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Sterol response element binding protein (SREBP) is a master regulator of cellular
lipogenesis. One key step in the regulation of SREBP activity is its sequential cleavage
and trans-location by several different proteinases including SREBP cleavage activating
protein (SCAP). We have previously reported that Brahma related gene 1 (BRG1)
directly interacts with SREBP1c and SREBP2 to activate pro-lipogenic transcription
in hepatocytes. We report here that BRG1 deficiency resulted in reduced processing
and nuclear accumulation of SREBP in the murine livers in two different models of
non-alcoholic steatohepatitis (NASH). Exposure of hepatocytes to lipopolysaccharide
(LPS) and palmitate (PA) promoted SREBP accumulation in the nucleus whereas BRG1
knockdown or inhibition blocked SREBP maturation. Further analysis revealed that
BRG1 played an essential role in the regulation of SCAP expression. Mechanistically,
BRG1 interacted with Sp1 and directly bound to the SCAP promoter to activate SCAP
transcription. Forced expression of exogenous SCAP partially rescued the deficiency
in the expression of SREBP target genes in BRG1-null hepatocytes. In conclusion, our
data uncover a novel mechanism by which BRG1 contributes to SREBP-dependent
lipid metabolism.

Keywords: transcriptional regulation, hepatocyte, lipid metabolism, transcription factor, chromatin remodeling
protein, steatosis

INTRODUCTION

Lipid is a major biological macromolecule that plays diverse roles in orchestrating differentiation,
proliferation, migration, communication, survival, and death of mammalian cells (Glatz, 2011; Patil
et al., 2019; Nechipurenko, 2020; Xie et al., 2020). On the other hand, disorders of lipid metabolism,
typically characterized excessive lipid synthesis and defective lipid catabolism, contribute to a
host of human diseases including coronary heart disease, obesity, hypertension, and non-alcoholic
steatohepatitis/NASH (Cifkova, 2014; Islam et al., 2019; Magni, 2019; Pei et al., 2020). Liver is a
major hub of lipid metabolism (Nguyen et al., 2008). The hepatocytes rely on thousands of proteins,
which include transmembrane receptors, transcriptional regulators, and transporters, to coordinate
lipid metabolism tailoring to various cellular events. This normally well-programmed process can
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be hijacked by both intrinsic and extrinsic pathogenic stimuli
to skew lipid metabolism and to promote the development of
diseases (Neuschwander-Tetri, 2010; Mashek et al., 2015).

Sterol response element binding protein (SREBP), initially
identified and characterized by the Brown and Goldstein
laboratory, represents a family of transcription factors considered
master regulators of lipid metabolism (Shimano and Sato, 2017).
Three members have been identified for this family, SREBP1a,
SREBP1c, and SREBP2. It is generally agreed that SREBP1a/1c
are primarily responsible for the synthesis of fatty acids whereas
SREBP2 selectively regulates cholesterol synthesis although
functional redundancies among the three SREBP isoforms have
been observed (Horton et al., 2002b). All three SREBP proteins
can be detected to exhibit a unanimous expression pattern but
SREBP1c and SREBP2 are the predominantly expressed isoforms
in most tissues in vivo (Shimomura et al., 1997). The relevance
of SREBPs in lipid homeostasis and in the pathogenesis of lipid
disorder-associated human diseases has been mostly supported
by transgenic animal models. Deletion of SREBP1c in mice,
for instance, results in approximately 50% reduction in hepatic
fatty acid production accompanying an across-the-board down-
regulation of enzymes involved in lipogenesis (Liang et al.,
2002). On the contrary, mice harboring over-expression of either
SREBP1c or SREBP2 develop fatty liver (steatosis) spontaneously
although SREBP1c over-expression preferentially leads to an
increase in plasma triglyceride levels whereas SREBP2 over-
expression causes hypercholesterolemia (Horton et al., 2002a).

