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The endoplasmic reticulum (ER) forms direct membrane contact sites with the plasma

membrane (PM) in eukaryotic cells. These ER-PM contact sites play essential roles in lipid

homeostasis, ion dynamics, and cell signaling, which are carried out by protein-protein or

protein-lipid interactions. Distinct tethering factors dynamically control the architecture of

ER-PM junctions in response to intracellular signals or external stimuli. The physiological

roles of ER-PM contact sites are dependent on a variety of regulators that individually

or cooperatively perform functions in diverse cellular processes. This review focuses on

proteins functioning at ER-PM contact sites and highlights the recent progress in their

mechanisms and physiological roles.

Keywords: membrane contact sites (MCSs), endoplasmic reticulum (ER), plasma membrane, tether, lipid transfer,

enzyme

INTRODUCTION

Intracellular trafficking between membrane-bound organelles is divided into two types, vesicular
trafficking and non-vesicular trafficking. Vesicular trafficking is the predominant pathway to
transport macromolecular substances and exchange information between organelles. The cargo
is wrapped by or integrated into the membrane to form a vesicle, and exchange proteins or
lipids between organelles through membrane fusion (Bonifacino and Glick, 2004; Südhof and
Rothman, 2009). However, recent studies demonstrated that non-vesicular trafficking is another
critical trafficking approach among intracellular membranous organelles, directly communicating
through a close gap (typically within 10–30 nm) formed by two opposed membranes (Wong
et al., 2019). This kind of intracellular communication is ensured by particular regions within
the cell, defined as membrane contact sites (MCSs), structures mediated by protein-protein or
protein-lipid interactions.

The largest membrane-bound organelle in eukaryotic cells is the endoplasmic reticulum (ER).
It is the primary place for the synthesis of proteins and lipids, which are needed to maintain
and propagate other membranous organelles and plasma membrane (PM) (Bonifacino and Glick,
2004). The ER extends throughout the whole cell and engages in broad communications with PM
and other organelles by MCSs. ER-PM contact sites were first observed in muscle cells in the 1950s
(Porter and Palade, 1957), and later were demonstrated as a general feature in eukaryotes. The
MCSs formed between the ER and the PM provide an ideal platform for non-vesicular transport
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of lipids, ions, and many other signaling molecules (Gallo
et al., 2016; Saheki and De Camilli, 2017a; Stefan, 2020). The
architecture of ER-PM junctions is dynamically controlled by
distinct tethering factors, and the cellular functions of ER-PM
contact sites are highly dependent on those regulators located
in these regions (Gallo et al., 2016). However, a variety of
proteins localized at the crowded ER-PM junctions, frequently
resulting in the co-existence of multiple regulators with similar
or partially similar functions (Manford et al., 2012; Hoffmann
et al., 2019; Johnson et al., 2019; Kang et al., 2019). They act
synergistically to maintain the local microenvironment, which
largely increases the difficulties of identifying their individual
functions and mechanisms. Therefore, it is important to clarify
how these proteins act in concert to play roles in the MCSs,
especially under physiological or pathological conditions. This
review focuses on the representative regulators localized at ER-
PM contact sites, highlighting their physiological functions,
molecular mechanisms as well as conservations in eukaryotes.

TETHERING MECHANISMS OF PROTEINS
AT ER-PM CONTACT SITES

The extensive cortical ER network is highly dynamic in
eukaryotic cells. The tethering factors build and maintain the ER-
PM contact sites demanded by diverse biological processes. Most
proteins localized at the ER-PM contact sites can span and tether
the two opposed membranes. It often happens that multiple
proteins coordinate to tether the same MCSs and perform
more than one physiological functions (Manford et al., 2012;
Fernandez-Busnadiego et al., 2015; Kang et al., 2019).While some
protein tethers are constitutively localized at ER-PM contact
sites, the locations of others are dynamically regulated by stimuli
such as calcium ions and phosphoinositides (Figure 1A) (Gallo
et al., 2016; Okeke et al., 2016; Saheki and De Camilli, 2017a;
Stefan, 2020). How these protein tethers accurately modulate
the structure and plasticity of ER-PM contact sites has not
been completely understood. Comprehensive understanding of
the tethering mechanisms will shed important light on the
dynamical control of the cortical ER network. In this section, we
summarized the major ER-PM tethering proteins and discussed
their membrane-targeting mechanisms.

VAPs
Vesicle-associated membrane protein (VAMP)-associated
protein (VAP) is an evolutionarily conserved ER membrane
protein in all eukaryotes. It plays a vital role in many ER
processes, especially in maintaining ER-PM contact sites. Loss
of VAP by mutations leads to neurodegeneration, such as
sporadic ALS or Parkinson’s disease (Anagnostou et al., 2010;
Kun-Rodrigues et al., 2015). There are mainly 2 VAPs (VAP-A
and VAP-B) in mammals, 2 homologs (Scs2p and Scs22p) in
yeast, and 10 homologs (VAP27-1 to VAP27-10) in Arabidopsis.
VAP contains a major sperm protein (MSP) domain, a coiled-
coil linker domain, and a C-terminal transmembrane domain
required for ER surface location (Figure 1B) (Lev et al., 2008).

Although named by interaction with VAMP, VAP’s primary
function is not as a soluble N-ethylmaleimide-sensitive factor
attachment protein receptor (SNARE) regulator. It binds more
than 100 peripheral proteins, including those anchored into
other organelles (Murphy and Levine, 2016). By interacting with
those partners, VAP dynamically controls the junctions formed
between the ER and other organelles such as Golgi, lipid droplets,
mitochondria, endosomes, and PM (Murphy and Levine, 2016).
By localization at particular contact sites, VAPs and their binding
partners coordinate to mediate diverse cellular processes (Lev
et al., 2008). However, the distribution of VAP in mammals
is not limited to the MCSs but throughout the ER, suggesting
it has other functions than membrane tethering. For example,
VAP interacts with secernin-1 at the ER membrane to regulate
dynamic ER remodeling (Lindhout et al., 2019).

Unlike in mammals, the homologs of VAPs in fission yeast
and Arabidopsis are more concentrated at MCSs (Zhang et al.,
2012; Wang et al., 2014). Scs2p and Scs22p were discovered
as two major tethering factors at the ER-PM contact sites
(Manford et al., 2012; Zhang et al., 2012). Scs2p was reported
as an inositol binding protein that responds to phospholipid
composition (Kagiwada and Hashimoto, 2007). However, there
is no direct evidence showing Scs2p connects the ER to
the PM through the interaction with phosphoinositides. In
Arabidopsis, the tethering function of VAP27s at ER-PM contact
sites was also identified. VAP27 co-localizes with NET3C and
forms a tetra complex with microtubules and actin filaments
to tether the ER to the PM (Wang et al., 2014). Recent
studies suggested VAP27s-mediated ER-PM contact sites regulate
plant endocytosis (Stefano et al., 2018; Wang et al., 2019).
However, the detailed tethering mechanisms of VAP27s remain
largely unknown.

The location of VAP largely relies on its binding partners.
It is generally accepted that most of the VAP-mediated ER-
PM tethering requires at least one PM-targeting partner. One
primary class of the VAP-binding partners are cytoplasmic
proteins containing an FFAT motif, which binds specifically to
the MSP domain (Kamemura and Chihara, 2019). At MCSs,
these FFAT-containing proteins interact with the PM through
a membrane-targeting domain, for example, the pleckstrin
homology domain (PHD). The lipid-transfer proteins (LTPs)
are the most well-studied FFAT-containing proteins at MCSs.
For instance, as an Scs2p/Scs22p-binding partner, yeast LTP
Osh3p dynamically targets the PM by its PHD under the
regulation of PM PI(4)P levels (Jansen et al., 2011; Kamemura
and Chihara, 2019). Nir2, another type of FFAT-containing
LTP, connects the PM by its C-terminal LNS2 domain binding
to phosphatidic acid (PA) (Kim et al., 2013; Balla, 2018).
The mechanisms of how these LTPs coordinate with VAP to
regulate lipid metabolism will be discussed in the following
corresponding section.

