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It has been known for decades or even centuries that arteries calcify as they
age. Vascular calcification probably affects all adults, since virtually all have
atherosclerotic plaques: an accumulation of lipids, inflammatory cells, necrotic debris,
and calcium phosphate crystals. A high vascular calcium score is associated with
a high cardiovascular mortality risk, and relatively recent data suggest that even
microcalcifications that form in early plaques may destabilize plaques and trigger a
cardiovascular event. If the cellular and molecular mechanisms of plaque calcification
have been relatively well characterized in mice, human plaques appear to calcify through
different mechanisms that remain obscure. In this context, we will first review articles
reporting the location and features of early calcifications in human plaques and then
review the articles that explored the mechanisms though which human and mouse
plaques calcify.

Keywords: atherosclerosis, calcification, chondrocyte, inflammation, cardiovascular morbidity and mortality

ATHEROSCLEROTIC PLAQUE CALCIFICATIONS: THE
SMALLER, THE SCARIER

Different Types of Human Plaque Calcification
Cardiovascular diseases are the leading cause of death worldwide (Roth et al., 2017). Atherosclerotic
plaque rupture is the primary mechanism responsible for myocardial infarction and accounts for
about 20% of cases of ischemic stroke (Ornello et al., 2018). Since coronary artery calcium scores
correlate with cardiovascular mortality in asymptomatic individuals (Greenland et al., 2004), it was
long believed that plaque calcification had a detrimental impact on plaque stability. In the last two
decades, however, clinical and preclinical studies suggested that plaque calcification may have either
beneficial or detrimental effects depending on the amount of calcium and type of calcification.
Human plaques, in particular, can present very different types of calcification (Figure 1; Herisson
et al., 2011; Jinnouchi et al., 2020). Microcalcifications, defined by size <15 or 50 µm depending
on the author, can be observed in early type I lesions (Roijers et al., 2011; Chatrou et al., 2015).
They sometimes coalesce to generate punctate calcifications with a size between 15 µm (or 50 µm)
and 1 mm (Jinnouchi et al., 2020). Bigger calcifications comprise fragment calcifications, which
measure more than 1 mm, and sheet calcifications, defined by size more than 3 mm (Jinnouchi
et al., 2020). Nodular calcifications result from the fracture of calcified sheets under mechanical
stress, such as that associated with coronary hinge motion (Lee et al., 2017). Finally, plaque
ossification, with trabecular-like structures and bone marrow, is also sometimes observed although
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predominantly in peripheral arteries (Herisson et al., 2011). If
macrocalcifications were historically considered to be harmful,
a new paradigm has recently emerged, suggesting that heavily
calcified plaques are in fact more stable. This paradigm relies in
particular on the assumption that, with progressive calcification,
plaque inflammation becomes pacified, and the necrotic core
walled off from the blood (Dweck et al., 2016). On the other
hand, biomechanical studies still indicate that macrocalcifications
likely generate a significant mechanical stress that may negatively
affect plaque stability [reviewed in Barrett et al. (2019)]. It is
not our aim in this article to discuss the clinical impact of
macrocalcifications but to describe the molecular mechanisms
through which calcification is initiated in atherosclerotic plaques.

Microcalcifications: New Suspects for
Plaque Rupture
The discovery of microcalcifications, as opposed to large
calcifications, in soft plaques undergoing pathology analysis
(Vengrenyuk et al., 2006; Maldonado et al., 2012; Kelly-
Arnold et al., 2013) suggested a role in acute events involving
stress-induced plaque rupture, a mechanism long suspected in
coronary arteries (Richardson et al., 1989). Microcalcifications
are probably dangerous when they form in the fibrous cap
(Vengrenyuk et al., 2006; Maldonado et al., 2012; Kelly-Arnold
et al., 2013). Fibrous cap thickness is known to correlate with
plaque vulnerability (Burke et al., 1997), and the presence
of >5 µm microcalcifications might be particularly harmful,
generating mechanical stress (Kelly-Arnold et al., 2013). In
addition, microcalcifications exacerbate plaque inflammation,
stimulating macrophages to release more tumor necrosis factor
alpha (TNF-α) (Nadra et al., 2005, 2008), which also likely has
detrimental effects on plaque progression.