Innate SREBP proteins, once translated, dwell in the ER
as trans-membrane factors (Goldstein et al., 2006). Processing
and consequently nuclear translocation of SREBP entails the
participation of three accessory proteins, SREBP cleavage
activating protein (SCAP), site 1 protease (S1P), and site 2
protease (S2P). Upon stimulation by various factors, SCAP
escorts SREBP to the Golgi apparatus where they are clipped,
sequentially, by S1P and S2P (Brown and Goldstein, 1997).
The liberated/mature SREBP, designated as nSREBP, moves into
the nucleus functioning as a pro-lipogenic transcription factor
to regulate lipid homeostasis and disorder (Hampton, 2002).
Consistent with this model, liver specific deletion of SCAP
results in defective processing of all three nSREBPs and a drastic
reduction in hepatic lipid production (Horton et al., 2002a).
In addition, genetic polymorphism of the SCAP gene has been
found to be associated with NASH and hypertension in humans
(Sun et al., 2013; Yang et al., 2017). However, the epigenetic
regulation of SCAP transcription during NASH pathogenesis
remains poorly defined.

Brahma related gene 1 (BRG1) utilizes the energy derived from
ATP hydrolysis to mobilize nucleosomes along the chromatin
and modulate chromatin accessibility. We have previously shown
that BRG1 is an important moderator of liver injury linking
specific transcriptional events to the alteration of liver function
(Fan et al., 2019; Li et al., 2019a,c,d,e; Dong et al., 2020; Shao et al.,
2020). Importantly, liver specific deletion of BRG1 attenuates
steatosis in several different animal models (Kong et al., 2018; Li
et al., 2018; Liu et al., 2019a; Fan et al., 2020). Here we describe
a novel mechanism whereby BRG1 contributes to hepatic liver
metabolism by regulating SCAP-mediated SREBP processing.

MATERIALS AND METHODS

Animals
All animal experiments were reviewed and approved by
the intramural Ethics Committee on Humane Treatment of
Experimental Animals. Smarca4f /f mice (Dong et al., 2020)
were crossed to Alb-Cre mice (Kong et al., 2019b) to generate
hepatocyte conditional BRG1 knockout (LKO) mice. To induce
NASH, 8 week-old male mice were fed a high fat diet (D12492,
Research Diets) for 16 consecutive weeks (Fan et al., 2019).
Alternatively, 8 week-old male mice were fed a methionine-
and choline-deficient (MCD) diet (A02082002B, Research
Diets) for four consecutive weeks as previously described
(Kong et al., 2019a).

Cell Culture, Plasmids, Transient
Transfection, and Reporter Assay
Primary mouse hepatocytes were isolated and maintained as
previously described (Li et al., 2019a). HepG2 cells were
maintained in DMEM supplemented with 10% FBS. The
human SCAP promoter-luciferase constructs (Nakajima et al.,
1999), FLAG-tagged BRG1, Myc-tagged SCAP (Chen et al.,
2016), have been described previously. Small interfering RNAs
targeting BRG1 are: #1, AACATGCACCAGATGCACAAG and
#2, GCCCATGGAGTCCATGCAT. Transient transfection was
performed with Lipofectamine 2000. Cells were harvested 48 h
after transfection. Luciferase activities were assayed 24–48 h after
transfection using a luciferase reporter assay system (Promega) as
previously described (Yang et al., 2019a,b).

Protein Extraction and Western Blot
Whole cell lysates were obtained by re-suspending cell pellets
in RIPA buffer (50 mM Tris pH7.4, 150 mM NaCl, and 1%
Triton X-100) with freshly added protease inhibitor (Roche) as
previously described (Lv et al., 2020; Mao et al., 2020; Yang
et al., 2020a,b). Nuclear proteins were prepared with the NE-PER
Kit (Pierce) following manufacturer’s recommendation. Western
blot analyses were performed with anti-BRG1 (Santa Cruz,
sc-10768), anti-SREBP1 (Proteintech, 14088-1), anti-SREBP2
(Proteintech, 19811-1), anti-SCAP (Cell Signaling Tech, 13102),
and anti-β-actin (Sigma, A2228) antibodies. For densitometrical
quantification, densities of target proteins were normalized to
those of b-actin as previously described (Sun et al., 2020; Wu
T. et al., 2020). Data are expressed as relative protein levels
compared to the control group which is arbitrarily set as one.

