, trauma, diabetes, and cirrhosis (Hotchkiss et al., 2016). Each year,
incidents of septic shock trigger over 3,000,000 emergency visits and are associated with a ~10%
mortality rate in the United States alone (Wang et al.,, 2017). The most severe consequence of
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septic shock is the simultaneous dysfunction or failure of
multiple organs (Azevedo et al, 2008). Liver dysfunction is
common in patients with septic shock, which can be generally
characterized as elevated plasma levels of alanine transaminase,
alkaline phosphatase, and bilirubin (jaundice). Although liver
failure is rare, liver injury significantly exacerbates the prognosis
in patients with septic shock (Waseem et al., 2018).

The pathogenesis of liver dysfunction following septic shock
is complex and not entirely clear at present. It is proposed that
massive death of hepatocytes due to insufficient hepatic perfusion
secondary to hypotension may be one of the major causes of
sepsis-associated liver injury (Hotchkiss et al., 1999). Indeed,
deletion of pro-apoptotic molecules such as JNK2 (Wang et al.,
2006), perforin (Kuhla et al., 2009), and TNFR (Nowak et al.,
2000), blocks apoptosis of hepatocytes and attenuates liver injury
in mouse models of sepsis. Alternatively, altered inflammatory
response is considered another critical contributing factor to
sepsis-induced liver injury. It has been well-documented that
enteric microbes and their components [e.g., lipopolysaccharide
(LPS)] trans-located to the liver due to the disruption of the
intestinal barrier function, combined with hepatic ischemia, illicit
hepatic inflammation during sepsis (Yan and Li, 2014). A host
of immune cells can be detected to infiltrate the liver following
septic shock, including macrophages (Guillot and Tacke, 2019),
T lymphocytes (Wesche-Soldato et al., 2007), myeloid-derived
suppressor cells (Sander et al., 2010), and dentritic cells (Fan
et al.,, 2015). It is generally agreed that excessively strong pro-
inflammatory response precipitates liver injury in septic shock.
For instance, depletion of the pro-inflammatory Kupffer cells
by clodronate (Traeger et al., 2010) or NK cells by injection of
anti-asialo GM1 antibodies suppresses hepatic inflammation and
promotes survival in the septic mice. In addition, hepatocyte-
specific deletion or pharmaceutical inhibition of toll-like receptor
4 (TLR4), a master regulator of cellular inflammation to which
LPS binds, attenuates liver injury following sepsis (Deng et al.,
2013; Engelmann et al., 2020). How TLR4 expression is regulated
in this process is not well understood.

Brahma related gene 1 (BRG1), is an epigenetic regulator
of gene expression by functioning as the catalytic component
of the mammalian SWI/SNF chromatin remodeling complex.
BRGI1 is universally expressed in various tissues and cells
and is essential for organogenesis in mice (Bultman et al,
2000). BRG1 is dispensable for normal liver function in mice
under physiological conditions (Li et al., 2018a,b). Recently, we
have made several discoveries that portray BRGI as a critical
modulator of liver pathologies: mice with a selective deficiency
of BRG1 in hepatocytes are protected from acetaminophen-
induced acute liver failure and diet induced steatosis (Kong
et al.,, 2018; Li et al., 2018a,b, 2019b,c; Fan et al., 2019, 2020;
Liu et al, 2019a). Here we report that the BRG] conditional
knockout liver conditional BRG1 knockout (LKO) mice display
an ameliorated phenotype of liver injury induced by septic shock.
Mechanistically, BRG1 directly binds to the TLR4 promoter
to activate TLR4 transcription leading to increased expression
of SREBPIla, a key regulator of inflammation and apoptosis.
Therefore, our data reinforce the notion that targeting BRG1
bring may be associated with benefits in liver injury.

