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Oral cancer constitutes approximately 2% of all cancers, while the most common type,
oral squamous cell carcinoma (OSCC) represents 90% of oral cancers. Although the
treatment of OSCC has improved recently, it still has a high rate of local recurrence and
poor prognosis, with a 5-year survival rate of only 50%. Advanced stage OSCC tends
to metastasize to lymph nodes. Thus, exploring new therapeutic strategies for OSCC
is therefore an urgent priority. Exosomes, the small membrane vesicles derived from
endosomes, have been detected in a wide array of bodily fluids. Exosomes contain
a diversity of proteins, mRNAs, and non-coding RNAs, including microRNAs, long
non-coding RNAs, piRNAs, circular RNAs, tsRNAs, and ribosomal RNAs, which are
delivered to neighboring cells or even transported to distant sites. Exosomes have been
associated with the tumorigenesis of OSCC, promote the proliferation, colonization,
and metastasis of OSCC by transferring their contents to the target cells. Furthermore,
exosomes are involved in the regulation of the tumor microenvironment to transform
conditions favoring cancer progression in vivo. In this review, we summarize the crucial
role of exosomes in the tumorigenesis and progression of OSCC and discuss the
potential clinical application of exosomes in OSCC treatment.

Keywords: oral squamous cell carcinoma, non-coding RNAs, exosomes, tumor microenvironment,
extracellular vesicles

Abbreviations: OSCC, oral squamous cell carcinoma; EVs, extracellular vesicles; MVB, multivesicular body; CHB, chronic
hepatitis B; TME, tumor microenvironment; ESCRT, endosomal tethering complexes necessitated for transport; GTPase,
Rab guanosine triphosphatase; PEG, Polyethylene glycol; ncRNAs, non-coding RNAs; miRNAs, microRNAs; hnRNPA2B1,
heterogeneous nuclear ribonucleoprotein A2B1; CAFs, cancer-associated fibroblasts; PTEN, phosphatase and tensin
homolog; PDCD4, programmed cell death 4; Mark1, microtubule-affinity-regulating kinase 1; TGFBR1, type I TGF-
beta receptor; SOCS1, suppressor of cytokine signaling 1; TPM1, tropomyosin alpha-1 chain; CHD9, chromodomain
helicase DNA binding protein 9; WRN, Werner syndrome gene; DENND2D, DENN/MADD domain containing 2D; ECM,
extracellular matrix; EMT, epithelial-mesenchymal transition; MMPs, extracellular matrix proteins; NFs, normal fibroblasts;
BCL2, B-cell lymphoma 2; Tregs, regulatory T cells; MDSCs, myeloid-derived suppressor cells; TEX, hypoxic tumor-
derived exosome; lncRNAs, long non-coding RNAs; circRNAs, circular RNAs; piRNAs, P-element-induced wimpy testis
(PIWI)-interacting RNAs; rRNAs, ribosomal RNAs; tsRNAs, transfer RNAs; HMGA1, the high mobility group A1; USP7,
ubiquitin-specific protease-7; ARHGAP11A, Rho GTPase activating protein 11A; ATMs, ataxia telangiectasia mutated;
AMPK, adenosine monophosphate-activated protein kinase; TRAP1, Tumor necrosis factor receptor-associated protein 1;
EGFR, epidermal growth factor receptor; HSP, heat shock protein; PF4V1, platelet factor 4 variant 1; CXCL7, C-X-C motif
chemokine ligand 7; F13A1, Coagulation factor XIII A chain; ApoA1, apolipoprotein A1; VEGF, vascular endothelial growth
factor; LNM, lymph node metastasis; ROC, receiver operating characteristic.
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INTRODUCTION

Oral squamous cell carcinoma is the most common subtype of
oral carcinoma, a genetic and epigenetic disease characterized by
histopathological differentiation and a propensity for LNM (Bu
et al., 2015). Surgical removal of tumors as well as pre- or post-
operative chemotherapy, radiotherapy, and adjuvant therapies
are the main strategies to increase survival (Coyte et al., 2014;
Adel et al., 2016). Although treatment outcomes for OSCC have
been improved recently, the prognosis for OSCC is still poor, the
5-year survival rate is reported as 50%, due to late diagnosis which
resulting infeasibility of curative resections. Furthermore, the
prognosis for this disease is poor due to metastatic invasion, with
a propensity for local recurrence and distant metastasis (Huang
et al., 2019). OSCC dissemination targets both local tissues via
direct invasion and distant sites by seeding pre-metastatic niches
through secreted elements, including exosomes (Qiu et al., 2019).
Considering the risk of late diagnosis of OSCC, improvements in
prevention, early diagnosis, and treatment efficacy are urgently
needed (Csõsz et al., 2017).