RNA Isolation and Real-Time PCR
RNA was extracted with the RNeasy RNA isolation kit (Qiagen).
Reverse transcriptase reactions were performed using a
SuperScript First-strand Synthesis System (Invitrogen) as
previously described (Liu et al., 2019b; Zhao et al., 2019).
Real-time PCR reactions were performed on an ABI Prism
7500 system with the following primers: human SCAP, 5′-
TCACGTTGCAGCCGTCTTCCTT-3′ and 5′-CAGGATGCCA
ATCCAGACAACG-3′; human BRG1, 5′-TCATGTTGGCG
AGCTATTTCC-3′ and 5′-GGTTCCGAAGTCTCAACGATG-3′;
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human FASN, 5′-CTTCCGAGATTCCATCCTACGC-3′ and
5′-TGGCAGTCAGGCTCACAAACG-3′; human LDLR, 5′-GAC
GTGGCGTGAACATCTG-3′ and 5′-CTGGCAGGCAATGCTT
TGG-3′; mouse Scap, 5′-CCGAGGATGACCCTGACTGA-3′
and 5′-AGAGCAGCCCATGGTTGTAGA-3′; mouse S1p, 5′-CT
ACTATGGAGGAATGCCGACAG-3′ and 5′-CTCCGTTCTGT
GGCAAATAGGG-3′; mouse S2p, 5′-ACGGCGGAAAGCAA
GGATGCTT-3′ and 5′-GTGCCAAAGTCTGCATCAGCGT-3′;
mouse Fasn, 5′-TTTAAAGGGAGGGAGGGAGA-3′ and 5′-GG
CAGGATAGGGAAACACTGA-3′; mouse Ldlr, 5′-TGTGAAT
TTGGTGGCTGAAAAC-3′ and 5′-AATAGGGAAGAAGATG
GACAGGAAC-3′. Ct values of target genes were
normalized to the Ct values of housekeekping control
gene (18s, 5′-CGCGGTTCTATTTTGTTGGT-3′ and 5′-
TCGTCTTCGAAACTCCGACT-3′ for both human and mouse
genes) using the 11Ct method and expressed as relative mRNA
expression levels compared to the control group which is
arbitrarily set as one.

Chromatin Immunoprecipitation
Chromatin immunoprecipitation (ChIP) assays were performed
essentially as described before (Li et al., 2019b,f, 2020a,b,c;
Shao et al., 2019; Weng et al., 2019; Chen et al., 2020a;
Wu X. et al., 2020; Hong et al., 2021). In brief, chromatin
in control and treated cells were cross-linked with 1%
formaldehyde. Cells were incubated in lysis buffer (150 mM
NaCl, 25 mM Tris pH 7.5, 1% Triton X-100, 0.1% SDS, and
0.5% deoxycholate) supplemented with protease inhibitor tablet
and PMSF. DNA was fragmented into ∼200 bp pieces using a
Branson 250 sonicator. Aliquots of lysates containing 200 µg
of protein were used for each immunoprecipitation reaction
with anti-BRG1 (Santa Cruz, sc-10768), anti-Sp1 (Abcam,
ab227383), or pre-immune IgG. Precipitated genomic DNA
was amplified by real-time PCR with the following primers:
SCAP proximal promoter, 5′-ATACTTCCCTCCGGTGTCCAC-
3′ and 5′-ACCTCTCACCTCCACCTTTAC-3′; SCAP distal
promoter, 5′-AAATGCGAGGACATGTACAATAC-3′ and 5′-
ATTTAAAAGCTAAGTTGAC-3′. A total of 10% of the starting
material is also included as the input. Data are then normalized
to the input and expressed as % recovery relative the input as
previously described (Chen et al., 2020b,c). All experiments were
performed in triplicate wells and repeated three times.