MATERIALS AND METHODS

Animals

All animal experiments were reviewed and approved by
the intramural Ethics Committee on Humane Treatment of
Experimental Animals. Smarca4’/f mice (Dong et al., 2020) were
crossed to Alb-Cre mice (Fan et al., 2020) to generate LKO
mice. The mice were maintained under the SPF environment
with 12 h light/dark cycles and libitum access to food and
water. Liver injury was induced in male, 8-week old BRGI1
conditional knockout (LKO) mice and wild type (WT) littermates
by peritoneal injection of a single dose of LPS (15 mg/kg, Sigma)
as previously described (Liu et al., 2018). In certain experiments,
the animals were injected via tail vein adenovirus carrying
expression vectors for TLR4 or SREBP1a.

Histology

Histological analyses were performed essentially as described
before (Li et al., 2019a). Briefly, the paraffin embedded sections
were blocked with 10% normal goat serum for 1 h at
room temperature and then incubated with an anti-F4/80
(Proteintech, 28463-1) antibody. Staining was visualized by
incubation with anti-rabbit secondary antibody and developed
with a streptavidin-horseradish peroxidase kit (Pierce) for 20min.
Pictures were taken using an Olympus IX-70 microscope.

Terminal Deoxynucleotidyltransferase

dUTP Nick End Labeling Assay

Terminal Deoxynucleotidyltransferase dUTP Nick End Labeling
(TUNEL) assay was performed as previously described (Liu et al.,
2019b; Zhao et al., 2019). Briefly, paraffin sections were incubated
in the TUNEL reaction mixture (R&D Systems, 4810-30-K) at
37°C for 60 min. After several rinses with PBS, the sections were
incubated with an anti-HRP antibody at room temperature for
30min. Pictures were taken using an Olympus IX-70 microscope.

Cell Culture, Plasmids, and Transient

Transfection

Human hepatoma cells (HepG2) were maintained in DMEM
supplemented with 10% fetal bovine serum (FBS, Hyclone).
Primary hepatocytes were isolated and cultured as previously
described (Fan et al.,, 2019). Small interfering RNAs targeting
BRG1 are: #1, AACATGCACCAGATGCACAAG and #2,
GCCCATGGAGTCCATGCAT. Transient transfections were
performed with Lipofectamine 2000 (Invitrogen). 24 h after
transfection, LPS (1 mg/ml) was added and incubated with the
cells for additional 12 h. Experiments were routinely performed
in triplicate wells and repeated at least three times.

Protein Extraction and Western Blot

Whole cell lysates were obtained by re-suspending cell pellets in
RIPA buffer (50 mM Tris pH7.4, 150 mMNaCl, 1% Triton X-
100) with freshly added protease inhibitor (Roche) as previously
described (Lu et al, 2019; Yang et al, 2019a,b; Mao et al,
2020). Western blot analyses were performed with anti-BRG1
(Santa Cruz, sc-10768), anti-SREBP1 (Proteintech, 14088-1),
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anti-TLR4 (Proteintech, 19811-1), and anti-B-actin (Sigma,
A2228) antibodies.