While there is still no experimental proof that
microcalcifications are indeed the most likely to trigger
plaque rupture, an increasing number of studies using positron
emission tomography (PET) with sodium fluoride 18 radiotracer
(18F-NaF) have spotlighted the risk. Fluoride ions replace
hydroxyl ions preferentially in newly formed, immature apatite
crystals and are therefore a very interesting tool for detecting
microcalcification (Hawkins et al., 1992). 18F-NaF PET has long
been used to detect abnormal bone formation (Hawkins et al.,
1992), but it was not until 2010 that a hybrid PET-CT camera
enabled detection of 18F-NaF fixation in atherosclerosis plaque
(Derlin et al., 2010, 2011). Seminal studies showed that 18F-NaF
uptake was associated with features of instability and was more
pronounced in clinically adjudicated culprit plaques in patients
with myocardial infarction or ischemic stroke (Joshi et al., 2014;
Vesey et al., 2017). However, it is now established that not only
microcalcifications but also bigger ones that are actively growing
are 18F-NaF positive, complicating the clinical interpretation
of 18F-NaF PET-CT (Irkle et al., 2015; Høilund-Carlsen et al.,
2020). Nevertheless, whereas the classical CT calcium score
for macrocalcification is used to assess atherosclerotic load in
coronary arteries, whole-body 18F-NaF PET-CT may be used
as a marker of atherosclerotic plaque burden characterizing
the patient’s global risk rather than focusing exclusively on the

culprit plaque (Arbab-Zadeh and Fuster, 2015). In the clinical
setting, PET-MRI will certainly help to better characterize the
microcalcification process in plaque composition and will be
more suitable for longitudinal studies. In a recent review on
PET-MRI, Evans et al. (2020) pointed out the importance of
combining 18F-NaF molecular calcification imaging and high-
resolution MRI plaque characterization. An initial study by our
group found that 18F-NaF-positive lesions were not associated
with known MRI criteria of vulnerability (Mechtouff et al., 2020),
but further longitudinal studies could helpfully use contrast-
enhanced MRI to check whether 18F-NaF uptake precedes the
vulnerable state. As longitudinal clinical studies are still lacking
and are also rare in preclinical models of microcalcification (Hsu
et al., 2020), the mechanisms underlying 18F-NaF uptake and the
link with specific inflammatory processes are not fully elucidated.
We are currently performing a preclinical study in mice with
18F-NaF PET to determine the impact of microcalcifications on
plaque development.

If, in the near future, the harmful impact of microcalcifications
is experimentally proven, it will be crucial to better understand
how they form. Two models can be drawn from the literature.
First, vascular smooth muscle cells (VSMCs) may undergo
phenotypic changes to transform into osteochondrocyte-like
cells. Many factors have indeed been shown to induce
this phenotypic transformation. An alternative hypothesis is
that calcification initiates independently of osteochondrocyte
markers; this is supported by histopathological findings. In
the next two chapters, we review the arguments in favor of
each hypothesis.

ARGUMENTS IN FAVOR OF THE
PHENOTYPIC CHANGE HYPOTHESIS

Plaques Are Calcified by Endochondral
Ossification in Mice
Since it is obviously extremely difficult to analyze the longitudinal
process of plaque calcification in humans, atherosclerotic mice
have been widely used to investigate how plaques calcify. Two
mouse models have been explored in depth: mice deficient in
apolipoprotein E (ApoE) were used in most studies and mice
deficient in low-density lipoprotein receptor (Ldlr) in some
others. When ApoE-deficient mice are given a high-fat diet
from 10 weeks of age, calcification can be detected in the aorta
from the age of 20 weeks (Aikawa et al., 2007). Histological
examination of animals aged between 45 and 75 weeks revealed
the presence of chondrocyte-like cells, expressing type II collagen
in calcified regions, suggesting that plaque calcification develops
through a process mimicking endochondral ossification (Qiao
et al., 1995; Rattazzi et al., 2005). Importantly, in these
studies, the authors observed chondrocytes before calcifications
and concluded that plaque calcification results from cartilage
metaplasia (Rattazzi et al., 2005).