According to the International Society for Extracellular
Vesicles (ISEV), EVs are nano-size lipid bilayer vesicles released
naturally from the cells to the ECM (Kalra et al., 2012; Thery
et al., 2018; Jabbari et al., 2020b) (Figure 1). Generally, EVs
are categorized as exosomes, microvesicles, and apoptotic bodies
(Ahmadi and Rezaie, 2020; Jabbari et al., 2020a). Exosomes are
small, membranous, extracellular microvesicles (∼30–150 nm
in diameter) of endocytic origin. The formation of exosomes
includes the beginning, endocytosis, MVB creation, and finally
exosome secretion (Mellman, 1996; Keller et al., 2006; Raposo
and Stoorvogel, 2013; Abak et al., 2018). Previous studies
showed that non-coding RNAs (ncRNAs), mRNAs, proteins,
and DNA fragments can be carried as “cargo” in EVs, which
could serve as novel diagnostic biomarkers for OSCC (Raposo
and Stoorvogel, 2013; Abak et al., 2018; Gai et al., 2018;
Pourhanifeh et al., 2020). Another study found that exosomes
can reprogram signal transduction under pathophysiological
conditions and deliver important proteins as mediators (Li
et al., 2019d; Amiri et al., 2021). These studies demonstrated
that exosomes are present in the saliva of healthy donors, and
exosomes have been reported in other body fluids, such as
blood, cerebrospinal fluid, serous cavity effusion, and urine (Cao
et al., 2020). Exosomes play an essential role in mediating signal
transport for intercellular communication or over long distances
by transporting microRNA (miRNAs), mRNAs, and proteins
(Ohno et al., 2013a; Zhang et al., 2015; Sadri Nahand et al.,
2020). Exosomal miRNAs are potential diagnostic biomarkers
for various malignancies, regulating protein expression in
cell proliferation, tumor metastasis, cell apoptosis, genomic
instability, and immune responses. Wang H. et al. (2014) showed
that exosomal miR-21 in the serum of OSCC patients is higher
than that in chronic hepatitis patients and healthy individuals,
suggesting that serum miRNAs may act as diagnostic biomarkers
for OSCC. Sohn et al. (2015) detected serum exosomal miRNAs
in patients with CHB, liver cirrhosis, and OSCC with CHB
and discovered that a panel of eight exosomal miRNAs are
significantly different between the OSCC and chronic hepatitis or

liver cirrhosis groups. These efforts have revealed that exosomal
contents can be transported across biological membranes and
that exosomes have a role in OSCC development. Exosomes
and their pattern of transfer deserve more attention to clearly
define their roles in OSCC diagnosis and therapeutics. This
review highlights exosomes in exchanges between normal and
OSCC cells as well as the endocrine transport of exosomes from
distant cells via the TME. We also review recent advances in
exosomes in cancer initiation, progression and their potential
clinical relevance to OSCC.

EXOSOME BIOGENESIS, ISOLATION
METHODS, AND BIOLOGICAL
FUNCTIONS

The Biogenesis of Exosomes
The intraluminal vesicles (ILVs) are formed through inside
budding in the multivesicular bodies (MVB) during the
maturation of early endosomes to late endosomes which is
regulated by ceramide (Nahand et al., 2020a). The cargos are
encapsulated into ILVs during budding. However, the mechanism
controlling cargo sorting is rather complicated and still unclear
(Leidal and Debnath, 2020). EVs have overlapping sizes, similar
morphology, and unspecific contents, resulting in difficulties in
the isolation of specific subpopulations (Mathieu et al., 2019).
The ILVs fuse with the cell membrane and are released into
the extracellular space (Nahand et al., 2020b). It has been
demonstrated that endosomal-tethering complexes necessitated
for transport (ESCRT)-dependent and independent activities play
an essential role in MVB formation (Hashemian et al., 2020). The
ESCRT members including ESCRT-0, -I, -II, -III, and the related
AAA-ATPase Vps4 complex recognize ubiquitinated membrane
proteins leading to their internalization within the multivesicular
endosome (Asgarpour et al., 2020; Ghaemmaghami et al.,
2020). The MVB trafficking and secretion of exosomes are
regulated by several members including the GTPase family
(Rab11, Rab27a, Rab27b, and Rab35), heparanase, soluble NSF
attachment receptor, and cytoskeleton regulatory proteins (Pant
et al., 2012; Azmi et al., 2013; Beach et al., 2014; Abak et al., 2018).
Furthermore, the dissemination process of the exosomes requires
cellular stress, such as oxidative stress, hypoxia, etc (Abak et al.,
2018). The released exosomes could transport into the recipient
cells by the interaction between receptor-ligand, membrane
fusion, and endocytosis through phagocytosis (Abak et al., 2018).

Exosome Isolation Methods
The isolation methods of exosomes mainly include
ultracentrifugation, size-based isolation, polymer precipitation,
immunoaffinity, and microfluidic separation (Oeyen et al.,
2018). Currently, ultracentrifugation is the most commonly
used and the gold standard for exosome isolation. The
advantage of ultracentrifuge is to treat lots of samples at
one time. However, the problems of purity and damage the
integrity of exosomes are the main disadvantages of the
ultracentrifugation method (Tschuschke et al., 2020). PEG
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FIGURE 1 | The biogenesis and secretion of EVs. Exosomes (30–150 nm) are generated by membrane endocytosis. Microvesicles (100–1,000 nm) are formed by
the plasma membrane budding. Microvesicles are irregular in shape and heterogeneous in population. The largest EVs are apoptotic bodies (1–6 µm) are involved in
the pathological condition.

polymer combines the water molecules of the exosomes and
reduces the solubility. PEG-based exosome isolation can be
done in low-speed centrifugation with high efficiency (Doyle
and Wang, 2019). The failure of the selection of exosomes
and other EVs is the main drawback of PEG precipitation.
Size-based exosome isolation is based on ultrafiltration and
size exclusion chromatography. Ultrafiltration membrane
isolates the exosomes by cutoff molecular sizes, which may
lead to the exosome damage due to the pressure (Li et al.,
2017). The size exclusion chromatography can be used to
slow down the movement of small molecular, that protect
the integrity and activity of exosomes. Magnetic bead and
enzyme-linked immunosorbent assay are immunoaffinity-
based exosome isolation methods, These methods capture
the exosomes according to the antigen recognition of specific
antibody (Zhang et al., 2020). Immunoaffinity-based exosome
isolation generates pure exosomes with low yield. Microfluidic
technology isolates exosomes in a short time with high purity,
it differentiates physical and biochemical characteristics of
exosomes by phosphatidylserine-specific proteins on exosomes
(Jiang et al., 2020).