RNA Isolation and Real-Time PCR

RNA was extracted with the RNeasy RNA isolation kit (Qiagen).
Reverse transcriptase reactions were performed using a
SuperScript  First-strand ~ Synthesis  System (Invitrogen)
as previously described (Liu et al, 2019b; Zhao et al,
2019). Real-time PCR reactions were performed on an
ABI Prism 7,500 system with the following primers:
human TLR4, 5-CCCTGAGGCATTTAGGCAGCTA-3' and
5'-AGGTAGAGAGGTGGCTTAGGCT-3; human BRGI, 5'-
TCATGTTGGCGAGCTATTTCC-3' and 5-GGTTCCGAAGT
CTCAACGATG-3'; human SREBPla, 5-CGGCGCTGCTG
ACCGACATC-3' and 5-CCCTGCCCCACTCCCAGCAT-3';
mouse TIlr4d, 5-CAAGGGATAAGAACGCTGAGA-3 and
5'-GCAATGTCTCTGGCAGGTGTA-3; mouse Srebpla, 5'-
ATGGACGAGCTGGCCTTCGGTGAGGCGGC-3' and 5'-CA
GGAAGGCTTCCAGAGAGGA-3'; mouse II1b, 5'-TGGACCT
TCCAGGATGAGGACA-3" and 5-GTTCATCTCGGAGCC
TGTAGTG-3; mouse 1l6, 5-TACCACTTCACAAGTCGGA
GGC-3" and 5'-CTGCAAGTGCATCATCGTTGTTC-3'; mouse
Tnfa, 5-GGTGCCTATGTCTCAGCCTCT-3’ and 5'-CATC
GGCTGGCACCACTAGTT-3'; mouse Bax, 5-CGGCGAA
TTGGAGATGAACTG-3" and 5-GCAAAGTAGAAGAGGG
CAACC-3’; mouse Bim, 5-CGACAGTCTCAGGAGGAACC-
3’ and 5-CCTTCTCCATACCAGACGGA-3'; mouse Noxa,
5-TCAGGAAGATCGGAGACAAA-3 and 5-TGAGCA
CACTCGTCCTTCAA-3'. Ct values of target genes were
normalized to the Ct values of housekeekping control
gene (18s, 5-CGCGGTTCTATTTTGTTGGT-3 and 5'-
TCGTCTTCGAAACTCCGACT-3 for both human and mouse
genes) using the A ACt method and expressed as relative mRNA
expression levels compared to the control group which is
arbitrarily set as 1.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) assays were performed
essentially as described before (Chen et al,, 2020a,b,c; Dong
et al,, 2020; Fan et al,, 2020; Li et al., 2020a,b,c; Lv et al., 2020;
Mao et al., 2020; Sun et al., 2020; Wu et al., 2020; Yang et al,,
2020). In brief, chromatin in control and treated cells were cross-
linked with 1% formaldehyde. Cells were incubated in lysis buffer
(150 mMNacl, 25 mM Tris pH 7.5, 1% Triton X-100, 0.1% SDS,
0.5% deoxycholate) supplemented with protease inhibitor tablet
and PMSF. DNA was fragmented into ~200 bp pieces using a
Branson 250 sonicator. Aliquots of lysates containing 200 jLg
of protein were used for each immunoprecipitation reaction
with anti-BRGI1 (Santa Cruz, sc-10768), anti-NF-«kB (Santa Cruz,
sc-372), anti-Sp1 (Abcam, ab227383), or pre-immune IgG.

Human Specimen Collection

Liver biopsies were collected from patients with acute liver injury
(ALI) referring to Nanjing Drum Tower Hospital. Control liver
samples were collected from donors whose livers were deemed
unsuitable for transplantation. Written informed consent was
obtained from subjects or families of liver donors. All procedures

that involved human samples were approved by the Ethics
Committee of Nanjing Drum Tower Hospital and adhered to the
principles outlined in the Declaration of Helsinki.

Statistical Analysis

One-way ANOVA with post hoc Scheffe analyses were performed
by SPSS software (IBM SPSS v18.0, Chicago, IL, United States).
Unless otherwise specified, values of p < 0.05 were considered
statistically significant.

RESULTS

BRG1 Deficiency in Hepatocyte

Alleviates LPS-Induced Liver Injury

We first evaluated the effect of BRG1 deletion in hepatocyte on
LPS-induced liver injury. To this end, the BRG1 LKO mice and
the WT mice were injected peritoneally with LPS and sacrificed
24 h after the injection. Quantification of plasma ALT levels
(Figure 1A) and plasma AST levels (Figure 1B) showed that
liver injury was attenuated in the LKO mice compared to the
WT mice. Immunohistochemical staining with an anti-F4/80
antibody showed that there were fewer infiltrated macrophages in
the LKO livers than in the WT livers (Figure 1C). The LKO mice
also exhibited reduced apoptosis of hepatocytes as assessed by
TUNEL staining (Figure 1D). Quantitative PCR results showed
that the expression levels of several pro-inflammatory mediators,
including II-1b, 1I-6, and Tnf-a, as well as several pro-apoptotic
molecules, including Bax, Bim, and Noxa, were down-regulated
in the LKO livers compared to the WT livers (Figure 1E).