If plaque calcification is indeed an active process relying
on chondrocyte differentiation, and if VSMCs are involved,
then deletion of RUNX2 in VSMCs should prevent it.
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FIGURE 1 | Calcifications in human coronaries. (A,B,D,G,H,I,J) Images in the top row are Movat pentachrome stained, and (C,E,F) Images are H&E stained; lower
row shows high power image; corresponding to (A) Is Von Kossa staining and all others are H&E. Non-decalcified arterial segments (A) And all others are decalcified
segments (B–J). (A) Pathological intimal thickening characterized by a lipid pool (IP) that lacks VSMCs. Corresponding high power image (Von Kossa staining) of the
boxed area shows microcalcification <15 µm in diameter within the LP. (B) Fibroatheroma showing an early necrotic core (NC) infiltrated by macrophages which are
calcified, seen as punctate (≥15 µm) areas of calcification. (C) Fibroatheroma with a late NC and fragmented calcification seen toward the medial wall. (D) Late
fibroatheroma with larger area of calcification occupying an area greater than 1 mm that shows calcification of the NC. (E) Fibrocalcific plaque with sheet calcification
and calcifying NC, which is incompletely calcified. (F) Fibrocalcific plaque showing sheet calcium with both fibrous tissue and NC completely calcified.
(G) Fibrocalcific plaque with sheet calcium without a NC. (H) Nodular calcification showing fragment of calcium separated by fibrin and lumina I coverage by fibrous
cap. (I) Calcified nodule showing nodules of calcium within the lumen and an overlying thrombus. (J) Fibrocalcific plaque with an area of ossification at the edge of
sheet calcification. Ca++, calcification; FC, fibrous cap; H&E, hematoxylin and eosin; N, nodule. From Jinnouchi et al. (2020), with permission from Elsevier.

RUNX2 is the master transcription factor governing the
differentiation and maturation of mineralizing cells, i.e.,
hypertrophic chondrocytes and osteoblasts (Komori et al.,
1997). Among other transcriptional targets, RUNX2 stimulates
the expression of tissue-non-specific alkaline phosphatase
(TNAP), a promineralizing enzyme (Murshed et al., 2005).
TNAP allows mineralization to occur by hydrolyzing inorganic
pyrophosphate (PPi), a constitutive mineralization inhibitor
(Hessle et al., 2002; Murshed et al., 2005). Mineralization
is physiologically restricted to growth-plate cartilage and
bone despite TNAP being relatively ubiquitous because

mineralization requires a fibrillar collagen as a template for
crystal deposition and because TNAP and fibrillar collagens
are only coexpressed in growth-plate cartilage and bone
(Murshed et al., 2005). Two independent groups produced and
analyzed atherosclerotic mice deficient in RUNX2 specifically in
VSMCs. In ApoE−/− mice, RUNX2 deletion almost completely
prevented TNAP expression and calcification (Sun et al.,
2012). VSMC-specific deletion of RUNX2 in Ldlr−/− mice
reduced plaque calcification, with a decrease in several RUNX2
transcriptional targets such as TNAP and type X collagen
(Lin et al., 2016). These two articles clearly suggest that most
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calcium deposition in mouse plaque relies on VSMC phenotypic
change into hypertrophic chondrocytes. Many factors have
been shown to stimulate VSMCs to transdifferentiate into
mineralizing cells, but the vast majority are associated with
inflammation and oxidative stress, which often go hand in hand
(Demer and Tintut, 2011).

Plaque Ossification Appears to Be
Stimulated by Inflammation in Mice
Interestingly, early calcification was associated with
inflammation in the aorta of ApoE−/− mice (Aikawa et al.,
2007). A wide range of inflammatory molecules relevant to
atherosclerosis have been shown in vitro to trigger the phenotypic
change of VSMCs into RUNX2-expressing osteoblast-like cells
and/or chondrocyte-like cells. Inflammatory phenotypic change
cytokines such as TNF-α, interleukin (IL)-1β, and IL-6 are
particularly potent calcifying factors in human and murine
VSMCs [reviewed in Bessueille and Magne (2015)]. These
promineralizing effects of inflammatory cytokines on VSMCs
may not only be in vitro findings, since treatment of Ldlr−/−

mice with an anti-IL-1β (Awan et al., 2015) or anti-TNF-α
(Al-Aly et al., 2007) antibody reduced plaque calcification.
In addition, toll-like receptor (TLR)-2 and TLR-4 agonists
such as lipopolysaccharide also stimulated VSMC change into
chondrocytes in vitro, and ApoE−/− mice also deficient in TLR-2
developed reduced plaque calcification with reduced cartilage
metaplasia (Lee et al., 2019). This effect of LPS might be relevant
to plaque calcification, since endotoxemia occurs after virtually
all fatty meals (Herieka and Erridge, 2014), and is associated with
atherosclerosis (Wiedermann et al., 1999).