Kv2 Channels
Voltage-gated potassium (Kv) channel is a tetramer composed
of 4α subunits (70 kDa), and each subunit monomer contains
six transmembrane helix segments (Figure 1B) (Christie, 1995;
Yellen, 1998; Shah and Aizenman, 2014; Fu et al., 2017;
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FIGURE 1 | Diverse tethering mechanisms of proteins at ER-PM contact sites. (A) Representative illustration of the proteins that tether the ER and the PM. VAP

anchors to the ER surface through the transmembrane domain and interacts with its binding partners to tether the ER and PM. The Kv2.1 channel is a VAP-binding

partner. It anchors to the PM by six transmembrane domains and interacts with VAP through the C-terminal PRC domain. The Kv2.1-VAP interaction bridges the

ER-PM junctions regulated by PRC domain phosphorylation. E-Syts are ER membrane proteins anchored to the ER via an N-terminal hydrophobic hairpin. E-Syt1

dynamically tethers the ER to the PM through a Ca2+-dependent interaction between the C2C domain and PI(4,5)P2. E-Syt2/3 constitutively maintains ER-PM

junctions regardless of Ca2+. TMEM16/Ist2p is an eight-span integrin protein in the ER and connects the ER to the PM by its C-terminal CSS domain binding to

PI(4,5)P2. The ER SNARE protein Sec22b forms an incomplete trans-SNARE complex with syntaxin1 on the PM that does not mediate membrane fusion but

promotes the ER and PM tethering. (B) Diagrams of the membrane tethering proteins described in (A). The major functional domains are shown in each of the proteins.

Jedrychowska and Korzh, 2019). Kv2 channels Kv2.1 and Kv2.2,
also named KCNB1 and KCNB2, are abundantly expressed in
the brain and present in other tissues like muscle and pancreatic
islets. The central part of the Kv2 channel is cytosolic, which
forms large clusters in the ER-PM interface. The Kv2 is a delayed
rectifier potassium channel, participates in the repolarization of
neural action potentials (Murakoshi and Trimmer, 1999; Bishop
et al., 2015). However, the clustered Kv2 channels do not readily
conduct potassium (Lim et al., 2000; O’Connell et al., 2010), but
involved in reshaping the ER-PM connections (Fox et al., 2015;
Kirmiz et al., 2018a).

Kv2 channels are VAP-binding partners. They interact with
VAPs through the C-terminal proximal restriction and clustering
(PRC) domain (Lim et al., 2000; Johnson et al., 2019). This Kv2-
VAP interaction mediates the ER-PM junctions responsible for
Kv2 clustering (Johnson et al., 2018, 2019). The phosphorylation
of serine residues in the PRC domain produces negative charges
to enable VAP binding and control the clustering of Kv2 channels,
which is the prerequisites for Kv2 channels-mediated ER-PM

connections (Redman et al., 2007; Cobb et al., 2015; Johnson
et al., 2018, 2019; Kirmiz et al., 2018b).

The clustering enables Kv2 channels to play a structural role
in forming ER-PM junctions, and the non-conductive state is
essential for avoiding electrically silencing neuronal activity (Fox
et al., 2015). Hence, Kv2 clusters-induced ER-PM junctions could
serve as a scaffold for other cell activities such as Ca2+ signaling
and membrane trafficking. It has been reported Kv2.1 cluster
promotes the coupling of PM L-type Ca2+ channels (LTCCs)
and ER ryanodine receptor (RyR) Ca2+ release channels to
generate partial Ca2+ release without the requirement of action
potentials (Vierra et al., 2019). Recent studies revealed the Kv2.1
channels facilitate insulin exocytosis in pancreatic beta cells by
their structural role of the clustering rather than the ability to
conduct K+. Kv2.1 clusters could be applied as a target for insulin
secretion (Fu et al., 2017; Greitzer-Antes et al., 2018). Currently,
the localization mechanism of Kv2 channels at ER-PM junctions
has been primarily uncovered, but the physiological function is
still unclear.
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Extended Synaptotagmins (E-Syts)
E-Syts are integral membrane proteins anchored on the
ER membrane. They are named by the similarity with
synaptotagmins, key regulators in calcium-dependent vesicle
fusion (Min et al., 2007). E-Syts are identified as a conserved
family of tethering proteins at ER-PM contact sites. All E-
Syts contain an N-terminal membrane anchor, followed by a
synaptotagmin-like mitochondrial lipid-binding protein (SMP)
domain and multiple C2 domains (Figure 1B) (Lee and Hong,
2006; Manford et al., 2012; Yu et al., 2016). While they are
anchored to the ER membrane by the hydrophobic hairpin
region, E-Syts can associate with the inner leaflet of the PM
through their C-terminal C2 domains. The SMP domain is
capable of harboring lipids, which we will discuss separately in
the lipid exchange section.

The C2 domains are membrane-binding molecules
representing a family of proteins with diverse functions
(Rizo and Südhof, 1998). As for E-Syts, the C2 domains are
connected in series to interact with acidic phospholipids on PM
to mediate the ER-PM tethering. In mammals, E-Syt1 has five
C2 domains, while E-Syt2 and E-Syt3 have three. The difference
in numbers and characteristics of C2 domains among E-Syts
leads to their distinct subcellular localization and tethering
functions. E-Syt2 and E-Syt3 are located mainly at cortical
ER. E-Syt1, by contrast, is broadly localized to the ER but
migrate to ER-PM MCSs in response to elevated cytosolic Ca2+

(Min et al., 2007; Chang et al., 2013; Giordano et al., 2013;
Idevall-Hagren et al., 2015). Cryo-ET studies indicated ER-PM
contact sites mediated by E-Syts are structurally different from
those bridged by STIM1 (Fernandez-Busnadiego et al., 2015).
The average ER-PM distance at E-Syt3-mediated junctions is
shorter than that observed at E-Syt1-mediated contact sites,
although the latter could be shortened about 30% when cytosolic
Ca2+ increases (Fernandez-Busnadiego et al., 2015). The C2C
domain of E-Syt2/3 binds to PI(4,5)P2 through a conserved
basic patch to constitutively maintain ER-PM contact sites. In
contrast, the C2C domain of E-Syt1 interacts with PI(4,5)P2
upon Ca2+ binding to dynamically control the MCSs (Giordano
et al., 2013; Idevall-Hagren et al., 2015; Saheki et al., 2016; Yu
et al., 2016). In addition to ER-PM connections, E-Syts are also
involved in the tethering of peroxisome-ER membrane contacts.
They regulate cholesterol transport employing a similar C2C
domain-PI(4,5)P2-binding mechanism (Xiao et al., 2019).

In yeast, the homologs of E-Syts are called tricalbins (Tcb1,
Tcb2, and Tcb3) (Creutz et al., 2004; Schulz and Creutz, 2004;
Lee and Hong, 2006). All the three tricalbins are major tethering
contributors for ER-PM contact sites (Manford et al., 2012;
Toulmay and Prinz, 2012). Recent studies showed tricalbins
form curved cortical ER membrane with a requirement of C2
domains (Collado et al., 2019; Hoffmann et al., 2019). However,
the detailed molecular mechanism of tricalbins in maintaining
MCSs is still missing.

Plant SYT1 (synaptotagmin 1), the homolog of E-Syts in
Arabidopsis, is enriched at ER-PM contact sites, especially the
MCSs between immobile ER tubules and the PM (Yamazaki et al.,
2010; Perez-Sancho et al., 2015; Ishikawa et al., 2018). The cortical

ER network maintained by SYT1 correlates with the C2 domains,
identical to E-Syts in mammals and tricalbins in yeast (Yamazaki
et al., 2010). A recent study discovered that ionic stress could
increase SYT1-mediated ER-PM connectivity by promoting the
accumulation of PI(4,5)P2 on PM (Lee et al., 2019). These data
suggest that the interaction between negatively charged lipids on
PM and the C2 domains represents an evolutionarily conserved
mechanism for E-Syt family proteins.