BRG1 Deficiency Attenuates
LPS-Induced SREBP1a Expression

in vivo and in vitro

Recent investigations have implicates SREBP family of proteins
in the regulation of LPS-induced inflammatory response (Im
et al, 2011; Lee et al., 2018). We hypothesized that BRG1
may contribute to LPS induced liver injury through modulating
SREBP expression levels. As shown in Figures 2A,B, out of the
three SREBP isoforms, SREBP1a levels were up-regulated in the
liver following LPS injection whereas BRG1 deficiency dampened
the induction of SREBP1a. Neither SREBP1c nor SREBP2 was
influenced by LPS injection or BRG1 deficiency. In cultured
hepatocytes (HepG2), BRG1 knockdown by two different pairs of
siRNAs suppressed the induction of SREBP1a by LPS treatment at
mRNA (Figure 2C) and protein (Figure 2D) levels. In addition,
primary hepatocytes isolated from the WT mice responded better
to LPS treatment than those from the BRG1 LKO mice by
activating more SREBP1a molecules (Figures 2E,F).

BRG1 Contributes to SREBP1a Induction
by LPS via TLR4

Previous studies have identified the presence of several conserved
motifs for sequence-specific transcription factors, including Sp1
and NF-kB (Zhang et al., 2005), on the proximal SREBPla
promoter (Figure 3A, upper panel). ChIP assay confirmed that
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FIGURE 1 | BRG1 deficiency in hepatocyte alleviates LPS-induced liver injury. WT and BRG1 LKO mice were injected peritoneally with LPS (15 mg/kg) and
sacrificed 24 h after the injection. (A) Plasma ALT levels. N = 5 mice for the saline groups and N = 8 mice for the LPS groups. (B) Plasma AST levels. N = 5 mice for
the saline groups and N = 8 mice for the LPS groups. (C) Paraffin sections were stained with F4/80. N = 6 mice for each group. (D) Paraffin sections were stained
with TUNEL. N = 6 mice for each group. (E) Gene expression levels were examined by gPCR. N = 6 mice for each group.
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FIGURE 2 | BRG1 deficiency attenuates LPS-induced SREBP1a expression in vivo and in vitro. (A,B) WT and BRG1 LKO mice were injected peritoneally with LPS
(15 mg/kg) and sacrificed 24 h after the injection. SREBP expression levels were examined by gPCR and Western. N = 3 mice for the saline groups and N = 6 mice
for the LPS groups. (C,D) Primary hepatocytes isolated from WT and BRG1 LKO mice were exposed to LPS (1 pg/ml) for 12 h and SREBP1a expression was
examined by gPCR and Western. (E,F) HepG2 cells were transfected with siRNA targeting BRG1 or scrambled siRNA (SCR) followed by treatment with LPS

(1 wg/ml) for 12 h and SREBP1a expression was examined by gPCR and Western.
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FIGURE 3 | BRG1 contributes to SREBP1a induction by LPS via TLR4.

(A) Primary murine hepatocytes were treated with or without LPS (1 pg/ml) for
12 h. ChIP assays were performed with anti-Sp1, anti-NF-kB, anti-BRG1, or
I9G. (B,C) WT and BRG1 LKO mice were injected peritoneally with LPS

(15 mg/kg) and sacrificed 24 h after the injection. TLR expression level was
examined by gPCR and Western. (D,E) Primary hepatocytes isolated from WT
and BRG1 LKO mice were exposed to LPS (1 pg/ml) for 12 h and TLR4
expression was examined by gPCR and Western. (F,G) HepG2 cells were
transfected with siRNA targeting BRG1 or scrambled siRNA (SCR) followed
by treatment with LPS (1 wg/ml) for 12 h and TLR4 expression was examined
by gPCR and Western. (H) Primary murine hepatocytes were treated with or
without LPS (1 wg/ml) for 12 h. ChiP assays were performed with anti-BRG1
or IgG.

in response to LPS stimulation, both Spl and NF-kB were
recruited to the proximal, but not the distal, SREBP1la promoter
(Figure 3A). Of interest, although BRG1 has been shown to
interact with Sp1 (Li et al., 2019¢) and NF-kB (Fang et al., 2013),
no discernable BRG1 binding was detected on either the proximal

or the distal SREBPla promoter (Figure 3A), indicating that
BRGI1 may contribute to SREBP1a transcription indirectly.