The Biological Function of Exosomes
Under physiological conditions, exosomes are important
mediators of cell-cell and inter-tissue communication. Exosomes

exhibit important functions in regulating cellular activities
during physiological and pathological conditions. During the
cancer progression, different cells such as cancer cells, immune
cells in TME generate exosomes that can transfer nucleotides
and proteins among cells and participate in the complex
pathogenesis of tumor development and metastasis (Ridder
et al., 2014; Nazimek et al., 2016). Increasing evidence indicates
that tumor cells communicate both with other tumor cells
and with normal cells present in the TME via secretion and
transfer of exosomal contents. Exosomal contents regulate tumor
growth, angiogenesis, metastasis, sensitivity to chemotherapy,
and immune evasion. Thus, it is essential to explore the effects of
exosomes on OSCC development in vitro and in vivo.

EXOSOMAL miRNAs ARE ESSENTIAL
FOR OSCC DEVELOPMENT

miRNAs in Exosomes
Among the bioactive components of exosomes, miRNAs can
epigenetically alter gene function in the recipient cell, thus
exerting their essential regulatory function on gene expression
(Wang Y. et al., 2014). miRNAs are short ncRNAs of
approximately 19–24 nucleotides in length (Chen et al., 2012b)
and function to suppress the expression of protein-coding genes
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at the post-transcriptional level by degrading or inhibiting the
translation of mRNAs (Bartel, 2004; Miska, 2005; Kim et al.,
2009). Moreover, miRNAs and their target genes constitute
complicated regulatory networks that contribute to the fine-
tuning of various biological processes, such as cell proliferation,
differentiation, and apoptosis (Miska, 2005; Hwang and Mendell,
2006). It has been demonstrated that miRNAs manipulate
more than 30% of human genes, governing all cellular,
physiological, and developmental processes. The majority of
miRNAs exist intracellularly, while some exist in body fluids,
including a variety of extracellular biologic fluids, such as blood,
urine, saliva, pancreatic juice, and breast milk (Weber et al.,
2010). Under physiological and pathophysiological conditions,
exosomes are released through two slightly different mechanisms
of “unconventional” exocytosis into the extracellular milieu by
several cell types. Whether the packing of miRNAs into exosomes
takes place at the pre- or mature-miRNA level has not yet
been fully clarified. It has been demonstrated that the sequence
motifs present in mature miRNAs can control their sorting into
exosomes, and the ubiquitous hnRNPA2B1 recognizing these
motifs binds exosomal miRNAs and specifically controls their
loading into exosomes (Villarroya-Beltri et al., 2013).

miRNAs dysregulation associated with cancer progression, is
common in all human cancers, including OSCC (Lee et al., 2008;
Tahiri et al., 2014). Therefore, miRNAs have the potential to
be used for the diagnosis and treatment of OSCC (Xu et al.,
2016; Božinović et al., 2019; Kirave et al., 2020). miRNAs can be
packed into microparticles and exosomes, resulting in transfer of
miRNAs to body fluids by a passive release mechanism (Chen
et al., 2008; Chim et al., 2008). Exosomes can also be released
by tumor cells or circulating microvesicles via shedding as an
active secretion mechanism (Shah and Calin, 2013). Exosomal
miRNAs from the TME exert diverse effects on tumorigenesis,
including the regulation of host immune responses, tumor
growth, angiogenesis, metastasis, tumor chemoresistance, and
control of the TME. Exosomal miRNAs derived from tumor cells
affect the immune activity of several tumor-associated immune
cells as well as the transport of signaling molecules among tumor
cells, immune cells, and other cell types.

Exosomal miRNAs and OSCC
Progression
The contemporary therapies for OSCC yet are inefficient due to
the limited understanding of their underlying mechanisms and
the difficulties posed for developing accurate diagnostic methods.
As important genetic materials transported in exosomes,
exosomal miRNAs could serve as potential biomarkers and
therapeutic targets for the treatment of OSCC. MiR-24-3p from
salivary exosomes has been reported as a potential biomarker
for OSCC (He et al., 2020). Furthermore, exosomal miRNAs
play an essential role in growth, metastasis, and drug resistance.
Exosomal miR-382-5p and miR-34a-5p from CAFs influence the
proliferation, migration, and invasion of OSCC (Li et al., 2018;
Sun et al., 2019). Li et al. (2018) showed miR-34a targeting AXL
through AKT/GSK-3β/β-catenin pathway to promote the OSCC
progression. Liu et al. (2017) first acquired cisplatin-resistant

OSCC cells and used the conditional medium from resistant
cells to treat parent OSCC cells. They further revealed that
cisplatin-resistant OSCC cells could transfer miR-21 by exosomes
targeting PTEN and PDCD4 to confer the cisplatin-resistance of
the parental OSCC cells (Liu et al., 2017). Thus, exosomes may
have the function as a vector for resistance transfer in cancer
cells, and the resistance-related factors should be considered as
therapeutic targets for effective treatment of OSCC.