Ist2p
Ist2p is the yeast homolog of the TMEM16, an eight-span integrin
in the ER. The structure of Ist2p contains a specific ion channel
followed by a long cytoplasmic C-terminal region riches in lysine
and histidine residues (Figure 1B) (Juschke et al., 2005; Maass
et al., 2009; Brach et al., 2011). The cortical localization of Ist2p
relies on its C-terminal region, which was defined as the cortical
sorting signal (CSS) (Brach et al., 2011). The CSS fragment
regulates Ist2p expression and transports the protein to the PM,
where it interacts with PI(4,5)P2 to bring the cortical ER and the
PM closer to 15–50 nm (Juschke et al., 2005; Fischer et al., 2009;
Maass et al., 2009; Wolf et al., 2012). The loss of Ist2p leads to an
increase in the distance between the ER and the PM, suggesting
Ist2p is a determinant for the span of ER-PM connections (Ercan
et al., 2009).

The sortingmechanism of Ist2p from the ER to PM-associated
domains is somewhat similar to the recruitment of STIM. They
both bind to phospholipids on PM through the C-terminal
domain, suggesting the recruitment of integral membrane
proteins to PM through specific protein-lipid interactions
represents a common mechanism. Ist2p was reported to be
associated with the H+ pump Pma1 in the PM, allowing cells
to adapt to different growth stages (Wolf et al., 2012). A recent
study showed Ist2p and the LTP Osh6p are co-localized at ER-
PM connections. Ist2p interacts with Osh6p to target the latter to
the ER-PM contact sites, and they jointly participate in the lipid
transport between the ER and the PM (D’Ambrosio et al., 2020).

While the function of Ist2p in yeast has been extensively
studied, we currently still know little about its mammalian
homolog TMEM16 (Hartzell et al., 2009). The two isoforms
TMEM16A and TMEM16B, have recently been identified as
calcium-activated chloride channels (Ercan et al., 2009; Xiao
et al., 2011). However, whether TMEM16 and Ist2p have
conserved functions at ER-PM contact sites remains to be
clarified (Kunzelmann et al., 2016).

Sec22b-Syntaxin1
SNARE proteins represent a superfamily in which the members
share a conserved SNARE motif with about 60–70 residues. They
are the core engine of intracellular vesicle fusion. SNAREs can
be classified as Q-SNAREs and R-SNAREs. Membrane fusion
is initiated when one R-SNARE on the vesicle pairs with three
t-SNAREs on the target membrane to form a four-helix trans-
SNARE complex (Sutton et al., 1998; Weber et al., 1998). Sec22
has three isoforms in mammals as Sec22a, Sec22b, and Sec22c.
Only Sec22b has a SNARE motif and is conserved in yeast (Sun
et al., 2020). Sec22b belongs to the R-SNARE family. It anchored
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to ER through a C-terminal transmembrane domain right after
the SNARE motif. In addition to the coiled-coil SNARE motif
and transmembrane domain, Sec22b contains an N-terminal
longin domain conserved with a profilin-like folded structure
(Figure 1B) (Fasshauer, 2003; Hong, 2005; Jahn and Scheller,
2006). The SNARE motif and longin domain of Sec22b may play
essential roles in vesicular transport between the ER and theGolgi
apparatus. While the SNARE motif forms four helixes with its
cognate t-SNAREs, the longin domain regulates the membrane
fusion by interaction with the SNARE motif (Daste et al., 2015).

Distinct to its traditional function on membrane fusion,
Sec22b has another non-fusogenic role in PM expansion
(Petkovic et al., 2014). It can interact with syntaxin1 to form
a partial but tight SNARE complex, which could not drive the
membrane fusion due to the absence of SNAP25. However, this
kind of non-fusogenic SNARE bridge tethers the ER to the PM,
and more interesting, this tethering function is conserved in
yeast. The yeast Sec22p and Sso1p (the homolog of syntaxin1)
interact with Osh2p and Osh3p to regulate non-vesicular lipid
transport between the ER and the PM. The existence of
these SNARE-mediated junctions can shorten the distances and
improve the efficiency of lipid transport (Prinz, 2010; Petkovic
et al., 2014). In the mammalian nervous system, one latest
research found the Sec22b-syntaxin1 complex can interact with
E-Syts and form a ternary complex that plays a vital role in PM
expansion and axon growth (Gallo et al., 2020). Together, the
Sec22b-syntaxin1 complex plays a role in the tethering of the ER
to the PM, from which it indirectly participate in the regulation
of lipid metabolism and contribute to PM extension and other
physiological processes (Petkovic et al., 2014; Gallo et al., 2016).

Versatile Tethering Regulators
Besides these representative tethering factors, there are many
other versatile regulators at ER-PM contact sites. These regulators
tether the ER and the PM when they perform their critical
cellular functions, for example, the Ca2+ dynamics regulator
stromal interaction molecule 1 (STIM1). Interestingly, STIM1-
mediated membrane tethering is Ca2+-dependent. In response
to the low concentration of Ca2+, The ER-anchored STIM1
oligomerizes and recognizes the PM polyphosphoinositides
and Orai1 (Liou et al., 2007; Zhou et al., 2013). This action
coordinatively regulates the membrane tethering and Ca2+

homeostasis. Another type of versatile-tethering protein is LTPs,
which couple the membrane tethering and lipid metabolisms.
Most LTPs anchor the ER through the transmembrane domain
or VAP interactions while target the PM using protein-lipid
interactions (Kim et al., 2015; Ghai et al., 2017; Naito et al.,
2019). The mechanisms of these regulators will be discussed in
the following sections.

Together, a variety of regulators have the ability of membrane
tethering at ER-PM contact sites. They bridge the twomembranes
via diverse connections. Some connections are constant to
maintain the primary cortical ER network, while the others are
dynamically regulated to perform demanded functions. As the
foundation of ER-PM contacts, all these tethering molecules
coordinate to modulate the cellular processes through the fine
tune of MCSs.

REGULATION OF Ca2+ DYNAMICS AT
ER-PM CONTACT SITES

As an important second messenger, Ca2+ is essential for
many cellular and physiological processes, including gene
transcription, protein modification, lipid metabolism, cell
growth, and apoptosis (Stathopulos et al., 2006; Soboloff et al.,
2012). So that precise and dynamic controls are needed to
ensure calcium ions play proper functions at a specific time or
place (Stathopulos et al., 2006). The cytoplasmic Ca2+ signals
are generated by releasing Ca2+ from the calcium pool or
the extracellular Ca2+ influx. The store-operated calcium entry
(SOCE), a concept proposed in the 1990s, is a ubiquitous Ca2+

influx pathway at the ER-PM contact sites (Putney, 1986, 1990;
Patterson et al., 1999; Yao et al., 1999). The Ca2+ entry is
triggered when Ca2+ stores in the ER lumen depleted and the
cytosolic Ca2+ concentration is at a low level. STIM proteins
and Orai channels (Figure 2A) are the foundation proteins in the
regulation of SOCE andCa2+ signals (Liou et al., 2005; Roos et al.,
2005; Feske et al., 2006; Vig et al., 2006; Zhang et al., 2006).