This stimulatory effect of inflammation on VSMC phenotypic
change into RUNX2-expressing chondrocytes is in contrast to
the known inhibitory effect of inflammation on chondrocyte
differentiation (Lencel et al., 2011). One possible explanation is
that inflammation stimulates expression of bone morphogenetic
protein 2 (BMP2), a strong bone anabolic factor, in VSMCs
(Ikeda et al., 2012), which may induce VSMC differentiation
into chondrocytes when inflammation begins to resolve (Li
et al., 2008; Liberman et al., 2011). Interestingly, reduced
plaque calcification in Ldlr−/− mice with anti-TNF-α treatment
was associated with reduced BMP2 levels (Al-Aly et al.,
2007). In addition, VSMC-targeted overexpression of BMP2
in ApoE−/− mice resulted in increased plaque calcification
(Nakagawa et al., 2010). More importantly, inhibition of
BMP2 with a small chemical inhibitor or with a recombinant
BMP antagonist decreased plaque calcification, lipid deposition,
and inflammation in Ldlr−/− mice (Derwall et al., 2012).
Furthermore, ApoE−/− mice also deficient in BMP endothelial
cell precursor-derived regulator (Bmper) exhibited increased
BMP activity in endothelial cells and developed larger and
more calcified atherosclerotic lesions (Pi et al., 2012). Finally,
inhibition of plaque calcification by overexpression of matrix
Gla protein (MGP), which is suspected to act as an inhibitor
of BMP2 signaling (Zebboudj et al., 2002; Malhotra et al.,
2015), decreased plaque calcification and lesion development
in ApoE−/− mice, in association with reduced BMP activity,

strongly reduced macrophage infiltration and inflammation
(Yao et al., 2010). Taken together, these results suggest that plaque
calcification is dependent on BMP2 and therefore on chondrocyte
differentiation. They also suggest that the development of
calcified cartilage adversely impacts plaque development. This
hypothesis, however, has to be considered with caution because
chemical BMP inhibition reduced cholesterol biosynthesis and
attenuated liver steatosis, suggesting that indirect effects might
account for BMP2’s impact on plaques (Derwall et al., 2012).
Moreover, MGP may inhibit vascular calcification independently
of BMP2-stimulated VSMC change into chondrocytes (Leroux-
Berger et al., 2011; Khavandgar et al., 2014), and MGP deficiency,
which strongly increases vascular calcification, also protected
against lesion development and inflammation in ApoE−/− mice
(Yao et al., 2010).

Similarly to pathogen-associated molecular patterns (PAMPs),
such as LPS, and inflammatory cytokines, oxidized lipids
may represent danger-associated molecular patterns (DAMPs),
activating receptors in the toll-like receptor superfamily (Miller
et al., 2011), and stimulate calcification in VSMCs culture (Demer
and Tintut, 2011). Oxidative stress generated by H2O2 induced
RUNX2 expression through AKT in mouse VSMCs (Mody et al.,
2001; Byon et al., 2008). Acetylated low-density lipoproteins
(LDLs) induced greater calcification than native LDL in human
VSMCs (Proudfoot et al., 2002). In bovine VSMCs, oxidized
LDL increased TNAP activity and calcification (Parhami et al.,
2002). Oxidized LDL stimulated calcification in human VSMCs
through TLR-4 and expression of osteochondrogenic factors
(Song et al., 2017). Chondrogenic differentiation and calcification
in response to oxidized LDL in human VSMCs involve activation
of transforming growth factor (TGF)-β (Yan et al., 2011). These
in vitro findings are, nevertheless, in contradiction with the
recent report that VSMC-specific ablation of TGF-β signaling
in ApoE−/− mice leads to aortic aneurysms, with extensive
lipid and calcium accumulation throughout the aorta (Chen
et al., 2020); in this study, deletion of TGF-β signaling in
VSMCs led to their dedifferentiation toward mesenchymal stem
cells, enabling commitment toward chondrocytes and adipocytes
(Chen et al., 2020). Finally, while inflammatory and oxidized
molecules promote VSMC phenotypic change and calcification
in vitro, how they act in vivo and whether they activate BMP
and TGF-β growth factors still needs to be better understood.
Moreover, there are solid arguments supporting the hypothesis
that, in vivo, plaque calcification begins independently of VSMC
phenotypic change.