Differential miRNA contents in OSCC exosomes have been
reported in both pre-clinical and clinical studies. Recently,
Rabinowits et al. (2017) compared the miRNA content of OSCC-
derived exosomes with matching benign tissue and plasma
from a patient. They found seven downregulated and nine
upregulated miRNAs in tumor tissue compared with adjacent
tissues. Furthermore, OSCC cells secreted miR-24-3p, miR-891a,
miR-106a-5p, miR-2a-5p, and miR-1908 decreases the T-cell
response in the tumor stroma by targeting the Mark1 signaling
pathway and subsequently manipulating the proliferation and
differentiation of cells (Ye et al., 2014). Moreover, miR-142-3p
derived from exosomes were found to reduce TGFBR1 activity
and promote OSCC cell proliferation in vitro and in vivo
(Dickman et al., 2017). Exosomal miR-29a-3p derived from
OSCC cells enhances tumor growth in a nude mouse model and
M2 macrophage polarization by targeting the SOCS1 (Cai et al.,
2019). Tachibana et al. (2016) and Xie et al. (2019a) showed
that miR-223 and miR-101-3p function as tumor suppressors
by inhibiting cell proliferation and inducing apoptosis through
the process of exosome secretion, and exosomes secreting miR-
338 from OSCC cells were also identified as tumor suppressors.
Moreover, it was demonstrated that the overexpression of miR-
34a-5p suppresses the proliferation of both CAL-27 and SCC-
15 cells (Rabinowits et al., 2017). In addition, based on the
colony formation assay, exosomal miR-34a-5p overexpression
significantly reduced the colony counts of both CAL-27 and
SCC-15 cells (Li et al., 2018).

Increased miRNA expression in exosomes is believed to
promote OSCC metastasis. Leukoplakia is a precancerous lesion
in OSCC, and it was found that miR-21 secreted from OSCC
cells was correlated with low expression of its target genes,
TPM1 and PTEN, and was highly expressed in progressive
leukoplakia and OSCC to promote disease progression (Liu
et al., 2017). Similarly, the involvement of exosome-delivered
miRNAs in OSCC metastasis has been reported. Further analysis
of six selected miRNAs revealed that miR-200c-3p silences
its targets, CHD9 and WRN, as a key exosomal miRNA
to promote tumor invasion that significantly accelerates the
invasive potential of OSCC cells (Kawakubo-Yasukochi et al.,
2018). OSCC-derived exosomes may influence cell motility and
angiogenesis that, in turn, can influence OSCC progression.
Two oncogenic miRNAs, miR-342-3p and miR-1246, are highly
expressed in OSCC exosomes, leading to the metastasis of
OSCC and increasing cell motility and invasive ability. miR-
1246 directly targets DENND2D to promote the motility of
tumor cells (Sakha et al., 2016). Thus, miRNAs in exosomes may
be considered as non-invasive biomarkers for OSCC screening.
On the contrary, inhibitory miRNAs may be delivered with
exosomes to treat OSCC.
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Exosomal miRNAs and the OSCC
Microenvironment
The TME contains a complex network of non-malignant cells,
molecules, structural components, and chemicals that surround
cancer cells. Multiple non-malignant cells, including endothelial
cells, pericytes, immune cells, and fibroblasts, together with the
surrounding ECM, comprise the supportive stroma of the tumor
and manipulate the TME. The “seed and soil” hypothesis is
widely accepted in the cancer field (Paget, 1989; Fidler and Poste,
2008). The pre-metastatic niche, conceptualized as a fertile soil
conducive to the survival and growth of metastatic seeds, consists
of diverse cell populations, such as CAFs and various infiltrating
immune cells, and non-cell components of the ECM. These niche
components influence the fate of disseminated tumor cells in
diverse ways, such as cell proliferation and differentiation, and
contribute to tumor angiogenesis, invasion, and metastasis (Wu
et al., 2018; Peltanova et al., 2019). Exosomes have been identified
as a crucial means of cell-to-cell communication, involving
both near and distant signal transduction. Thus, tumor-derived
exosomes can serve as messengers in the tumor environment,
creating favorable environment for tumor growth and metastasis
(Bae et al., 2018).

Alteration of the TME is the first step in forming a pre-
metastatic niche. As one of the most abundant constituents
of the TME, we demonstrated that CAFs perform critical
roles during tumor progression and metastasis (Vu et al.,
2019). miRNAs from cancer-derived exosomes are crucial
messengers in the intercommunication between tumor cells and
CAFs within the TME. Bovy et al. (2015) demonstrated that
exosomes derived from CAFs enhance OSCC cell metastasis.
Besides, fibroblasts in the TME “communicate” with tumor
cells through the transfer of miRNAs contained in exosomes
(Bovy et al., 2015). Li et al. (2018) found that the expression
of miR-34a-5p in CAF-derived exosomes was significant,
thereby inducing the EMT and reducing expression of the
cancer stem marker AXL to facilitate cancer cell metastasis
via the AKT-GSK3β-β-catenin signaling pathway. Furthermore,
the miR-34a-5p-AXL axis enhanced nuclear translocation of
β-catenin, thereby inducing transcriptional upregulation of
SNAIL, which in turn activated the ECM proteins MMP-2
and MMP-9. Besides, it was found that miR-3188 expression
by directly targeting to BCL2, is reduced in exosomes
and their parental CAFs from OSCC tissues (Wang et al.,
2019b). Sun et al. (2019) discovered that exosomal miR-382-
5p derived from CAFs and NFs upregulates MMP-3, MMP-9,
N-cadherin, and β-catenin in OSCC cells, thus increasing the
migration of CAL-27.