STIM-Orai Complexes
STIM crosses the ER membrane and senses Ca2+ in the cavity
of the ER (Williams et al., 2001; Zhang et al., 2005; Feske
et al., 2006). Orai is a Ca2+ release-activated Ca2+ channel on
PM (Chakrabarti and Chakrabarti, 2006; Prakriya et al., 2006;
Soboloff et al., 2006a). Upon Ca2+ depletion, STIM protein
interacts with Orai and initiates SOCE (Carrasco and Meyer,
2011; Zhou et al., 2013; Balla, 2018). There are two STIM proteins
inmammals: STIM1 and STIM2. Both of them aremainly located
at the ER with a similar structure (Hogan and Rao, 2015). STIM
is anchored to the ER via a transmembrane domain, with an
N-terminal domain in the ER lumen and a C-terminal domain
in the cytoplasm (Figure 2B). The expression pattern of STIM1
and STIM2 are different. In most tissues, the expression level
of STIM1 is higher than STIM2 in support that STIM1 is the
predominant STIM protein that regulates the influx of Ca2+ in
non-excitable cells (Soboloff et al., 2006b; Collins and Meyer,
2011; Hogan and Rao, 2015; Prakriya and Lewis, 2015).

STIM has the EF-hand and stereo alpha motif (SAM) domains
in the lumen of the ER. Its cytoplasmic side contains several
coiled-coil domains and a CRAC activation domain (CAD, also
known as the STIM-Orai activation region, Or SOAR) (Manji
et al., 2000; Yang et al., 2012; Prakriya and Lewis, 2015). In the
presence of Ca2+, the EF-hand domains are tightly bound to the
SAM domain. Therefore, the STIM protein exists as a monomer
and in an inactive state, in which the nearby coiled-coil domain
blocks CAD/SOAR. When the ER calcium pool is exhausted,
the STIM protein senses Ca2+ change (Yuan et al., 2009). The
structure of the EF-SAM domain becomes loose and stretched.
STIM proteins dimerize from the ER lumen side to the cytoplasm
and further form oligomers. These activated STIM1 oligomers
interact with PI(4,5)P2 and the Orai channel through the released
CAD/SOAR domain to accurately mediate the Ca2+ influx (Park
et al., 2009; Ma et al., 2015; Prakriya and Lewis, 2015).

Although occupying a similar structure, the EF-SAM domains
from STIM1 and STIM2 show different affinity to Ca2+. STIM1
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FIGURE 2 | Regulation of Ca2+ dynamics at ER-PM contact sites. (A) Representative illustration of the STIM-Orai complex and its regulators. STIM1 in the ER and

Orai1 on the PM compose the core machinery of SOCE. STIM1 senses the Ca2+ change in the ER lumen and forms oligomers. The STIM1 oligomers bind to

polyphosphoinositides and activate Orai1 to import extracellular Ca2+. RASSF4 regulates SOCE and ER-PM junction through the control of the PM PI(4,5)P2 level,

which is essential for the localization of STIM1. TMEM110 is an ER membrane protein that physically interacts with STIM1 to reshape ER-PM connections and

facilitate STIM1 conformational conversion. Future studies are required to discover more STIM interacting partners, which is important to understand STIM proteins’

sensing and coupling mechanisms. (B) Diagrams of the SOCE regulators described in A. The major functional domains are shown in each of the proteins.

is in a state of autoinhibition at rest but highly active upon Ca2+

depletion. STIM2 is more sensitive to tiny changes in the ER
calcium store due to its low Ca2+ affinity, thus could be activated
in response to less Ca2+ change (Zheng et al., 2011; Soboloff
et al., 2012; Hogan and Rao, 2015). The different biophysical
characteristics of STIM1 and STIM2 enable cells to sense changes
in intracellular Ca2+ concentration accurately and take further
actions (Brandman et al., 2007; Prakriya and Lewis, 2015). It
seems reasonable that the basal Ca2+ homeostasis maintenance
at rest is the primary responsibility of STIM2 (Wang et al., 2009;
Kar et al., 2012). However, no significant change of Ca2+ level
was observed in the calcium store of STIM2 KO cells at rest.
In some tissues, for example, the neuronal cells and dendritic
cells, the expression of STIM2 is significantly higher than STIM1,
suggesting STIM2 may have other functions than the regulation
of basal Ca2+ homeostasis (Williams et al., 2001; Oh-Hora et al.,
2008; Prakriya and Lewis, 2015).

Many proteins around the STIM-Orai complex participate
in SOCE. It is worth noted that SOCE recruits E-Syt1 to
ER-PM junctions and rearranges adjacent ER structures into
circular MCSs, which in turn stabilizes STIM-Orai clusters
and accelerates Ca2+ replenishment (Kang et al., 2019).
Another recent study showed ER protein Anoctamin 8 (ANO8)

is translocated to STIM1-Orai1-mediated contact sites in a
PI(4,5)P2-dependent manner. ANO8 further recruits the ER-
localized SERCA (Sarco/endoplasmic reticulum Ca2+-ATPase)
Ca2+ pump to replenish the Ca2+ reservoir, whichmay inactivate
SOCE and regulate the receptor-stimulated Ca2+ signaling (Jha
et al., 2019; Stefan, 2020).

RASSF4
The RAS association domain family (RASSF) consists of
10 members (RASSF1-10) localized at the cytoplasmic side
of the PM. RASSF4 contains a C-terminal RAS association
(RA) domain linked to a Sav-RASSF-Hpo (SARAH) domain
(Figure 2B) (Chan et al., 2013; Iwasa et al., 2013). While the RA
domainmediates the interactions with RASGTPases, the SARAH
domain was reported to facilitate dimerization between SARAH
domain-containing proteins (Chan et al., 2013).

At ER-PM contact sites, RASSF4 acts in concert with
ARF6, the upstream regulator of type I phosphatidylinositol
phosphokinase (PIP5K), to regulate PI(4,5)P2 levels on the PM
(Chen et al., 2017). Since PI(4,5)P2 is essential to position STIM1
and E-Syts, RASSF4 participates in the regulation of SOCE and
ER-PM junctions indirectly through the regulation of PI(4,5)P2
homeostasis (Dickson, 2017).
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TMEM110
ER-resident transmembrane protein 110 (TMEM110) is a STIM-
activating enhancer (STIMATE). It contains 4–5 transmembrane
domains, co-localized with STIM (Figure 2B). TMEM110 can
remodel the short-term physiological junctions and relocate
STIM1. Overexpression of TMEM110 leads to the formation of
large STIM aggregates, while knockdown of this gene reduces
STIM1 puncta at the ER-PM junctions (Jing et al., 2015; Quintana
et al., 2015).

Furthermore, TMEM110 could physically interact with
STIM1 and interfere with the autoinhibition of CAD/SOAR.
When the Ca2+ storage is exhausted, STIM1 converts
its conformation, facilitating the TMEM110 C-terminus
interaction with the coiled-coil domain of STIM1. It releases
the autoinhibition of CAD/SOAR and activates Ca2+ channel
Orai (Hooper and Soboloff, 2015; Jing et al., 2015). Overall,
TMEM110 is an ER protein that cooperates with STIM to
reshape ER-PM connections and regulate calcium signaling
dynamically. These studies indicate the STIM-Orai signaling
heavily relies on proteins that regulate the ER-PM connections
or the STIM conformation.

ENZYMES AT ER-PM CONTACT SITES

MCSs are ideal platforms to exchange molecules and local signals
between organelles, dependent on their carriers or enzymes.
Many protein enzymes, especially the phosphatases, play critical
regulatory roles in ER-PM contact sites (Figure 3A) (Saheki
and De Camilli, 2017a). They can catalyze substrates either
in cis or in trans to participate in the regulatory network
of many cellular processes such as cyclic adenosine 3′,5′-
adenosine monophosphate (cAMP) signaling, calcium dynamics,
and lipid metabolism.