Statistical Analysis
Sample sizes reflected the minimal number needed for statistical
significance based on power analysis and prior experience. Two-
tailed Student’s t-test was performed using an SPSS package.
Unless otherwise specified, p values smaller than 0.05 were
considered statistically significant.

RESULTS

BRG1 Regulates SREBP Maturation in
the Liver
We first evaluated the effect of BRG1 deficiency on SREBP
maturation in the liver in two different models of steatosis. To

this end, we generated liver conditional BRG1 knockout (LKO)
mice by crossing the Smarca4-flox mice with the Alb-Cre mice.
In the first model in which the mice were fed a high-fat diet
(HFD) for 16 weeks, it was observed that nuclear SREBP1/2 levels
were appreciably increased in the livers of the HFD-fed mice
compared to the control diet-fed (chow) mice; up-regulation
of nuclear SREBP1/2 by HFD feeding was more modest in the
LKO livers than in the WT livers (Figure 1A). In the second
model in which the mice were fed a methionine-and-choline
deficient (MCD) diet for 4 weeks, a similar observation was made
that BRG1 deficiency dampened the accumulation of SREBP1/2
in the nucleus.

BRG1 Is Essential for SREBP Maturation
in Hepatocytes
We next verified the observation that BRG1 might contribute
to SREBP maturation in cultured hepatocytes. The combined
treatment of LPS plus free fatty acids (palmitate, PA), which
has been reported to induce SREBP target gene expression in
macrophages (Li et al., 2013), induced the expression of FASN,
a prototypical SREBP1 target gene, and the expression of LDLR,
prototypical SREBP2 target gene, in HepG2 cells (Figure 2A).
Knockdown of BRG1 by siRNA attenuated the induction of
both FASN and LDLR, indicative of repressed SREBP activity
(Figure 2A). Consistent with these changes, we found that
BRG1 knockdown reduced the levels of nSREBP1/2 without
significantly altering full-length SREBP1/2 in LPS + PA-treated
HepG2 cells (Figure 2B). Similarly, treatment with the small-
molecule BRG1 inhibitor PFI-3 resulted in a down-regulation of
SREBP target genes and partially blocked SREBP processing in
HepG2 cells (Figures 2C,D). Finally, when primary hepatocytes
were isolated from wild type and BRG1 LKO mice and exposed
to LPS + PA treatment, the induction of SREBP target genes and
SREBP maturation were attenuated in the LKO cells compared to
the WT cells (Figures 2E,F).

BRG1 Regulates SCAP Expression
Because BRG1 deficiency was associated with impaired SREBP
maturation in hepatocytes, we hypothesized that BRG1 might
play a role regulating the expression levels of SREBP processing
enzyme(s). We therefore compared the expression of the three
SREBP processing enzymes, SCAP, S1P, and S2P, in WT and LKO
livers. As shown in Figures 3A,B, all three SREBP processing
proteins were up-regulated in HFD-fed livers compared to the
chow-fed livers; BRG1 deficiency, however, dampened the up-
regulation of SCAP expression without altering either S1P or
S2P expression. Similarly, MCD diet feeding induced the mRNA
(Figure 3C) and protein (Figure 3D) levels of SCAP, S1P, and
S2P in the murine livers; the induction of SCAP expression by
MCD diet feeding was more modest in the LKO livers than
the WT livers whereas the induction of S1P/S2P expression was
comparable between the LKO livers and WT livers.