ARGUMENTS AGAINST THE
PHENOTYPIC CHANGE HYPOTHESIS

Not So Many Human Plaques Calcify
Through an Ossification-Like Process
While plaque calcification incontestably develops by a process
similar to endochondral ossification in mice (Rosenfeld et al.,
2000; Rattazzi et al., 2005; Lin et al., 2016), studies in humans
showing the presence of chondrocytes or cartilage are rare to say
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the least and remain controversial (Tyson et al., 2003; Aigner
et al., 2008; Kuzan et al., 2017). In addition, bone-like structures,
regardless of whether they formed through endochondral or
intramembranous ossification, are not the most common type
of calcification in human plaques (Jinnouchi et al., 2020):
they are frequently observed in femoral arteries but not, for
instance, in carotids (Herisson et al., 2011). Furthermore, the
increasing number of studies of microcalcifications in early
plaques reported that they formed independently of chondrocyte-
or osteoblast-like cells or markers. In coronary arteries, for
instance, microcalcifications were observed in preatheroma type
I lesions before BMP2, or the RUNX2 transcriptional target
osteocalcin could be detected (Roijers et al., 2011; Chatrou et al.,
2015). It seems unlikely that, in these studies, chondrocytes or
osteoblasts were present and but not be detected because, in most
cases, microcalcifications that had grown and coalesced generated
macrocalcifications still devoid of osteoblast or chondrocyte
activity (Herisson et al., 2011; Jinnouchi et al., 2020).

How can we explain that mouse plaques calcify through
endochondral ossification, whereas human plaques more
frequently develop independently of chondrocytes or osteoblasts?
One explanation could be that, in mice as in humans, calcification
initially occurs independently of chondrocyte differentiation,
which is induced later on. It is noteworthy that, in mice,
VSMC-specific deletion of RUNX2 reduces but does not fully
prevent plaque calcification (Sun et al., 2012; Lin et al., 2016). It
is, however, difficult to know whether calcifications that formed
despite the absence of RUNX2 in VSMCs did so independently of
RUNX2 or rather under the control of RUNX2 in cells other than
VSMCs (Lin et al., 2016). In the next section, we will review the
main mechanisms that may lead to calcification independently
of RUNX2 and of chondrocytes or osteoblasts.

Calcification May Begin on Cell Debris
One very plausible mechanism of early microcalcification
formation involves cell debris (Kim, 1995). Whereas extracellular
calcium phosphate precipitation is mainly prevented by the
presence of mineralization inhibitors such as PPi, intracellular
calcification is normally prevented by the physical separation of
calcium ions and inorganic phosphate (Pi). Calcium is mainly
stored in the endoplasmic reticulum and is present at very
low concentrations in the cytoplasm, where Pi levels are higher
than in the extracellular fluids (Romero-Garcia and Prado-
Garcia, 2019). Apoptosis normally does not compromise this
separation, or at least does not allow intracellular calcification to
propagate extracellularly, because integrity of the cell membrane
and of the membrane of apoptotic bodies (ABs) is preserved.
However, when ABs are not phagocytosed rapidly enough by
macrophages, they undergo necrosis, characterized by membrane
rupture, allowing calcium, and Pi to precipitate. It is well known
that apoptotic debris clearance is impaired in atherosclerotic
plaque (Schrijvers et al., 2005), and calcification on apoptotic
debris is frequent in early plaques. Histological examination of
thousands of coronary arteries revealed that microcalcifications
often form in proximity to apoptotic VSMCs, and that
calcifying apoptotic macrophages are often seen in association
with punctate calcifications resulting from microcalcifications

(Jinnouchi et al., 2020). The role of apoptosis in initiating
calcification is strengthened by the report that inhibition of
apoptosis by a broad caspase inhibitor reduced calcification
in cultured human VSMCs (Proudfoot et al., 2000). Impaired
AB clearance rather than ABs themselves is likely involved in
calcification, since induction of apoptosis specifically in VSMCs
in vivo does not lead to arterial inflammation or calcification in
wild-type mice, whereas it leads to reduced fibrous cap thickness
and collagen content, together with increased inflammation and
calcification in ApoE−/− mice (Clarke et al., 2006, 2008).