AC3/8
Adenylate cyclase (AC) is an important signaling molecule
downstream of G protein-coupled receptors. It is located on the
PM via two multi-transmembrane domains and contains two
catalytic domains (Figure 3B) (Cooper et al., 1995; Cooper and
Crossthwaite, 2006; Dessauer et al., 2017). AC regulates cAMP,
thereby participating in various physiological processes. Nine AC
subtypes have been identified in mammals. Among them, the
AC3 and AC8 are located at ER-PM junctions, and both of their
activities are regulated by Ca2+. AC3 regulates blood glucose
homeostasis, which makes it a new target for the development
of anti-obesity drugs. However, AC8 plays a crucial role in
neuroplasticity rather than in glucose regulation (Zachariou et al.,
2008; Bogard et al., 2014; Wu et al., 2016).

Inside the cell, many signals transmit between the ER and
the PM. In addition to the SOCE-regulated Ca2+ signal, cAMP
is another vital signal which usually functions as a second
messenger. At the ER-PM junctions, AC3 is an enzyme that
relies on STIM1. STIM1 interacts with AC3 and generates cAMP,
and this process is called storage operational cAMP signaling
(SOcAMPS) (Lefkimmiatis et al., 2009; Maiellaro et al., 2012;
Willoughby et al., 2012). AC8 directly interacts with Orai1 to
alter the Ca2+ microenvironment under the PM, which in turn

activates AC8 and produces cAMP (Willoughby et al., 2010,
2012). The dynamic interaction between Ca2+ and cAMP signals
at the ER-PM junctions represents an important scenario of cell
homeostasis and plays vital roles in physiology and pathology
(Lefkimmiatis et al., 2009;Maiellaro et al., 2012;Willoughby et al.,
2012; Okeke et al., 2016).

Sac1
Localized on the ER and Golgi apparatus, suppressor of actin 1
(Sac1) is a phosphoinositide phosphatase whose protein sequence
and function are both highly conserved in yeast and mammals.
In mammals, Sac1 protein commonly expresses in adult and
embryonic tissues (Del Bel and Brill, 2018). The C-terminal
region anchored Sac1 to the ER. A conserved catalytic CX5R
(T/S) motif in the N-terminal domain enables Sac1 to have a
catalytic function (Figure 3B) (Manford et al., 2010; Saheki and
De Camilli, 2017a). The role of Sac1 is to remove phosphoric acid
from the inositol ring to balance the level of PI(4)P (Del Bel and
Brill, 2018).

Primarily as a PI(4)P phosphatase between the ER and
the PM, Sac1 was proposed to either act in trans on the
opposed PM PI(4)P or act in cis on the ER PI(4)P (Manford
et al., 2010; Stefan et al., 2011; Mesmin et al., 2013). In the
latter, ORP5/8 (Osh6p/7p in yeast) transfers PM PI(4)P to
the ER, where Sac1 dephosphorylates the lipid on the same
ER membrane. Sac1-catalyzed PI(4)P hydrolysis is essential to
maintain PI(4)P concentration gradient, which facilitates the
continuous exchange of PI(4)P/PS between the ER and the PM
(Chung et al., 2015; Moser von Filseck et al., 2015b; Del Bel
and Brill, 2018). Therefore, Sac1 indirectly controls the lipid
metabolism where the ER and the PM are in close contact.

However, PI(4)P alone is insufficient to localize Sac1 to the
ER-PM contact sites. Other proteins that connect the ER and the
PM may jointly participate in the Sac1 localization. For example,
the activated SOCE increases the amount of Sac1 in contact with
the PM, while disruption of E-Syt2-mediated ER-PM junctions
reduces the access of Sac1 on the PM (Dickson et al., 2016). Sac1
was found co-localized with E-Syt2 at ER-PM contact sites. E-
Syt2 narrows ER and PM distance, which may restrict Sac1 to
the right position. Sac1 consumes PI(4)P in this microdomain
and thus produces the PI(4)P gradient (Dickson et al., 2016).
However, it is still uncertain whether E-Syt2 directly interacts
with Sac1.

PTP1B
Protein tyrosine phosphatase 1B (PTP1B) is a non-receptor
phosphatase and belongs to the PTP family. First isolated from
the human placenta, PTP1B is anchored to the surface of the ER
membrane via a C-terminal fragment composed of 35 proline-
rich residues (Frangioni et al., 1992). The N-terminus of PTP1B
protein contains the catalytic domain with two proline-rich
motifs (Figure 3B). PTP1B plays a catalytic function at ER-PM
junctions by dephosphorylation of its substrates located on the
PM through the cytosolic catalytic domain (Anderie et al., 2007).

PTP1B has several identified substrates. These substrates have
diverse functions that make PTP1B play various roles in cellular
physiology. For example, ER-bound PTP1B dynamically interacts
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FIGURE 3 | Regulation of cell signaling by enzymes at ER-PM contact sites. (A) Representative illustration of enzymes functioning at the interface between the ER

and the PM. Both AC3 and AC8 are located on the PM through multiple transmembrane domains. AC3 interacts with STIM1, and AC8 binds directly to Orai1. They

are both regulated by Ca2+ signals to produce cAMP. Sac1 is a conserved PI(4)P phosphatase anchored to the ER and can dephosphorylate PI(4)P both on the PM

and in the ER membrane. PTP1B is anchored to the ER membrane via a C-terminal fragment and dephosphorylates its substrates on the PM through the cytosolic

catalytic domain. (B) Diagrams of the enzymes described in A. The major functional domains are shown in each of the proteins.

with the protein tyrosine kinase Src on the PM, controls Src
activation, and recruits adhesion complexes (Monteleone et al.,
2012). PTP1B also plays roles in tumor growth, metastasis, and
metabolism. It has double-sided effects with either promoting
or suppressing cancer in tumor tissues, depending on the active
substrate and cell environment (Lessard et al., 2010). Exploring
the roles of PTP1B in individual tumors will provide new
ideas for the diagnosis and treatment of tumors. The insulin
signaling pathway and glucose metabolism is another process
that PTP1B negatively regulates. The tyrosine-phosphorylated
insulin receptor, insulin receptor substrate-1, and AKT are all
possible targets of PTP1B (Abdelsalam et al., 2019). Targeting
PTP1B is considered a strategy to treat insulin resistance and type
2 diabetes by improving insulin sensitivity (Hussain et al., 2019).

LIPID EXCHANGES AT ER-PM CONTACT
SITES

The ER is the central organelle that synthesizes various lipids such
as phospholipids and cholesterol, which need to be transported
to or exchanged with other organelles and PM. Unlike the bulk
lipid transports mediated by vesicle fusion, LTPs are able to
sense and transport particular lipids between organelles that are
mostly happened within a short distance like at the MCS regions
(Wong et al., 2019). The ER forms extensive membrane junctions
with the PM where LTPs play vital roles in the regulation
of lipid metabolism as well as other physiological processes

(Figures 4A,B) (Kentala et al., 2016; Saheki and De Camilli,
2017a; Cockcroft and Raghu, 2018; Jeyasimman and Saheki, 2019;
Stefan, 2020).

SMP Domain Proteins
SMP domain proteins are evolutionarily conserved in eukaryotes.
The SMP domain was first discovered in 2006 by the sequence
analysis of a mitochondrial integral membrane protein. Later
it was identified as a member of the superfamily of tubular
Lipid-binding (TULIP) domain-containing proteins that have
the ability to harbor lipids in the hydrophobic cavity (Kopec
et al., 2010; Alva and Lupas, 2016). SMP domain proteins are
commonly localized at MCSs formed by organelles and play
versatile functions such as lipid transport, Ca2+ homeostasis, and
signaling (Saheki and De Camilli, 2017a).