The composition and function of the vasculature in the
TME exhibits abnormalities, including leakiness, a heterogeneous
basement membrane, irregular vessel branching, and poor
pericyte coverage. These changes ultimately lead to a hypoxic
TME (Hu and Polyak, 2008), and TEX can then be induced
to migrate and invade normoxic cells. Li et al. (2016) showed
that a hypoxic microenvironment may stimulate OSCC tumors
to produce miR-21-rich exosomes, enabling miR-21 to be
transported to normoxic regions and drive non-hypoxic cells
toward a pro-metastatic phenotype.

The human immune system exerts its defensive functions
by innate immunity and adaptive immunity. Innate immunity
provides the body with its instinctive defense against the
pathogenic infections, while their propagation brings about
activation of adaptive immune responses. The infiltration of
lymphocytes, including regulatory T cells (Tregs), MDSCs,
and tumor-associated macrophages, is common in OSCC. By
dampening the immune response and generating immune
tolerance, these lymphocytic cells promote immune evasion by
tumor cells. Li et al. (2019b) suggested that exosomal miR-
21 plays a key role in the regulation of TEX-induced γδ

T-cell function by affecting MDSCs. These authors utilized
lenti-miR-138 virus γδ T cell-derived exosomes (γδTDEs) as
a drug delivery system in the treatment of OSCC (Xie et al.,
2019a). Delivery of miR-138 with γδTDEs had a synergistic
inhibitory effect on CAL-27 cells in vitro (Xie et al., 2019a).
In immunocompetent C3H mice, applying miR-138-rich γδTDE
as a form of pre-immunization inhibited the growth of OSCC
(Xie et al., 2019a). Using differential fluorescence, miR-101-3p
was found to be transferred from donor hBMSCs to recipient
TCA8113 cells. By targeting COL10A, the transferred miR-
101-3p significantly repressed cell invasion and migration (Li
et al., 2019c). Further evidence showed that the miR-21-5p
that was released from CAL27-derived exosomes was taken
up by THP1 monocytes, playing a role in activating the
NF-κB inflammatory pathway. The delivery of miR-21-5p by
exosomes promotes monocyte migration and infiltration, which
in turn participates in the promotion of angiogenesis in OSCC
(Momen-Heravi and Bala, 2018).

Interestingly, alcohol treatment (25 mM for 24 h) increases
exosome production and alters the subset of oncogenic miRNAs
that are specifically enriched in exosomes released from tumor
cells (Momen-Heravi and Bala, 2018). Mechanistically, exosome
uptake from OSCC cells by monocytes causes activation of the
NF-κB pathway and establishment of a pro-inflammatory milieu
(Momen-Heravi and Bala, 2018). Thus, TEXs promote changes in
the microenvironment, such as oxygen reduction and decreased
immune responses, this deterioration of the microenvironment
exacerbates the progression of OSCC. However, the presence of
exosomes from immune cells in the OSCC microenvironment
was not reported.

The traditional therapies for treating OSCC are surgery
followed by chemotherapy. Due to the complexity of the
TME, conventional drug delivery systems fail to transfer
chemotherapeutics in an effective concentration to kill cancer
cells and are associated with debilitating side effects. Exosomes
have the essential characteristics including biocompatibility, non-
cytotoxicity, low immunogenicity, simple to produce and store,
long life span, and high cargo loading capacity (Steinbichler
et al., 2019). The small size confers exosomes resistant to lung
clearance and passing through the blood–brain barrier effectively
(Kawikova and Askenase, 2015). Furthermore, exosomes may
be used as specific targeting against cancer cells rather than
normal cells by receptors in exosomes (Wang et al., 2016).
Mounting evidence has provided insights about the crucial
role of exosomal miRNAs in controlling the TME, and these
insights could be applied to drug delivery. These miRNAs could
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FIGURE 2 | The feedback regulation between OSCC and TME. OSCC cells generate exosomes which include non-coding RNAs (miRNAs, lncRNAs, circRNAs,
piRNAs, tsRNAs, and rRNAs), mRNAs, and proteins to influence the TME. CAFs, CSCs, immune cells, blood vessels, endothelial cells, and other surrounding cells
are the essential cells in TME. Furthermore, cells in TME influence the function of OSCC cells by exosomes. OSCC cells also interact with adjacent OSCC cells via
exosomes. OSCC, oral squamous cell carcinoma; TME, tumor microenvironment; miRNAs, microRNAs; lncRNAs, long non-coding RNAs; circRNAs, circular RNAs;
piRNAs, PIWI-interacting RNAs; tRNAs, transfer RNAs; rRNAs, ribosomal RNAs; CAFs, cancer-associated fibroblasts; CSCs, cancer stem cells.