Next, we evaluated the effect of BRG1 depletion or inhibition
on SCAP expression in cultured hepatocytes. Exposure of
HepG2 cells to LPS + PA treatment robustly augmented SCAP
expression at both mRNA (Figure 4A) and protein (Figure 4B)
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FIGURE 1 | BRG1 regulates SREBP maturation in the liver. (A) WT and BRG1 LKO mice were fed a high-fat diet (HFD) for 16 weeks. SREBP levels were examined
in whole liver lysates and liver nuclear lysates by Western blotting. (B) WT and BRG1 LKO mice were fed a methionine-and-choline deficient diet (MCD) for 4 weeks.
SREBP levels were examined in whole liver lysates and liver nuclear lysates by Western blotting. N = 6 mice for each group. Data represent averages of three
independent experiments and error bars represent SEM. *p < 0.05, two-tailed Student’s t-test.

levels. BRG1 knockdown by two independent siRNAs attenuated
the induction of SCAP expression by LPS + PA treatment.
Alternatively, the addition of a small-molecule BRG1 inhibitor
(PFI-3) dose-dependently ameliorated the induction of SCAP
expression by LPS + PA treatment (Figures 4C,D). Finally,
when primary hepatocytes were isolated from the WT and
the LKO mice and exposed to LPS + PA stimulation, the
induction of SCAP molecules was not as strong in the LKO
cells as in the WT cells (Figures 4E,F). Consistent with
the changes in SCAP expression, it was also observed that
there were fewer lipid droplets in the LKO hepatocytes than
in the WT hepatocytes exposed to LPS + PA treatment
(Supplementary Figure 1).

BRG1 Interacts With Sp1 to Activate
SCAP Transcription in Hepatocytes
Next, it was determined whether regulation of SCAP expression
by BRG1 in hepatocytes occurred at the transcriptional level.
An SCAP promoter-luciferase fusion construct (−1,033) was
transfected into HepG2 cells. Treatment with LPS + PA
stimulated the SCAP promoter activity by more than twofold and
BRG1 over-expression further augmented the SCAP promoter

activity in a dose-dependent manner (Figure 5A). When the
same SCAP promoter-luciferase construct was transfected into
primary hepatocytes isolated from WT and BRG1 LKO mice,
treatment with LPS + PA stimulated the SCAP promoter
activity much more potently in the WT hepatocytes than in
the LKO hepatocytes (Figure 5B). Serial deletions were then
introduced to the full-length SCAP promoter-luciferase construct
and the mutated constructs were tested for the responsiveness
to the stimulation of LPS + PA treatment plus BRG1 over-
expression. As shown in Figure 5C, the −540 construct and
the −250 construct, but not the −120 construct, responded
to the stimulation of LPS + PA treatment plus BRG1 over-
expression comparably as the −1,033 construct. ChIP assay
confirmed that LPS + PA treatment induced BRG1 recruitment
to the SCAP proximal promoter between −250 and −120;
as a negative control, BRG1 occupancy on the SCAP distal
promoter was not detected with or without LPS + PA treatment
(Figure 5D). Further analysis revealed a GC-rich region that
could potentially occupied by the transcription factor Sp1
between −250 and −120 of the SCAP promoter. Furthermore,
Re-ChIP assay showed that an Sp1-BRG1 complex was detectable
on the SCAP promoter only when the cells were stimulated
by LPS + PA (Figure 5E). ChIP assay confirmed that Sp1
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FIGURE 2 | BRG1 is essential for SREBP maturation in hepatocytes. (A,B) HepG2 cells were transfected with siRNA targeting BRG1 or scrambled siRNA (SCR)
followed by treatment with LPS (1 µg/ml) + PA (0.2 mM). SREBP target genes were examined by qPCR. SREBP levels were examined in whole cell lysates and
nuclear lysates by Western blotting. (C,D) HepG2 cells were treated with LPS (1 µg/ml) + PA (0.2 mM) in the presence or absence of PFI-3 (3 µM). SREBP target
genes were examined by qPCR. SREBP levels were examined in whole cell lysates and nuclear lysates by Western blotting. (E,F) Primary hepatocytes isolated from
WT and BRG1 LKO mice were treated with LPS (1 µg/ml) + PA (0.2 mM). SREBP levels were examined in whole cell lysates and nuclear lysates by Western blotting.
Data represent averages of three independent experiments and error bars represent SEM. *p < 0.05, two-tailed Student’s t-test.

