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The protective effects of mesenchymal stem cell (MSC)-based therapy for myocardial
infarction (MI) are largely hampered as they age. Apelin is an endogenous ligand
of its receptor APJ and plays an essential role in regulating multiple biological
activities including MSC proliferation and survival. In this study, we investigated
whether Apelin regulates MSC senescence and whether its overexpression could
rejuvenate aged MSCs (AMSCs) to improve cardiac protection following infarction in
mice. MSC senescence was evaluated by senescence-associated β-galactosidase
assays. Apelin level was examined by western blotting. Autophagy was determined by
transmission electron microscopy. The cardioprotective effect of AMSCs with Apelin
overexpression (Apelin-AMSCs) was assessed in a mouse MI model. Apelin expression
was dramatically reduced in AMSCs. Interestingly, knockdown of Apelin induced young
MSCs (YMSC) senescence, whereas overexpression rescued AMSC senescence.
Apelin overexpression also increased AMSC angiogenic capacity. Mechanistically,
Apelin overexpression upregulated the autophagy level of AMSCs by activating AMP-
activated protein kinase (AMPK) signaling, thereby rejuvenating AMSCs. Compared
with AMSCs, transplantation of Apelin-AMSCs achieved better therapeutic efficacy for
MI by enhancing cell survival and angiogenesis. In conclusion, our results reveal that
Apelin activates AMPK to rejuvenate AMSCs by increasing autophagy and promotes
cardioprotection following infarction in mice. This study identified a novel target to
rejuvenate AMSCs and enhance their therapeutic efficacy.
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INTRODUCTION

Myocardial infarction (MI) is a leading cause of morbidity
and mortality worldwide in older adults. Given the growing
aging population with a number of potential risk factors, MI
prevalence is expected to increase. Despite significant progress
in pharmacological and surgical treatments, existing therapies
are not sufficient to improve the clinical outcomes of MI.
Preclinical studies and clinical trials in the last decade have
demonstrated that mesenchymal stem cells (MSC)-based therapy
is a novel strategy for MI treatment due to easy isolation,
multilineage differentiation, and low risk of immune rejection
(Zhang et al., 2017; Xiao et al., 2018; Liao et al., 2019).
However, the functions of MSCs isolated from aged patients
dramatically decline, undoubtedly reducing their therapeutic
efficacy for MI (Zhang et al., 2019; Sun et al., 2020). There is an
urgent need to rejuvenate aged-MSCs (AMSCs) to improve their
beneficial effects. Some strategies, including genetic modification
and pharmacological pretreatment, are being explored to
rejuvenate AMSCs (Song et al., 2017; Liang et al., 2019;
Hong et al., 2020). Understanding the molecular mechanism
involved in MSC senescence is an obvious prerequisite for
preventing cellular senescence and identifying new targets for
rejuvenating AMSCs.

Apelin is an endogenous polypeptide ligand for the orphaned
G protein-coupled receptor APJ that plays a critical role in
regulating cell proliferation, apoptosis, and migration (Chapman
et al., 2014). Activation of the apelin/APJ pathway induces diverse
physiological effects including angiogenesis, cardiovascular
functions, fluid homeostasis and energy metabolism regulation
(Chaves-Almagro et al., 2015). Apelin has been extensively
described as a beneficial adipokine regarding to glucose and
lipid metabolism, with anti-diabetic and anti-obesity properties.
Accumulating evidence indicates that Apelin mediates MSC
differentiation, proliferation, and survival (Liang et al., 2016;
Hang et al., 2019). Hypoxia promotes MSC proliferation by
activating the apelin/APJ/autophagy signaling pathway, and
these effects are partially abrogated by downregulation of
APJ (Li et al., 2015). The therapeutic efficacy of MSCs
for MI is largely attributed to their paracrine effects (Deng
et al., 2020; Sid-Otmane et al., 2020). Notably, Apelin also
regulates angiogenesis (Uribesalgo et al., 2019); it improves
MSC vascularization under hypoxic conditions by upregulating
the level of vascular endothelial growth factor (Hou et al.,
2017). We previously demonstrated that the angiogenic capacity
of AMSCs is greatly reduced (Zhang et al., 2019; Hong
et al., 2020). These findings prompted us to investigate a
possible role for Apelin in regulating MSC senescence. However,
whether and how Apelin regulates MSC senescence still
remains unclear.