These data strongly suggest that necrosis secondary to
VSMC apoptosis induces or increases plaque calcification.
Alternatively, or in addition to secondary necrosis, programmed
necrosis, also known as necroptosis, may participate in plaque
calcification. Necroptosis was discovered relatively recently as
a proinflammatory type of programmed cell death controlled
by receptor-interacting serine/threonine-protein kinase 1
(RIPK1) and RIPK3 (Choi et al., 2019). Upon induction
of necroptosis, RIPK3 phosphorylates the mixed-lineage
kinase domain-like (MLKL) protein, which leads to MLKL
oligomerization, membrane translocation, and formation of a
pore allowing extracellular release of intracellular molecules
(Kolbrink et al., 2020). Interestingly, Ldlr−/−;Ripk3−/−

mice develop smaller necrotic cores than Ldlr−/− mice,
indicating that necroptosis is a significant form of cell death
in plaques, and exerts negative effects (Lin et al., 2013). This
was confirmed in ApoE−/−;Ripk3−/− mice, which showed less
plaque inflammation and later mortality than ApoE−/− mice
(Meng et al., 2015). In addition, treatment of ApoE−/− mice
with necrostatin-1, an inhibitor of RIPK1–RIPK3 interaction
and subsequent necroptosis, reduces lesion size and necrotic
core formation (Karunakaran et al., 2016). Taken together,
these studies suggest that necroptosis, like necrosis induced
by impaired apoptotic cell clearance, has a detrimental effect
in plaque development that might include induction of
calcification. However, this interpretation, according to which
necroptosis induces calcification and has harmful effects only in
atherosclerosis, might be oversimplistic. Indeed, specific Ripk3
deletion in macrophages or endothelial cells protects ApoE−/−

mice from lipid accumulation, suggesting that necroptosis
impacts plaque development differently depending on the cell
lineage in which it takes place (Colijn et al., 2020). Moreover, a
recent study surprisingly showed that, while inhibition of MLKL
expression in ApoE−/− mice predictably impaired necroptosis,
it increased lipid accumulation within the plaques (Rasheed
et al., 2020). To our knowledge, whether plaque calcification
can be prevented by inhibition of necroptosis has not yet been
specifically investigated; since necrosis is known to induce
calcification and since microcalcifications are often associated
with dying macrophages and VSMCs (Jinnouchi et al., 2020),
more studies are warranted.

In addition to necroptosis, another form of cell
death, called pyroptosis, may participate in plaque
calcification. Pyroptosis is the form of cell death associated
with secretion of IL-1β relying on NOD-like receptor
family pyrin-domain-containing 3 (NLRP3) activation
(Kesavardhana et al., 2020). It has long been known
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that NLRP3 activation leads to caspase-1-mediated cleavage
of pro-IL-1β into mature IL-1β; however, how this mature
IL-1β is released extracellularly was discovered only recently.
Activated caspase-1 not only cleaves the cytoplasmic protein
gasdermin D, allowing the N-terminal fragment of gasdermin
D to polymerize in the membrane and form pores through
which IL-1β is released (Shi et al., 2015), but also leads to cell
death (Kesavardhana et al., 2020). IL-1β is a very important
cytokine in atherosclerosis, which modulates multiple aspects
of plaque formation (Bhaskar et al., 2011) and development
(Gomez et al., 2018) and has emerged as a promising target
in patients with previous myocardial infarction (Ridker et al.,
2017). However, probably because IL-1β has both beneficial
and detrimental effects on atherosclerotic plaque development
in ApoE−/− mice (Bhaskar et al., 2011; Gomez et al., 2018),
manipulation of caspase-1 and NLRP3 levels in ApoE−/− mice
provided contradictory results (Menu et al., 2011; Zheng et al.,
2014; Yin et al., 2015; van der Heijden et al., 2017). To our
knowledge, the possibility that pyroptosis participates in plaque
calcification in vivo has not been specifically addressed, but
in vitro inhibition of inflammasome activation reduced IL-1β

secretion and inhibited VSMC calcification (Wen et al., 2013).