LPS induced pro-inflammatory and pro-apoptotic signaling
can be mediated through the TLR4 receptor (Park and Lee,
2013) and the TLR2 receptor (Good et al, 2012). QPCR
(Figure 3B) and Western blotting (Figure 3C) showed that
BRG1 deficiency down-regulated TLR4 expression but not TLR2
expression. Indeed, LPS induced TLR4 expression in primary
hepatocytes isolated from the WT mice but not the BRG1 LKO
mice (Figures 3D,E). Further, BRGI1 depletion dampened TLR4
induction by LPS treatment in HepG2 cells (Figures 3E,G). We
then hypothesized that BRG1 might directly bind to the TLR4
promoter to activate TLR4 transcription. ChIP assay (Figure 3H)
showed that LPS treatment promoted BRG1 recruitment to a
region of the TLR4 promoter that contains a conserved HIF-1a
site, but not to a more proximal region of the TLR4 promoter
that contains both a PU.1 site and an AP-1 site or to the more
distal TLR4 promoter.

TLR4 Over-Expression Rescues
SREBP1a Induction by LPS in

Hepatocytes

Having demonstrated that BRG1 may regulate SREBPla
expression to mediate LPS-induced liver injury by directly
activating TLR4 transcription, we asked whether TLR4 over-
expression could overcome BRG1 deficiency to restore SREBP1la
expression. Adenovirus carrying either TLR4 expression vector
(Ad-TLR4) or a control vector (Ad-GFP) was used to infect
primary hepatocytes isolated from the BRGI LKO mice.
As shown in Figures 4A,B, Ad-TLR4 infection more than
compensated the reduction of TLR4 expression in the LKO cells
and brought the levels of SREBP1a expression to those observed
in WT cells. Similarly, Ad-TLR4 infection in HepG2 cells offset
the crippling effect of BRG1 depletion by maintaining SREBP1a
expression (Figures 4C,D).

TLR4 Over-Expression or SREBP1a
Over-Expression Restores Liver Injury in
BRG1 Deficient Mice

Because attenuation of LPS-induced liver injury in the BRG1
LKO mice could be attributed to TLR4/SREBPla down-
regulation, we tested the hypothesis that re-introduction of
exogenous TLR4 or SREBPla might enable LPS to induce the
same magnitude of liver injury in these mice as opposed to
the WT mice. Adenovirus carrying TLR4 expression vector or
SREBP1a vector or control vector was injected into the mice
via tail vein followed by LPS injection. As shown in Figure 5A,
Ad-TLR4 infection restored the expression of both TLR4 and
SREBPla whereas Ad-SREBPla infection restored SREBPla
expression without altering TLR4 expression in the LKO livers.
Exogenous TLR4 or SREBP1a overcame the BRG1 deficiency in
the LKO livers by restoring LPS-induced liver injury as shown
by plasma ALT (Figure 5B) and AST (Figure 5C) levels, by
TUNEL staining (Figure 5D), by F4/80 staining (Figure 5E), and
by qPCR measurements of pro-inflammatory and pro-apoptotic
gene expression (Figure 5F). When primary hepatocytes were
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FIGURE 4 | TLR4 over-expression rescues SREBP1a induction by LPS in hepatocytes. (A,B) Primary hepatocytes isolated from WT and BRG1 LKO mice were
infected with adenovirus carrying either TLR4 (Ad-TLR4) or GFP (Ad-GFP) followed by treatment with LPS (1 wg/ml) for 12 h. SREBP1a expression was examined by
qPCR and Western. (C,D) HepG2 cells were transfected with siRNA targeting BRG1 or scrambled siRNA (SCR) followed by infection with Ad-GFP-TLR4 or Ad-GFP
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freshly isolated from WT or LKO mice and transduced with
adenovirus carrying TLR4 expression vector or SREBP1a vector
or control vector followed by LPS treatment, it was observed
that both TLR4 over-expression and SREBPla over-expression
were able to partially overcome BRG1 deficiency and normalize
the levels of pro-inflammatory mediators and pro-apoptotic
factors (Figure 5G).