Benefited from the SMP domain, E-Syts are considered as
LTPs at ER-PM contact sites (Giordano et al., 2013; Saheki and
De Camilli, 2017b). The crystal structure of E-Syt2 showed SMP
domain forms a dimer of approximately nine nm-long cylinders
that harbors glycerolipids without selectivity (Schauder et al.,
2014). E-Syt1, E-Syt-2, and E-Syt-3 have been demonstrated
to form homo- and heterodimers inside the cell (Giordano
et al., 2013). By the in vitro reconstituted system, E-Syt1 was
identified as a Ca2+ dependent LTP, which directly transfers
glycerophospholipids and DAG between the ER and the PM
(Saheki et al., 2016; Yu et al., 2016). The SMP dimer is
indispensable for E-Syt1 to transfer lipids. Considering the length
of SMP dimer is far less than the average distance between
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FIGURE 4 | Diverse LTPs functioning at the ER-PM contact sites. (A) Representative illustration of LTPs located at the ER-PM junctions. E-Syt1 transfers

phospholipids and DAG directly through the SMP domain between the ER and the PM, regulated by interactions of the C2 domains with Ca2+. TMEM24 is another

SMP domain protein localized to the ER through a transmembrane domain. It transfers PI from the ER to the PM controlled by the dephosphorylation of the C-terminal

polybasic region. Whether other SMP domain proteins, for example, E-Syt2/3 and tricalbins, mediate lipid transport at ER-PM contact sites remains unknown. ORP3,

ORP5, and ORP8 are so far discovered ORPs at ER-PM contact sites. While ORP5 and ORP8 are ER membrane proteins, ORP3 is anchored to the ER through the

interaction of its FFAT motif with VAP. All the three ORPs contain a PHD to interact with the PM lipids and an ORD to exchange PI(4)P/PI(4,5)P2 and PS between the

ER and the PM. It remains elusive why the cell has three ORPs at ER-PM contact sites to mediate the same lipids. The discovery of the initial triggers of these LTPs

might solve this problem. Nir2 and Nir3 are anchored to the ER via interactions of FFAT motifs with VAPs and connect to the PM by LNS2 domains, facilitating the PI

and PA exchange between the two membranes. How other tethering molecules, such as E-Syts and Kv2s, couple with Nir2/3 to mediate PA/PI exchange need to be

further explored. GRAMD1s are anchored to the ER via a C-terminal transmembrane domain and interact with cholesterol and PS on the PM through the N-terminal

GRAM domain to connect the two opposed membranes. Thus, the accessible cholesterol is transported from the PM to the ER by StART-like domains. Whether there

are other sterol transfer proteins transporting PM cholesterol to the ER or other organelles remains to be discovered. (B) The summary of LTPs-mediated lipid

exchange at ER-PM contact sites. (C) Diagrams of the lipid transfer proteins described in A, except E-Syt1, are shown in Figure 1B. The major functional domains

are shown in each of the proteins.

the ER and the PM, the “shuttle model” in which SMP dimer
shuttles between the ER and the PM to transport lipids is more
acceptable. This shuttle model was further supported by an
artificially designed assay using the DNA-origami nanostructures
to define precise distances betweenmembranes (Bian et al., 2019).

In addition to the SMP domain, the C2 domains in E-Syt1
are also essential to regulate lipid transfer (Saheki et al., 2016;
Yu et al., 2016; Bian et al., 2018). At least, both the C2A
and C2C domains are indispensable in E-Syt1-mediated lipid
transport (Saheki et al., 2016; Yu et al., 2016; Bian et al., 2018).
The C2C domain is the predominant region for membrane
tethering, facilitating lipid transport by shortening the distance.

The C2A domain was proposed as an autoinhibitory domain that
inactivates the SMP domain. Ca2+ releases this autoinhibition
to enable lipid transport (Bian et al., 2018). Recent studies in
yeast demonstrated SMP domain and C2 domains of tricalbins
act in concert to form highly curved ER peaks on the cortical
ER membrane facing the PM, raising a possibility that the C2A
domain involves in the interaction with the ER membrane to
facilitate the lipid transport (Collado et al., 2019; Hoffmann et al.,
2019).

Although themembrane tethering function of the E-Syt family
is conserved in eukaryotes, it was unclear whether all family
members are capable of transporting lipids between the ER and
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PM. Only E-Syt1 in mammalian cells was identified to mediate
lipid exchange directly. Although the locations of E-Syt2 and
E-Syt3 at ER-PM contact sites are not affected by Ca2+, Ca2+

does bind to their C2A domains and induce a local protein
conformational transition (Xu et al., 2014). Whether E-Syt2 and
E-Syt3 directly mediate lipid exchange are still open questions to
the field.

As a highly conserved protein family, E-Syts likely play
essential roles in cell physiology. Unexpectedly, they’re non-
essential proteins. No obvious defects were observed in E-Syts
triple knockout mice (Sclip et al., 2016; Tremblay and Moss,
2016). Neither mammalian cells lacking E-Syts nor yeast cells
lacking tricalbins showed significant abnormalities (Manford
et al., 2012; Toulmay and Prinz, 2012; Saheki et al., 2016).
Given that many factors coordinate at ER-PM junctions, one
possible explanation could be the functional redundancy. Other
factors may replace the function of E-Syts once the latter is
omitted (Saheki, 2017). However, E-Syts and tricalbins do have
physiological effects. For example, E-Syts can maintain PM
lipid homeostasis, promote nerve transmission and synaptic
growth, modulate virus-induced membrane fusion, mediate the
endocytosis of FGFR, and play roles in insulin secretion and
diet-induced obesity development (Saheki et al., 2016; Tremblay
et al., 2016; Kikuma et al., 2017; El Kasmi et al., 2018; Xie
et al., 2019; Nath et al., 2020; Zhang et al., 2020). Tricalbins
act in maintaining PM integrity (Toulmay and Prinz, 2012;
Collado et al., 2019). More interesting, plant SYT1 is required
for withstanding mechanical stress, maintaining cell membrane
integrity and virus movement, suggesting this protein family is
of importance to cell physiology (Min et al., 2007; Chang et al.,
2013; Giordano et al., 2013; Idevall-Hagren et al., 2015).

Transmembrane protein 24 (TMEM24) is another SMP
domain protein localized at ER-PM contact sites. It is anchored
to the ER membrane through an N-terminal transmembrane
domain, followed by an SMP domain, a C2 domain, and a
polybasic C-terminal region (Figure 4C). TMEM24 is involved
in regulating insulin secretion and neuronal excitability (Pottekat
et al., 2013; Lees et al., 2017; Sun et al., 2019). Like E-Syts, the
SMP domain forms a dimer in TMEM24, and each SMP domain
binds one lipid molecule, one less than that in E-Syt2 (Schauder
et al., 2014; Lees et al., 2017). TMEM24 selectively transports
PI from the ER to the PM, supplying PM with PI(4,5)P2 during
signal transductions. This process is regulated by protein kinase
C (PKC)-dependent phosphorylation of the C-terminal PM
binding regions in response to cytosolic Ca2+ (Lees et al.,
2017).

Glucose-stimulated insulin secretion is regulated by the
inositol phosphate signaling pathway and Ca2+. While TMEM24
transfers the PI(4,5)P2 precursor PI from the ER to the
PM, E-Syt1 clears the PI(4,5)P2 metabolite DAG on PM.
Since the dissociation of TMEM24 from PM is controlled
by PKC-mediated phosphorylation, and E-Syt1 regulates
PKC activity, E-Syt1 is considered an indirect regulator of
TMEM24 (Xie et al., 2019). Both of them play a role in
phosphoinositide metabolism and Ca2+ homeostasis, thus
indirectly regulate insulin secretion in pancreatic β cells (Xie
et al., 2019).

ORPs
The oxysterol-binding protein (OSBP) and its related proteins
(ORPs) compose a conserved family that mediates non-vesicular
lipid transports at the MCSs (Im et al., 2005; de Saint-Jean
et al., 2011; Olkkonen and Li, 2013; Du et al., 2015). There
are two conserved domains in this protein family, the PHD
and OSBP-related domain (ORD). The PHD plays a role in
membrane docking by interactions with anionic lipids such as
phosphatidylserine (PS), PI(4)P, and PI(4,5)P2. The ORD is a
ligand binding and lipid exchange domain (Kentala et al., 2016;
Cockcroft and Raghu, 2018). Besides, ORPs have either an FFAT
domain or a transmembrane domain through which they are
located on the surface of membranous organelles, including the
ER (Mesmin et al., 2013; Pulli et al., 2018).