knockdown abrogated the binding of both Sp1 and BRG1
to the proximal SCAP promoter (Figure 5F). Adding further
support to the model that Sp1 recruits BRG1 to activate SCAP

transcription was the observation that the SCAP promoter
construct with Sp1 site mutated could not be induced by BRG1
over-expression (Figure 5G).
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FIGURE 3 | BRG1 regulates SCAP expression in vivo. (A,B) WT and BRG1 LKO mice were fed a high-fat diet (HFD) for 16 weeks. SCAP expression was examined
by qPCR and Western blotting. N = 5 mice for the chow groups and N = 6 mice for the HFD groups. (C,D) WT and BRG1 LKO mice were fed a
methionine-and-choline deficient diet (MCD) for 8 weeks. SCAP expression was examined by qPCR and Western blotting. N = 5 mice for the chow groups and
N = 6 mice for the MCD groups. Data represent averages of three independent experiments and error bars represent SEM. *p < 0.05, two-tailed Student’s t-test.

SCAP Re-introduction Partially Rescues
the Expression of SREBP Target Genes
in BRG1 Deficient Hepatocytes
Finally, exogenous SCAP was introduced into BRG1-deficient
hepatocytes to address the question as to whether it could
rescue the expression of SREBP target genes. As shown in
Figure 6A, over-expression of Myc-tagged SCAP largely
restored SREBP processing in the LKO hepatocytes despite
the absence of BRG1. Consistent with this observation,
SCAP over-expression also partially normalized the levels
of SREBP target genes: there was a 39% increase in

Fasn expression and a 36% increase in Ldlr expression
in the SCAP over-expressed LKO cells compared to the
mock over-expressed LKO cells (Figure 6B). Accordingly,
forced expression of exogenous SCAP partially restored
accumulation of lipid droplet in the LKO hepatocytes
(Supplementary Figure 2).