Calcification May Result From the
Release of Extracellular Vesicles and the
Activation of TNAP
Finally, there are arguments suggesting that initiation of plaque
calcification may be due to VSMCs that have acquired some
functions of mineralizing cells, without truly differentiating
into chondrocytes or osteoblasts. For instance, numerous
in vitro studies and genetic models have shown that, often,
the mere deficiency of a mineralization inhibitor or the mere
upregulation of a promineralizing factor is sufficient to trigger
calcification. In particular, several genetic diseases or mouse
models indicate that a single enzyme, TNAP, is sufficient to
induce arterial calcification. As described above, TNAP induces
mineralization by hydrolyzing PPi (Hessle et al., 2002; Murshed
et al., 2005), and constant physiological production of PPi is
required to prevent vascular calcification. Deficient generation
of PPi from extracellular ATP, due to mutations in the gene
encoding ectonucleotide pyrophosphatase/phosphodiesterase 1
(ENPP1), leads to a disease known as generalized arterial
calcification of infancy (GACI) (Rutsch et al., 2003). Logically,
VSMC-specific overexpression of TNAP is sufficient to induce
medial calcification in mice (Sheen et al., 2015). Interestingly,
calcification in this model is associated with increased transcript
levels of the osteochondrocyte markers Bmp2, Sox9, Acan,
and Runx2 (Sheen et al., 2015), suggesting that TNAP not
only stimulates calcification but also launches the whole
phenotypic change process of VSMCs into osteochondrocyte-
like cells. Molecular investigation of the mechanisms involved
suggests that TNAP induces calcification in VSMCs, which
in turn activates the bone anabolic factor BMP2 (Fakhry
et al., 2017). Such a molecular sequence implies that TNAP
is expressed before VSMC differentiation and independently
of RUNX2. Another genetic disease, arterial calcification due

to deficiency of CD73 (ACDC), offers a likely explanation
(St Hilaire et al., 2011). CD73 is a relatively ubiquitous
nucleotidase that dephosphorylates extracellular AMP into
adenosine, to participate in the resolution of inflammation
(Antonioli et al., 2013). Calcification in ACDC is due to
upregulation of TNAP expression in the absence of adenosine,
to compensate for decreased AMP dephosphorylation (Jin
et al., 2016). TNAP has indeed recently been described as an
anti-inflammatory nucleotidase, which explains its ubiquitous
expression (Bessueille et al., 2020). Therefore, induction of TNAP
expression in association with its inflammatory function may
result in induction of plaque calcification, independently of
RUNX2. The fact that TNF-α, IL-1β, or IL-6 stimulates TNAP
expression in VSMCs supports this paradigm (Tintut et al.,
2000; Shioi et al., 2002; Lee et al., 2010; Lencel et al., 2011;
Zhao et al., 2012).

Finally, if TNAP emerges as a possible important contributor
to microcalcification, it must be added that the role of TNAP in
physiological mineralization is not to trigger crystal nucleation
but to allow calcium phosphate crystals to grow (Fleisch et al.,
1966; Millán and Whyte, 2016; Bottini et al., 2018). Crystal
nucleation is thought to occur inside extracellular vesicles (EVs)
released by hypertrophic chondrocytes and osteoblasts and
generally named matrix vesicles (MVs) in the bone biology
field (Bottini et al., 2018). Although still controversial, MVs
are suspected to concentrate calcium and Pi through the
channeling activity of annexins and Pit transporters, respectively
(Yadav et al., 2016; Bottini et al., 2018). In addition, MVs
may further concentrate Pi from phosphatidylcholine through
the sequential activity of phospholipase A2, ectonucleotide
pyrophosphatase/phosphodiesterase 6, and PHOSPHO1
(Roberts et al., 2007; Yadav et al., 2016; Stewart et al.,
2018). Crystal formation inside MVs would then rely on
phosphatidylserine-mediated nucleation (Wu et al., 1993;
Cruz et al., 2020).