ORP3, ORP5, and ORP8 are ORPs mainly localized at ER-
PM contact sites in mammals. ORP5 and ORP8 possess a single
C-terminal transmembrane domain that anchors them on the
ER surface and a PHD to interact with the PM (Figure 4C).
They were reported to mediate the PI(4)P/PS exchange cycle that
transfers PS from the ER to the PM andmove PI(4)P from the PM
to the ER. Sac1 depletes PI(4)P and generates a PI(4)P gradient to
drive this exchange (Chung et al., 2015; Moser von Filseck et al.,
2015b; Dickson et al., 2016). However, another study showed
PI(4,5)P2, rather than PI(4)P is the critical lipid for the targeting
of ORP5 and ORP8 to the PM (Ghai et al., 2017). Besides ER-
PM contact sites, ORP5 and ORP8 are also localized at other
MCSs such as ER-mitochondria and ER-lipid droplet contact sites
(Galmes et al., 2016; Du et al., 2020). Unlike ORP5 and ORP8,
ORP3 is anchored to the ER via its FFATmotif that interacts with
VAP protein (Figure 4C). Recent studies uncovered that ORP3
is capable of regulating PI(4)P homeostasis and Ca2+ dynamics
by activating PKC (Dong et al., 2020; D’Souza et al., 2020; Gulyás
et al., 2020).

In yeast, the conserved ORP family is called oxysterol-binding
homology (Osh) protein. At ER-PM contact sites, Osh6p and
Osh7p mediate the exchange of PI(4)P and PS fueled by PI(4)P
metabolism, similar to the ORP5 and ORP8 in mammals (Maeda
et al., 2013; Moser von Filseck et al., 2015a). Osh3p is more
like ORP3 in mammals, which binds PI(4)P and recruits the
Sac1p to ER-PM contact sites to regulate the PM PI(4)P levels
(Stefan et al., 2011; Tong et al., 2013; Omnus et al., 2020).
These studies demonstrated that phosphoinositides, mainly the
PI(4)P and PI(4,5)P2, are common lipid ligands for the ORP
family localized at ER-PM contact sites. Although 12 conserved
members have been identified in Arabidopsis, the functions of
ORPs in plant lipid metabolism are still poorly understood
(Skirpan et al., 2006). Whether the functions and mechanisms of
ORPs discovered in mammals and yeast are conserved in plants
remain to be determined.

ORPs localized at ER-PM contact sites play multiple roles in
cell physiology. For example, Osh2p and Osh3p interact with
Myo5p and Scs2p to bridge the ER contact with endocytic areas
and facilitate actin polymerization (Encinar Del Dedo et al.,
2017). ORP3 participates in Ca2+ homeostasis and cell adhesion
(Lehto et al., 2008). ORP5 and ORP8 can regulate cancer growth,
making them potential drug targets for cancer therapy (Ishikawa
et al., 2010; Guo et al., 2017).
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TABLE 1 | Summary of the proteins functioned at ER-PM contact sites.

Proteins Locations Comments

Mammalians Yeast Plants

VAP-A Scs2p VAP27-1 to-10 ER VAPs are ER membrane proteins that dynamically tether the PM through its

binding partnersVAP-B Scs22p

Kv2 — — PM The clustered Kv2 channels reshape the ER-PM connections by the

interaction with VAPs

E-Syt1 Tcb1 SYT1 ER The C2 domains play essential roles in the tethering function of E-Syt

protein family. E-Syt1 bidirectionally transfers phospholipids and DAG.

Whether other E-Syt proteins directly transfer lipids remain unknown
E-Syt2 Tcb2

E-Syt3 Tcb3

TMEM16 Ist2p — ER The interaction of Ist2p with PI(4,5)P2 brings the ER and the PM closer to

15-50 nm. Whether TMEM16 has similar functions remains unknown

Sec22b-syntaxin1 Sec22p-Sso1p — ER-PM The two proteins form a non-fusogenic SNARE bridge between the

opposed membranes

STIM1-Orai1 — — ER-PM In SOCE, STIM1 senses the Ca2+ level and acts as a switch for Orai1 to

import external Ca2+. The mechanism and physiological function of

STIM1-Orai1 needs a further study

RASSF4 — — PM RASSF4 is a regulator of PI(4,5)P2 homeostasis that further regulates SOCE

TMEM110 — — ER TMEM110 is a STIM-activating enhancer

AC3/8 — — PM AC3 and AC8 interact with STIM1 and Orai1 separately to produce cAMP

Sac1 — — ER Sac1 dephosphorylates PI(4)P to regulate phosphoinositide metabolism

PTP1B — — ER PTP1B dephosphorylates its substrates on the PM, and plays roles in

glucose metabolism, and other physiological processes

ORP3 Osh2p ORPs ER ORPs located at ER-PM contact sites mediate the exchange of

PI(4)P/PI(4,5)P2 with PS, their individual mechanism needs to be further

studied. The functions of ORPs in plants are still not clear
ORP5 Osh3p

ORP8 Osh6p

Osh7p

TMEM24 — — ER TMEM24 transfers PI from the ER to the PM

Nir2 — — ER Nir2 and Nir3 exchange PI and PA between the ER and the PM

Nir3

GRAMD1s — — ER GRAMD1s contribute to PM sterol homeostasis

Nir2/3
Nir2 and Nir3 belong to the PI transfer protein (PITP) family, a
class of central players involved in phospholipid homeostasis at
ER-PM contact sites. They are the mammalian ortholog proteins
of Drosophila retinal degeneration B (rdgB), which was proven
to transfer PI and phosphatidylcholine (PC) between membrane
bilayers (Amarilio et al., 2005). The structure of Nir2/3 contains
a PI-transfer domain at the very N-terminus, then followed by
an FFAT motif, six hydrophobic stretches, and a C-terminal
LNS2 domain (Figure 4C). Nir2/3 is anchored to the ER through
the binding of the FFAT sequence to the VAP protein and
connects with PM by the interaction of the LNS2 domain with
phosphatidic acid (PA) (Kim et al., 2013; Balla, 2018).

PA and PI are interconverted lipid second messengers that
play roles in many signaling pathways, coupled by the Nir2/rdgB
family. Phospholipase C (PLC) hydrolyses PI(4,5)P2 to generate
DAG and its phosphorylated lipid PA. After binding PA,
Nir2/rdgB is translocated to ER-PM contact sites to exchange PI
and PA between the two opposed membranes (Chang et al., 2013;
Kim et al., 2013, 2015; Balla, 2018). This process coordinates local
lipid metabolism with downstream signaling at ER-PM contact
sites (Kim et al., 2013). A recent study found that Nir2 and

Kv2.1 are co-localized at ER-PM contact sites in neuronal cells,
indicating Kv2-VAP tethers may regulate Nir2 localization and
PI homeostasis (Kirmiz et al., 2019). Different from Nir2, the
ability of Nir3 is to sense subtle PA production and sustain basal
PM PI(4,5)P2 levels (Chang and Liou, 2015). They cooperatively
regulate PI(4,5)P2 homeostasis at ER-PM contact sites.