be utilized as therapeutic components delivered to the OSCC
microenvironment by exosomes. Exosome-delivered tumor
suppressor miRNAs, miR-143 inhibits the growth of prostate
cancer, while the let-7a significantly reduces the growth of breast
cancer in vivo, respectively (Kosaka et al., 2012; Ohno et al.,
2013b). Bio-safety has also been confirmed by adverse effects
detection in normal prostatic epithelial cells with treatment of
exosome-containing miR-143 (Kosaka et al., 2012). Cancer may
acquire the drug resistance against chemotherapeutics by drug
efflux with transporters. Exosomes could deliver the anti-miR-9
to reduce the transporter level, thus, sensitizes glioblastoma cells
to temzolomid to increase cell death (Munoz et al., 2013). The
feedback regulation of exosomes and TMEs is shown in Figure 2.

EXOSOMAL lncRNAs, CIRCULAR RNAs,
AND piRNAs IN OSCC

Aside from miRNAs, ncRNAs also consist of long non-coding
RNAs (lncRNAs), circular RNAs (circRNAs), and piRNAs,
rRNAs and tsRNAs. lncRNAs are defined as transcriptional
products, with a length of more than 200 nucleotides and
generally having no protein-coding potential (Jin et al., 2016).
However, ncRNAs involve in multiple pathological processes.
Gastrointestinal cancer has the same problem as OSCC of
resistance to chemotherapy agents, such as cisplatin.

Exosomal lncRNAs
Exosomal lncRNAs mediates the progression and
chemoresistance of tumor cells in the TME through diverse

mechanisms. The exosomal lncRNA HOTTIP, transmitted from
cisplatin-resistant gastric cancer cells to sensitive cancer cells,
plays a role in conferring cisplatin resistance to sensitive cancer
cells by binding to miR-218 to activate HMGA1 (Wang et al.,
2019a). Moreover, this lncRNA is upregulated in the bodily fluids
of gastric cancer patients, which indicates that it is a potential
biomarker for early diagnosis and treatment. Similarly, Kogure
et al. (2013) reported that the exosomal lncRNA TUC339 secreted
by hepatocellular cancer cells is absorbed by surrounding cells
and thereby promotes the growth of hepatocellular carcinoma.
Ding et al. (2018) found that the lncRNA FLJ22447 derived from
OSCC exosomes is upregulated in CAFs and activates them to
induce the proliferation of OSCC cells through IL-33.

Exosomal CircRNAs
CircRNAs are a kind of single-stranded RNA that is comprised
of mostly cytoplasmic exonic particles with linked 3′ and 5′ ends
in eukaryotic cells. Several circRNAs have been found in body
fluids, such as blood and saliva (Holdt et al., 2018; de Fraipont
et al., 2019). circRNAs sorting into exosomes may be controlled
by modulation of associated miRNA levels in parental cells and
may transfer biological activity to target cells (Li et al., 2020).
A recent study has reported that the exosomal circRNAs DB,
derived from adipocytes, promotes the growth of hepatocellular
carcinoma by sponging miR-34a and activating USP7/Cyclin A2
signaling pathway (Zhang et al., 2019). Zhao et al. (2019) found
that the circRNA ATP8B4 acts as miR-766 sponge and plays a role
in the development of radiation resistance in glioblastoma. The
circRNA CDR1as functions as a miR-7 sponge, regulating insulin
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transcription and secretion in pancreatic islet cells via miR-7
targets and downregulates miR-7 to perturb the development of
diabetes (Xu et al., 2015). Hansen et al. (2013) introduced miR-7
mimics into HEK293T and MCF-7 cell lines and reported that
the level of exosomal CDR1as is significantly decreased while
increased in cells due to the ectopic expression of miR-7 in both
HEK293T and MCF-7 cells.

Exosomal piRNAs
piRNAs are abundant small, non-coding, single-stranded RNAs
21-30 nucleotides in length, with little conservation of sequence
between organisms (Weick and Miska, 2014). Compared
with miRNAs, piRNAs function to repress transposons at
the transcriptional and posttranscriptional levels to maintain
genome integrity, while miRNAs play a role in repressing
translation at the post-transcriptional level to regulate gene
expression (Iwasaki et al., 2015). Although piRNAs have only
1–4% of all identified sequence content in the exosome, it was
found that piRNAs are as abundant as miRNAs in exosomes
isolated from plasma (Yuan et al., 2016). piRNAs are regarded
as potential biomarkers in breast cancer, colon, and gastric
cancer for pathological expression (Cheng et al., 2011; Hashim
et al., 2014; Vychytilova-Faltejskova et al., 2018). Mounting
evidence shows that piRNAs strongly correlate with tumor cell
malignant phenotype and clinical stage. piR-021285 regulates
cell proliferation and invasion by DNA methylation. The piR-
021285 variant mimics transfection into breast cancer cell lines
and weakens pro-invasive and pro-apoptosis gene methylation of
ARHGAP11A at the 5′-UTR-first exon CpG site, which results
in higher ARHGAP11A expression and increased breast cancer
cell invasiveness (Fu et al., 2015). piRNAs are also involved in
the development of lung cancer. The tumor promoter RASSF1C
upregulates piR-34871 and piR-52200 and downregulates piR-
35127 and piR-46545 through the RASSF1C-PIWIL1-piRNA
axis, resulting in the promotion of stem cell proliferation and
the EMT in lung cancer. These piRNAs changes inhibit AMPK
phosphorylation in the ATM-AMPK-p53-p21cip pathway and
thereby block cell cycle arrest and enhance cell proliferation
(Reeves et al., 2012). Moreover, we developed chemical induced
OSCC mouse model and found some piRNAs were significantly
changed. And piRNAs has been identified in the exosomes
of mesenchymal stem cells (Wang et al., 2020). However, the
exosomal function of piRNAs in human OSCC should be
further revealed.