Increasing data suggest that VSMCs release EVs that may
initiate vascular calcification similarly to the way MVs released by
hypertrophic chondrocytes induce growth plate mineralization
(Hutcheson et al., 2016). This suspected involvement of EVs in
plaque calcification has been nicely reviewed recently (Kapustin
and Shanahan, 2016; Bakhshian Nik et al., 2017; Blaser and
Aikawa, 2018; Aikawa and Blaser, 2021). We will therefore
briefly present what is known of their suspected contribution
to plaque calcification. Electron microscopic exploration of
human carotid plaques revealed that vulnerable plaques may
contain more calcifying EVs than stable ones (Bobryshev
et al., 2008). Interestingly, several distinct multilamellar vesicles
were visible, suggesting that several types of vesicles may
be involved in plaque calcification. In culture of VSMCs,
calcification is reduced by inhibition of annexin A6 expression
(Kapustin et al., 2011) or PHOSPHO1 activity (Kiffer-Moreira
et al., 2013), two proteins thought to be important for MV-
associated mineralization. However, there might be significant
differences in the mechanisms governing EV and MV release
and mineralization/calcification. It was particularly shown that,
in VSMCs, sortilin regulates the load of TNAP into EVs and
that sortilin deficiency reduces plaque calcification but not bone
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TABLE 1 | Arguments in favor of, and arguments against the hypothesis that calcification is initiated by osteochondrocyte-like cells.

Hypothesis Arguments supporting the hypothesis References

Plaque calcification is initiated by
osteochondrocyte-like cells

Plaques calcify through endochondral ossification in ApoE−/−mice, with crystals observed
by electron microscopy in proximity to chondrocyte-like cells

Qiao et al., 1995; Rattazzi et al.,
2005

Mouse and human VSMCs trans-differentiate in culture into osteochondrocyte-like cells in
response to inflammatory and oxidative factors relevant to the context of atherosclerosis

Al-Aly et al., 2007; Awan et al.,
2015; Bessueille and Magne,
2015; Lee et al., 2019

VSMC-specific inactivation of RUNX2, the transcription factor governing hypertrophic
chondrocyte and osteoblast differentiation strongly decreases arterial calcium content in
ApoE−/− and Ldlr−/− mice

Sun et al., 2012; Lin et al., 2016

Plaque calcification is initiated
independently from
osteochondrocyte-like cells

VSMC-specific inactivation of RUNX2 strongly decreases, but does not totally prevent
arterial calcium deposition in ApoE−/− and Ldlr−/− mice

Sun et al., 2012; Lin et al., 2016

Human plaques only occasionally show bone-like structures at histology and evidence of
endochondral ossification is lacking

Herisson et al., 2011; Jinnouchi
et al., 2020

Osteocalcin, a marker of hypertrophic chondrocytes and osteoblasts expressed under the
control of RUNX2 is expressed after calcifications are formed in human plaques

Roijers et al., 2011; Chatrou
et al., 2015

Microcalcifications are often seen on VSMC and macrophage debris in human plaques Herisson et al., 2011; Jinnouchi
et al., 2020

Inhibition of apoptosis decreases calcification in human VSMC cultures, and induction of
apoptosis specifically in VSMC increases calcification in ApoE−/−mice

Proudfoot et al., 2000; Clarke
et al., 2008; Clarke et al., 2006

mineralization (Goettsch et al., 2016). Finally, not only MV-
like EVs, which are membrane blebs but also exosomes, which
have an intracellular origin, may be involved in VSMC-mediated
calcification. Exosomes released from VSMCs were indeed shown
to be enriched in factors involved in calcification, such as annexin
A6 and phosphatidylserine (Kapustin et al., 2015; Kapustin
and Shanahan, 2016). Finally and to add more complexity,
macrophages have also been shown to release calcifying EVs
(New et al., 2013; Aikawa and Blaser, 2021). Therefore, the
origin and respective contribution EVs and exosomes to plaque
calcification in vivo will be therefore a difficult task to assess, but
which deserves intense efforts.

CONCLUSION

Arguments in favor of the phenotypic change hypothesis mainly
come from mouse models of atherosclerosis, whereas human
studies rather suggest that calcification begins independently
of osteoblast or chondrocyte differentiation (Table 1).
If microcalcification in mice, like in humans, originates
independently of chondrocyte differentiation, then it will be
interesting to understand why microcalcifications always lead
to ossification in mice, but so infrequently in humans. Apatite

crystals stimulate mouse VMSCs in vitro to express BMP2 (Sage
et al., 2011), which triggers their chondrocyte differentiation
(Fakhry et al., 2017). Human coronary plaques express BMP2
in association with calcifications (Boström et al., 1993; Dhore
et al., 2001; Chatrou et al., 2015). Whether and why BMP2 is
less potent in humans deserves investigation. Finally, it cannot
be excluded that several different mechanisms initiate plaque
calcification, since microcalcifications can be seen in the necrotic
core of human plaques as floating debris or in the fibrous cap
(Jinnouchi et al., 2020).
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