DISCUSSION

The trans-location and subsequent cleavage of nascent SREBPs
catapults these master regulators of lipid metabolism into the
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FIGURE 4 | BRG1 regulates SCAP expression in vitro. (A,B) HepG2 cells were transfected with siRNA targeting BRG1 or scrambled siRNA (SCR) followed by
treatment with LPS (1 µg/ml) + PA (0.2 mM). SREBP target genes were examined by qPCR. SCAP expression was examined by qPCR and Western blotting. (C,D)
HepG2 cells were treated with LPS (1 µg/ml) + PA (0.2 mM) in the presence or absence of PFI-3 (3 µM). SCAP expression was examined by qPCR and Western
blotting. (E,F) Primary hepatocytes isolated from WT and BRG1 LKO mice were treated with LPS (1 µg/ml) + PA (0.2 mM). SCAP expression was examined by
qPCR and Western blotting. Data represent averages of three independent experiments and error bars represent SEM. *p < 0.05, two-tailed Student’s t-test.
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FIGURE 5 | BRG1 interacts with Sp1 to activate SCAP transcription in hepatocytes. (A) An SCAP promoter-luciferase construct (–1033/+25) was transfected into
HepG2 cells with or without BRG1 followed by treatment with LPS (1 µg/ml) + PA (0.2 mM). Luciferase activities were normalized by protein concentration and GFP
fluorescence. (B) An SCAP promoter-luciferase construct (–1033/+25) was transfected into primary hepatocytes isolated from WT and BRG1 LKO mice followed by
treatment with LPS (1 µg/ml) + PA (0.2 mM). Luciferase activities were normalized by protein concentration and GFP fluorescence. (C) SCAP promoter-luciferase
constructs of various lengths were transfected into HepG2 cells with or without BRG1 followed by treatment with LPS (1 µg/ml) + PA (0.2 mM). Luciferase activities
were normalized by protein concentration and GFP fluorescence. (D) HepG2 cells were treated with or without LPS (1 µg/ml) + PA (0.2 mM) and harvested at
indicated time points. ChIP assays were performed with anti-BRG1 or IgG. (E) HepG2 cells were treated with or without LPS (1 µg/ml) + PA (0.2 mM) for 24 h.
Re-ChIP assays were performed with indicated antibodies. (F) HepG2 cells were transfected with siRNA targeting Sp1 or scrambled siRNA (SCR) followed by
treatment with LPS (1 µg/ml) + PA (0.2 mM). ChIP assays were performed with anti-Sp1 or anti-BRG1. (G) Wild type or Sp1 site mutant SCAP promoter-luciferase
construct was transfected into HepG2 cells with or without BRG1 followed by treatment with LPS (1 µg/ml) + PA (0.2 mM). Luciferase activities were normalized by
protein concentration and GFP fluorescence. Data represent averages of three independent experiments and error bars represent SEM. *p < 0.05, two-tailed
Student’s t-test.
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FIGURE 6 | SCAP re-introduction partially rescues the expression of SREBP target genes in BRG1 deficient hepatocytes. (A,B) A Myc-tagged SCAP expression
construct was transfected into primary hepatocytes isolated from BRG1 LKO mice followed by treatment with LPS (1 µg/ml) + PA (0.2 mM). Gene expression levels
were examined by qPCR and Western blotting. Data represent averages of three independent experiments and error bars represent SEM. *p < 0.05, two-tailed
Student’s t-test. (C) A schematic model. BRG1 may contribute to pro-lipogenic transcription in hepatocytes via at least two independent mechanisms. On the one
hand, BRG1 stimulates SCAP expression to promote SREBP maturation. On the other hand, BRG1 interacts with mature SREBPs in the nucleus to directly activate
pro-lipogenic gene transcription. Consequently, accelerated lipogenesis in hepatocytes leads to steatosis.
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nucleus to orchestrate pro-lipogenic transcription. This process
is mediated by the well-conserved SCAP-S1P-S2P axis. We
have previously shown that the chromatin BRG1 contributes
to hepatic lipid metabolism by functioning as a co-activator
for SREBP1/2 (Li et al., 2018; Fan et al., 2020). Here we
detail a novel mechanism in which BRG1 modulates SREBP
maturation via activating SCAP transcription (Figure 6C).
Our data add to a growing body of evidence that cements
the crucial role BRG1 plays in regulating cellular metabolism.
For instance, Miao et al. (2009) have reported that BRG1
is essential for the synthesis of bile acids, a key function
of hepatocyte, by interacting with the nuclear receptor FXR.
Imbalzano and colleagues have demonstrated that BRG1 activates
the transcription of several enzymes involved in fatty acid
synthesis, including ATP citrate lyase (ACLY) and acetyl CoA
carboxylase (ACC), to drive breast cancer proliferation (Wu
et al., 2016; Nickerson et al., 2017). Metabolomic analysis has
revealed that BRG1 deficiency in cardiomyocytes results in
skewed fatty acid utilization, glycolysis, and glycogen synthesis
(Banerjee et al., 2015). Genomewide transcriptomic studies
suggest that BRG1 preferentially, at least in epithelial cells,
binds to the SREBP target promoters to remodel chromatin
structure (Barutcu et al., 2016). It is interesting to note that
BRG1 deficiency or inhibition did not alter basal levels of SCAP
in the livers (Figure 3) and in cultured hepatocytes (Figure 4),
suggesting that BRG1 is dispensable for the maintenance of lipid
homeostasis under physiological conditions. This observation
is consistent with our previous findings showing that basal
lipid profiles (triglycerides and cholesterol) are comparable
between the WT mice and the BRG1 LKO mice. Rather,
stimuli-induced SCAP expression appeared to rely on BRG1
suggesting that BRG1 is a pathogenic factor-driven regulator
of lipid metabolism disorders. These data present Brg1 as
an attractive target for intervention: since the absence of
Brg1 presumably will not interfere with normal tissue/organ
function, the predicament of selective drug delivery could be
effectively circumvented.