Generally, exosomal lncRNAs, circRNAs, and piRNAs are
involved in the tumor development. However, there are few
reports on the involvement of these exosomal ncRNAs in the
functioning of OSCC and their potential as biomarkers in OSCC,
which deserves more attention and deeper exploration.

mRNAs AND PROTEINS IN OSCC

Proteins contained inside exosomes have also been evaluated in
patients with OSCC, although not as extensively as miRNAs,
and studies have shown promising exosomal protein markers
for early diagnosis of OSCC, such as TRAP1, EGFR, heat

shock protein 90 (HSP-90), and MMP-13, which can affect the
intracellular functions of genes (Kaskas et al., 2014; Xie et al.,
2019b). Among the proteins contained in exosomes, 23 were
identified as potential biomarkers of OSCC (Boldrup et al., 2017).
Recent studies found that the contents of free exosomes in blood
were correlated with OSCC cells. Proteins in those exosomes,
including PF4V1, CXCL7, F13A1, and ApoA1, could be used
in the diagnosis of OSCC (Li et al., 2019a). Angiogenesis is
generally correlated with tumor growth and metastasis, and
exosomes derived from OSCC cells could have an inhibitory
or promotional effect on angiogenesis, thereby influencing
OSCC metastasis (Zhang et al., 2019). Rosenberger et al. (2019)
demonstrated that exosomes manipulate the secretion of VEGF
to inhibit the angiogenic activity of endothelial cells, thus
reducing tumor metastasis. It was found that exosome treatment
inhibits angiogenic activity, including both vessel density and
vascular area.

The EMT also plays an essential role in tumor migration
and invasion. Overexpression of EGFR is an essential feature
of OSCC. It was found that OSCC cells abundantly express
EGFR, which is secreted from cells as OSCC exosomes upon
EGF stimulation (Fujiwara et al., 2018). Furthermore, OSCC
LNM was always found in patients who were diagnosed in the
later stages of the disease. Li et al. (2019a) isolated exosomes
from the serum of OSCC patients, and found that the exosomal
proteins PF4V1, CXCL7, F13A1, and ApoA1 in serum affect
OSCC LNM and thereby influence prognosis. ROC analysis
is a kind quantification method to acquire desirable levels of
sensitivity and specificity (Obuchowski and Bullen, 2018). ROC
analysis using the relative abundances of ApoA1, CXCL7, PF4V1,
and F13A1 in serum, serum exosomes, and whole blood indicated
that exosomal proteins are potentially predictive biomarkers
for OSCC with LNM.

Cancer cells often secrete exosomes carrying heat shock
proteins, which play a part in tumor progression. It was found
that abundant secretion of exosomes rich in HSP-90 was found
in OSCC with LNM, indicating a poor prognosis (Ono et al.,
2018). Besides, drug resistance also remains a severe problem
in most chemotherapy treatments for OSCC (Samuel et al.,
2017). Recently, it has been suggested that cancer cell-derived
exosomes mediate drug resistance. Khoo et al. (2019) showed
the increased exosome production in both de novo (H314)
and adaptive (H103/cisD2) resistant cell lines compared with
sensitive H103 cells. Moreover, differences in the proteomes
contained within exosomes indicate that adaptation to cisplatin
treatment causes significant changes in the secreted exosomes
(Khoo et al., 2019). The cargos in the exosomes were showed in
Table 1.

DISCUSSION

In 2012, miRNAs were found in the exosomes of invasive
tumors, suggesting that tumor-derived exosomes may serve as
an important diagnostic tool to avoid metastasis and improve
prognosis (Chen et al., 2012a). Therefore, it is essential to
determine the involvement of exosomes in maintaining the
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aggressive phenotype of OSCC cells and their unique roles in
intercellular communication.

Although several miRNAs have been identified in the
exosomes of OSCC, more should be analyzed by improving
the isolation and purification of exosomes. Furthermore,
the function of lncRNAs, circRNAs, piRNAs, mRNAs,
and proteins in the exosomes of OSCC also needs to be
determined. In fact, tRNAs and rRNAs are infrastructural
ncRNAs, they are also involved into the cancer initiation
and progression. tRNAs re small conserved RNA molecules
that allow the translation of the genetic code into amino
acids. Overexpression of initiator tRNAMet (tRNAMet

i ) is to
promote metastasis of melanoma cells, through α5β1 integrin-
dependent signaling (Birch et al., 2016). Furthermore, the
levels of tRNAGluUUC and tRNAArgCCG are increased in
metastatic breast cancer cell lines (Goodarzi et al., 2016).
Dysregulated rRNA transcription is essential in cancers and
may be involved in the initiation stage of hepatocarcinogenesis
(Donati et al., 2011; Xie et al., 2018). However, whether rRNAs
are existed in exosomes and the exosomal rRNAs should be
further revealed.