Correlation of BRG1 and TLR4 in Human
Liver Biopsy Specimens

Finally, we probed the relationship between BRG1 and TLR4
expression in human liver biopsy specimens. As shown in
Figure 6A, immunohistochemical staining revealed that both

BRG1 levels and TLR4 levels were relatively low in the normal
liver specimens but were markedly elevated in the specimens of
ALL Regression analysis showed a positive correlation between
BRG1 and TLR4 expression (Figure 6B).

DISCUSSION

Septic shock represents a major cause for admissions into the
intensive care unit (ICU) and the leading cause of deaths in
non-coronary ICUs (Martin et al,, 2003; Singer et al., 2016).
Although septic shock causes the dysfunction of multiple organs,
mortality rates of patients with liver failure tend to be the
highest (Waseem et al., 2018). Therefore, effective interventional
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FIGURE 5 | TLR4 over-expression or SREBP1a over-expression restores liver injury in BRG1 deficient mice. (A-F) WT and BRG1 LKO mice were injected via tail
veinadenovirus carrying either TLR4 (Ad-GFP-TLR4), SREBP1a (Ad-GFP-SREBP1a), or GFP (Ad-GFP). 2 week later, the mice were injected with injected peritoneally
with LPS (15 mg/kg) and sacrificed 24 h after the injection. Gene expression levels were examined by Western (A). Plasma ALT levels (B). Plasma AST levels (C).
Paraffin sections were stained with F4/80 (D). Paraffin sections were stained with TUNEL (E). Gene expression levels were examined by gPCR (F). N = 6 mice for all
groups. (G) Primary hepatocytes were isolated from WT or BRG1 LKO mice and transduced with indicated andenoviral particles. The cells were with LPS (1 wg/ml)
for 12 h and gene expression was examined by gPCR.
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FIGURE 6 | Expression levels of BRG1 and TLR4 in human liver biopsy specimens. (A) Representative images of BRG1 and TLR4 staining in liver biopsy specimens
of patients diagnosed with acute liver injury (ALI). (B) Linear regression was performed with Graphpad Prism.

strategies that ameliorate liver dysfunction serve to boost the
overall survival of patients with septic shock. Here we describe
a novel transcriptional mechanism whereby the chromatin
remodeling protein BRG1 contributes to liver injury in a mouse
model of LPS-induced septic shock.

It has been previously shown that SREBPla mediates
the hepatic inflammatory response during septic shock
(Imetal,2011). Our data suggest that BRGI1 deficiency
leads to down-regulation of SREBPla indirectly via TLR4.

Because TLR4 is positioned at the very top of LPS-provoked
signaling, there certainly are other possibilities that should
be considered when interpreting these data. Liu et al. have
found a global decrease in NF-kB activity in the TLR4-null
hepatocytes compared to WT hepatocytes treated with LPS (Liu
et al.,, 2002). BRGI is a well-established co-factor for NF-«kB
(Fang et al., 2013; Zhang et al., 2019). Therefore it is possible that
BRGI may regulate liver injury by modulating NF-«kB activity
in hepatocytes. In addition, BRG1 is directly involved in the

Frontiers in Cell and Developmental Biology | www.frontiersin.org

March 2021 | Volume 9 | Article 617073


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Dong et al.

BRG1 Regulates TLR4 Transcription

transcription of pro-inflammatory genes (Ramirez-Carrozzi
et al., 2006) and pro-apoptotic genes (Napolitano et al., 2007).
We have previously shown that BRG1 can interact with SREBP
and facilitate SREBP-dependent transcriptional events related to
lipogenesis and cholesterogenesis in hepatocytes (Li et al., 2018b;
Fan et al., 2020). SREBP1 has been shown to directly bind to the
promoter regions of pro-inflammatory genes (Oishi et al., 2017)
and pro-apoptotic genes (Wang et al., 2005; Gibot et al., 2009),
raising the intriguing possibility that BRG1 may co-occupy the
gene promoters with SREBP1 and potentiate the transcriptional
activity of SREPBI to stimulate cellular inflammation and/or
apoptosis. Finally, SREBPI1 activity is not only determined by
its overall expression but its liberation from the membrane and
translocation into the nucleus (Horton et al., 2002). Diomede
et al. have observed that LPS administration in mice promotes
hepatic SREBP1 maturation in a TLR4-dependent manner
(Diomede et al., 2001). Whether BRG1 can contribute to this
process remains to be determined.