Another noteworthy finding is that although SCAP re-
introduction in the BRG1 LKO cells largely restored SREBP
processing (Figure 6A), SREBP target gene expression was
only partially, but not completely, corrected (Figure 6B).
These data allude to a model in which SCAP-mediated
SREBP maturation and nuclear translocation serves as a
necessary but not adequate step for pro-lipogenic transcription.
Indeed, several epigenetic factors have been shown to interact
with BRG1 to regulate SREBP1 activity. The histone H4K16
acetyltransferase MOF (Liu et al., 2019a) and the H3K9
demethylase KDM3A can both bind to SREBP target promoters
to regulate SREBP-dependent transcription (Fan et al., 2020).
An intriguing question that remains to be answered is
whether the functional relevance of MOF and/or KDM3A
can be extended to the regulation of SCAP transcription
and thus SREBP processing. There are a few indications
wherein the SCAP promoter appears to be influenced by
epigenetic modifications. Carraway et al. (2020) have shown
that histone H3K9 acetylation and DNA methylation can
differentially regulate SCAP expression in leukemia cells although

the involvement of specific histone/DNA modifying enzymes
is not clear at this point. It would be of great interest to
further examine the epigenetic mechanism whereby SCAP
transcription is regulated to provide more flexibility in targeting
the SREBP pathway.

There are several lingering issues that deserve
further attention in future studies. First, the broader
biological/pathobiological significance of our finding, i.e.,
whether BRG1 can contribute to SREBP maturation in other
pathophysiological conditions such as insulin stimulation or
fast-feed cycle remains unclear. Of note, it has been previously
shown that insulin-induced transcription of SREBP target
genes in pre-adipocyte correlates with increased recruitment
of BRG1 to the SREBP target promoters although it was not
determined whether BRG1 could directly promote insulin-
induced SREBP nuclear translocation (Lee et al., 2007). Second,
we focused our study on the liver (hepatocytes), one of the
three major peripheral tissues targeted by insulin. Because
SREBP maturation plays a role in the metabolism of both
adipose tissue (adipocytes) (Kim and Spiegelman, 1996) and
skeletal muscle (myocytes) (Guillet-Deniau et al., 2002), it
is tempting to speculate that BRG1 could be involved in the
regulation of metabolic homeostasis in these tissues as well
by virtue of contributing to SREBP maturation. Third, it is
noteworthy that despite the decreased presence of nuclear
SREBP in the LKO hepatocytes, overall SREBP levels remained
undisturbed. A likely explanation could be that the SREBP
expression, at the transcriptional level, might be subjected
to regulation by BRG1. It has long been documented that
both SREBP1 (Amemiya-Kudo et al., 2000) and SREBP2
(Sato et al., 1996) can bind to their respective promoters and
activate the transcription in cis. Because BRG1 can interact
with both SREBP1 (Li et al., 2018) and SREBP2 (Fan et al.,
2020), it is possible that reduced FL-SREBP processing in
the LKO cells may be offset by a proportional reduction
in its expression such that overall FL-SREBP levels remain
marginally affected.

In summary, we present evidence to demonstrate that BRG1
can contribute to cellular lipid metabolism by, in addition
to acting as an SREBP co-factor, promoting SCAP-dependent
SREBP maturation. These data not only place BRG1 in the center
of metabolic programming but provide renewed rationale for
targeting BRG1 in the intervention of human diseases related to
lipid metabolic disorders.
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