As a viable alternative to tissue-based sampling in the
clinic, it is clear that there is a great deal of interest in non-
invasive liquid biopsies (Xue et al., 2019). Liquid biopsies
utilize blood and saliva to detect the circulating tumor cells,
circulating tumor DNA, and exosomes for the diagnosis and
prognosis of oral cancer (Lousada-Fernandez et al., 2018). This
method allows repeated sampling to monitor the treatment
response, assess tumor heterogeneity, and even use in cancer
screening programs. Wu et al. (2017) has shown that an
acoustofluidic platform integrating acoustics and microfluidics
efficiently isolates exosomes directly from undiluted blood
samples and saliva. Saliva collection was rather easy and non-
invasive. It has demonstrated that exosomes have a higher

amount and larger size in the saliva of patients with oral
cancer than healthy individuals (Zlotogorski-Hurvitz et al., 2016;
Nair et al., 2018). Furthermore, increased expression of CD63
and lesser expression of CD9 and CD81 are found in the
saliva exosomes of oral cancer patients (Zlotogorski-Hurvitz
et al., 2016). More efforts should be made to identify new
biomarkers in the exosomes of saliva, finally increasing the
application in non-invasive cancer diagnosis. Considering the
endogenous transport function, exosomes have robust potential
to be applied as therapeutic delivery systems. However, efficiency
in delivering drugs to the tumor is still a major challenge
due to the blood–brain barrier and degradation (Kawikova
and Askenase, 2015). Exosomes can be fused with the cell
membrane with high reliability, and therefore non-coding
RNAs or peptide drugs may be packed into exosomes and
delivered to the OSCC tumor. Furthermore, the process of
exosomes transfected with ncRNAs may influence the activity
of exosomes. Thus, ncRNAs could be transfected into the
exosome derived cells. It has demonstrated exosomes from
mesenchymal stem cells overexpressed with tumor suppressed
miRNAs has inhibitory effect on tumor progression (Che
et al., 2019; Xu et al., 2019; Yuan et al., 2019). Furthermore,
the fabrication of target-specific exosomes could increase the
efficacy of cancer treatment (Wang et al., 2016). The exosomes
conjugated with antibodies specifically target cancer cells
(Stickney et al., 2016). The exosomes magnetized or modified
by pH-sensitive peptide also contributes to the accumulation
in the cancer cells (Nakase and Futaki, 2015; Qi et al., 2016).
Furthermore, the glycosylation of the surface proteins increases
the stability of exosomes (Hung and Leonard, 2015). The
therapeutic application of exosomes against OSCC is illustrated
in Figure 3.

In summary, it is essential to understand the role of
exosomes in influencing tumor phenotype, angiogenesis,

TABLE 1 | Cargos in exosomes derived from OSCC.

Biomolecules Function Molecules Exosome origin References

miRNAs Suppressor miR-338, miR-24-3p, miR-891a,
miR-106a-5p, miR-2a-5p,
miR-1908, miR-101-3p

Cell lines Ye et al., 2014; Tachibana et al.,
2016; Xie et al., 2019a

Biomarker miR-223 Plasma Tachibana et al., 2016

Metastasis miR-21, miR-142-3p, miR-29a-3p,
miR-342-3p, miR-1246,
miR-200c-3p

Cell lines Sakha et al., 2016; Dickman et al.,
2017; Liu et al., 2017;
Kawakubo-Yasukochi et al., 2018;
Cai et al., 2019

Accumulation of fibronectin miR-382-5p, miR-34a-5p,
miR-3188

CAFs Bovy et al., 2015; Liu et al., 2017;
Li et al., 2018

Motility miR-342-3p, miR-1246, Cell lines Sakha et al., 2016

Angiogenesis miR-21 Cell lines Momen-Heravi and Bala, 2018

Immune regulation miR-138, Cell lines Xie et al., 2019a

Proteins Biomarker PF4V1, CXCL7, F13A1, ApoA1 Serum Li et al., 2019a

VEGF, EGFR, HSPs OSCC cells Fujiwara et al., 2018; Ono et al.,
2018; Rosenberger et al., 2019

lncRNAs Proliferation Lnc-FLJ22447 OSCC cells Ding et al., 2018

CAFs, cancer-associated fibroblasts; HSPs, heat shock proteins; EGFR, epidermal growth factor receptor; VEGF, vascular endothelial growth factor; PF4V1, platelet factor
4 variant 1; CXCL7, C-X-C motif chemokine ligand 7; F13A1, coagulation factor XIII A chain; ApoA1, apolipoprotein A1.
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FIGURE 3 | The summary of therapeutic application of exosomes. (A) The non-invasive diagnosis and prognosis of OSCC using exosomes. (B) Approaches to alter
cargo contents in the mesenchymal stem cell-derived exosomes to treat OSCC. (C) Loading of exogenous proteins, genes, or signaling molecules in the exosomes
to treat OSCC. (D) Exosome surface modification for target specific delivery of exosomes toward OSCC.
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immune modulation, metastasis, and drug resistance. While
studies on the role of exosomes in OSCC have made progress,
there are several outstanding questions that need to be further
explored. The versatile biological functions of exosomes could be
promising tools to apply in the diagnosis, prognosis, and effective
treatment of OSCC.
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