GRAMD
The protein containing the Glucosyltransferases, Rab-like
GTPase activators, and myotubularins (GRAM) domain was
named GRAMD, a recently discovered class of conserved ER
proteins. Bioinformatics studies identified six GRAMD proteins
(Ysp1p, Sip3p, Ysp2p, Lam4p, Lam5p, and Lam6p) in yeast and
five members (GRAMD1a, GRAMD1b, GRAMD1c, GRAMD2,
and GRAMD3) in mammals (Gatta et al., 2015). However,
only three GRAMD1s in mammals contain StART-like lipid
transfer domains. GRAMD2 and GRAMD3 are supposed not to
mediate lipid transport (Naito et al., 2019). GRAMD proteins are
anchored to ER via its C-terminal transmembrane domain and
target the PM using the N-terminal GRAM domain (Figure 4C)
(Stefan et al., 2011; Chu et al., 2015; Besprozvannaya et al., 2018).
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The existence of the StART-like domain makes GRAMD1
proteins contribute to PM sterol homeostasis by recognizing
accessible PM cholesterol and transporting it to the ER (Holthuis
and Levine, 2005; van Meer et al., 2008; Sandhu et al., 2018). A
recent study showed GRAMD1s form homo- and heteromeric
complexes that interact with the free cholesterol and PS on the
PM by the GRAM domain. Thus, the accessible cholesterol is
transported to the ER through StART-like domains. Loss of the
three GRAMD1s leads to a significant expansion of the available
PM cholesterol pool, suggesting GRAMD1s are major cholesterol
transporters between the ER and the PM (Sandhu et al., 2018;
Naito et al., 2019). Different from GRAMD1, GRAMD2 co-
localizes with E-Syts and help to maintain the ER-PM contacts.
Based on this tethering function, GRAMD2 may play a role
in SOCE and Ca2+ homeostasis by the recruitment of STIM1
(Besprozvannaya et al., 2018).

The trafficking of low-density-lipoprotein (LDL)-cholesterol
is essential in cholesterol metabolism. Imbalance in this process
could cause diseases, for example, the Niemann-Pick type C
(NPC). The ER is the central organelle senses and synthesizes
endogenous cholesterol. After endocytosis, the vast majority of
LDL-cholesterol is transported to the PM (Pfisterer et al., 2016).
The PM cholesterol could then supply the ER by GRAMD1s
(Sandhu et al., 2018). However, about 30% of LDL-cholesterol
is directly transported from endosomes/lysosomes to the ER,
mediated by ORP1L and STARD3. When ER cholesterol is
excessive, these sterol-transfer proteins can act in the opposite
direction, transporting the cholesterol to the endosomes (Eden
et al., 2016; Wilhelm et al., 2017). Recent studies indicate
NPC1 tethers the ER to the endocytic organelles and facilitates
cholesterol egress through ORP5 and GRAMD1s. Both of the
LTPs localized at the ER-endocytic organelles MCSs in response
to the cholesterol levels (Du et al., 2011; Höglinger et al., 2019).

CERT (ceramide transport protein) is another LTP containing
a StART-like domain. In addition to glycerophospholipids and
sterols, ceramide is also synthesized in the ER. CERT anchors
to the ER via the FFAT motif-VAP interaction. It contains a
PHD that interacts with PI(4)P to build the ER-Golgi contacts.
Through the StART-like domain, CERT transports ceramide to
the Golgi apparatus, where glucosylceramide and sphingomyelin
are synthesized (Hanada et al., 2003). Glycolipid-transfer protein,
another VAP-interacting LTP, transports glucosylceramide from
cis-Golgi to trans-Golgi or the ER (Smith et al., 2006; Halter et al.,
2007; Backman et al., 2018). These processes are indispensable
for sphingomyelin and glycosphingolipid homeostasis (Breslow,
2013; Hanada, 2018).

Coordination of Ca2+ Signaling and
Phospholipid Metabolism
Many regulators coordinate to form an extensive protein
network at ER-PM contact sites, regulating intracellular signal
transductions coupled with Ca2+ and phospholipid signaling.
The elevated cytoplasmic Ca2+ triggers the enrichment of E-
Syt1 at ER-PM contact sites (Giordano et al., 2013). In another
way, the ER-Ca2+ depletion induces STIM1 translocation to ER-
PM contact sites (Liou et al., 2007). Both the Ca2+-regulated

processes enhance the ER-PM connections, which subsequently
promotes the recruitment of Nir2 to the ER-PM interface (Chang
et al., 2013). Nir2 binds and transfers PA from the PM to the
ER (Kim et al., 2015). In turn, it moves PI from the ER to the
PM and generates PI(4)P and PI(4,5)P2, in which step RASSF4
and ARF6 participate (Stathopulos et al., 2006; Chen et al., 2017;
Dickson, 2017). PI(4,5)P2 reinforces relocations of E-Syts and
STIM1 at the contact sites and further regulates Ca2+ dynamics.
The consumption of excess PI(4,5)P2 generates DAG and PA,
which facilitate Nir2 enter the next circle. Overall, this network
combines SOCE regulators with LTPs to develop a synergistic
effect between Ca2+ signaling and PI(4,5)P2 metabolism at the
ER-PM junctions and extend the duration of signal transductions
(Dickson, 2017; Ong and Ambudkar, 2020).

CONCLUSIONS

The ER communicates with the PM through direct physical
contacts, which are regulated by various proteins. These key
players cooperatively mediate the reactions between the opposed
membranes and drive diverse fundamental cellular processes.
ER-PM contact sites are involved in the regulation of ion
and lipid transports, signal transductions, ER morphology and
remodeling, membrane trafficking, and yeast polarized growth
(Encinar Del Dedo et al., 2017; Ng et al., 2018, 2020; Kang
et al., 2019; Kirmiz et al., 2019; Weber-Boyvat et al., 2020).
Substantial progress has been made toward understanding their
functions and mechanisms (Table 1) (Saheki and De Camilli,
2017a; Wang et al., 2017; Ong and Ambudkar, 2020; Stefan,
2020). However, all proteins located at the MCSs seem to tether
the membranes. Multiple regulators perform the same functions
at the ER-PM contact sites in some cellular processes (Manford
et al., 2012; Collado et al., 2019). The unique significance of
these proteins needs to be further explored. For example, why
are three E-Syts in yeast and mammals but only one in plants
and flies?

Given that most of the regulators at ER-PM contact sites
are highly conserved, it seems unlikely the cell keeps redundant
proteins at this narrow and crowded place during evolution.
These proteins are more likely of great significance to the
cell. However, the general functional redundancy gives us
trouble understanding their exact physiological functions. One
speculation is each of these functional redundant proteins still has
its features. Take tethering as an example. Although all protein
tethers are capable of bridging the ER and the PM, the ER-PM
junctions formed by distinct tethers have variable architectures
and different mechanisms (Petkovic et al., 2014; Fernandez-
Busnadiego et al., 2015; Johnson et al., 2018). These differences
make them feasible to regulate the diverse cellular processes or
play roles in specific conditions such as ER stress or cell damage.
The same situation also happens in LTPs. It remains unclear why
multiple LTPs transfer one specific lipid at MCSs. Perhaps the
future discovery of their regulation and triggering mechanisms
will give us the answer.

Tissue specificity is another possibility. Proteins with similar
functions at ER-PM contact sites may individually play a
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predominant role in the specific type of cells, depending
on their expression enrichments or stimuli. Studies of those
proteins in specific tissues will be a way to identify their
physiological roles. Recent studies have already confirmed this
possibility (Guo et al., 2017; Kirmiz et al., 2018a; Zhang
et al., 2020). On the other hand, some regulators’ functions
are not related to ER-PM contact sites (Tremblay et al., 2016;
El Kasmi et al., 2018). Further efforts are needed to study
their correlations.

To better understand the functions and mechanisms of
ER-PM contact sites, high-resolution structures of protein-
membrane complexes mimicking MCSs or partially mimicking
MCSs will be expected. The development of advanced Cryo-
EM and live-cell imaging technology will enable us to
comprehensively understand the protein network-mediated ER-
PM contact sites. Many regulators at these sites are implicated
in disease pathologies. Studies of these proteins for their
physiological and pathological functions will be of great
significance for understanding the disease occurrence, new drug
developments, and clinical applications.
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