We show here that BRGI is recruited to the Tlr4 promoter
region containing a conserved hypoxia response element (HRE).
Previously we have reported that BRG1 can interact with HIF-
la and mediate HIF-1a induced transcription of IL-33 gene
(Liu et al., 2019b), MRP8 gene (Li et al., 2020c), and KDM3A
gene (Li et al., 2019d) respectively. These data appear to point
to an interesting scenario wherein a HIF-1a-BRG1 complex
regulates the hepatic transcriptome to promote liver dysfunction.
Indeed, mice with hepatocyte-specific HIF-1a deletion exhibit
similar phenotypes as the BRGl LKO mice in a number of
different animal models of liver injury. For instance, the HIF-
la LKO mice are resistant to LPS-induced liver injury (Nath
et al,, 2011). Hepatocyte-specific HIF-1a deficiency also protects
the mice from obesity and steatosis (Lee et al., 2019) and liver
necrosis caused by hepatotoxic substances (Sparkenbaugh et al.,
2011; Roychowdhury et al.,, 2014). The genomewide mechanistic
insights underlying the functional overlapping between HIF-
la and BRGI1 are currently lacking. There are several reports
demonstrating genomewide binding patterns of HIF-1a (Schodel
et al, 2011; Smythies et al, 2019) and BRG1 (Bossen et al,
2015; Barutcu et al., 2016; Raab et al., 2017) using ChIP-seq;
none of these studies examined (primary) hepatocytes. Future
studies should focus on deciphering whether the functional
overlapping between HIF-la and BRG1 can be explained by
shared transcriptional programs.

There are several major limitations regarding the approaches
and conclusions of the present study. First, a string of recent
studies have claimed that BRG1 possesses a protective role in
hepatic ischemia-reperfusion injury (Ge et al., 2017a,b,c). The
mechanism, accordingly to Ge et al,, lies in the observation that
BRGI can interact with the anti-oxidative transcription factor
Nrf2 to activate HO-1 transcription in hepatocytes, which may
not be the rate-limiting process in LPS-induced liver injury
as investigated in the present study. Alternatively, whereas a
hepatocyte-specific BRG1 deletion mouse strain was used in the
present study, Ge et al. in their series of investigations used a
mouse strain harboring systemic BRG1 over-expression, which
may engender non-hepatocyte autonomous effects. Second, a
single mouse model (LPS injection) was harnessed to assess the

role of BRG1 in ALIL Other models widely exploited by the
field to study ALI include dual injection of LPS plus pyrazole (a
CYP2EL1 inducer), dual injection of LPS plus D-galactosamine,
and the cecal ligation and puncture (CLP) procedure (Louis et al.,
1997; Lu et al, 2005; Zhu et al., 2013). It would be of great
help to ascertain the role of BRGI in additional mouse models.
Third, no transcriptomic analysis (e.g., RNA-seq) was performed
to screen for genomewide targets downstream of BRGI that
might contribute to the observed phenotype. Wang et al. (2019)
have compared the transcriptomes of WT livers and BRG1-
null livers following partial hepatectomy in mice by RNA-seq
and found that the p53 pathway is preferentially activated by
BRGI deficiency. Because several studies have demonstrated a
protective role for p53 in acute organ injuries (Liu et al., 2009;
Sun et al,, 2018), it is tempting to speculate that attenuation
of liver injury by BRGI deficiency might be attributed to a
secondary up-regulation of p53. These issues certainly deserve
further attention.

In summary, our data add another layer of evidence that
supports BRG1 as a common mediator of liver injury. Small-
molecule BRGI inhibitors have been designed and proven
effective in the intervention of malignant cancers both in cell
culture (Wu et al,, 2016) and in animal models (Ding et al.,
2019). It would be of great interest to determine whether these
compounds can be considered as a reasonable approach to treat
liver disorders.
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