It is well known that the autophagic level is closely associated
with MSC senescence (Liu et al., 2020; Zhou et al., 2020).
Compared with healthy MSCs, MSCs isolated from patients
with abdominal aortic aneurysm exhibit senescence as evidenced
by increased senescence-associated secretory phenotype
and decreased proliferative capacity, and these effects are
remarkably reversed by the autophagy activator rapamycin

(Huang et al., 2019). AMSCs exhibit reduced autophagy
accompanied by decreased self-renewal, lower regenerative
capacity, and replicative exhaustion (Revuelta and Matheu,
2017). Since Apelin is involved in regulating autophagy
(Zhu et al., 2019), we hypothesized that Apelin regulates
MSC senescence in the same way. Here, we report that
downregulation of Apelin affects AMP-activated protein kinase
(AMPK) signaling to induce MSC senescence by inhibiting
autophagy, whereas Apelin overexpression rejuvenated
AMSCs and enhanced their therapeutic efficacy for MI
in a mouse model.

MATERIALS AND METHODS

Cell Culture
The bone marrow of young and aged volunteer donors were
obtained with informed consent in the current study. This
study was approved by the research ethics board of Shanghai
East Hospital (No. 2016-050). Young-MSCs (YMSCs) and
AMSCs were isolated as previously reported (Liang et al., 2019).
YMSCs and AMSCs were regularly cultured in Dulbecco’s
minimum essential medium (DMEM)/high glucose (Gibco,
Grand Island, NY, United States; 11965084) supplemented
with 10% fetal bovine serum (FBS; Life Technologies,
Carlsbad, CA, United States; 16000), 5 ng/mL endothelial
growth factor (PeproTech, Rocky Hill, NJ, United States:
AF-100-15), and 5 ng/mL basic fibroblast growth factor
(PeproTech; 100-18B) at 37◦C in a humidified atmosphere
with 5% CO2. All MSCs were used at passage 3–4 in
the current study. Human umbilical vein endothelial cells
(HUVECs) were cultured in RPMI 1640 (Gibco; C11875500BT)
supplemented with 10% FBS.

Senescence-Associated β-Galactosidase
(SA-β-gal) Assay
Mesenchymal stem cell senescence was evaluated with SA-β-gal
assay kits (Beyotime, Shanghai, China; C0602). Briefly, MSCs
were seeded in 6-well plates and subjected to different treatments.
Next, MSCs were fixed for 20 min, washed with phosphate-
buffered saline (PBS), and incubated with the SA-β-gal labeling
solution overnight at 37◦C without CO2. Finally, SA-β-gal-
positive cells were randomly photographed and counted. The
percentage of senescent MSCs was calculated as the ratio of SA-
β-gal-positive MSCs to the total number of MSCs obtained from
five different fields of view.

Enzyme-Linked Immunosorbent Assay
The concentration of secreted Apelin in conditioned media
(CdM) from YMSCs and AMSCs was determined with Apelin
enzyme-linked immunosorbent assay (ELISA) kits according
to the manufacturer’s protocol (G-Biosciences, New Delhi,
India; IT11989).

Small Interfering RNA Treatment
To knockdown Apelin, AMSCs were transfected with Apelin-
small interfering RNA (siRNA) (Santa Cruz Biotechnology,
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Dallas TX, United States; sc-44741) or control siRNA (Santa
Cruz; sc-37007) using a Lipofectamine RNAiMAX Reagent Kit
(Invitrogen, Carlsbad, CA, United States; 13778030) according
to the protocol. Transfection efficiency was examined by western
blotting 72 h after transfection.

Viral Vector Construction and Infection
The lentiviral plasmid constructs for Apelin were purchased
from GenePharma (Suzhou, China). The plasmid contained an
expression cassette consisting of a cytomegalovirus promoter
followed by cDNA encoding mCherry and an Aplein sequence
(plasmid map shown in Supplementary Figure 1). The lentivirus
was packaged as previously reported (Liang et al., 2019). For
stable transduction, AMSCs at a confluence of 70–80% were
infected by lentivirus at a multiplicity of infection of 10
with polybrene (8 µg/mL). Infection efficiency was determined
based on the mCherry fluorescent signal viewed under the
microscope 48 h after infection, and positive cells were labeled
as Apelin-AMSCs.

CdM Collection
Young-MSCs and AMSC CdM was collected as previously
described (Hong et al., 2020). Briefly, 5 × 106 YMSCs or AMSCs
were plated on a 15-cm culture dishes and cultured until they
reached 70–80% confluence. Subsequently, the regular culture
medium was discarded and replaced with 15 ml of serum- and
antibiotic-free DMEM. Twenty-four hours later, the supernatant
was gently harvested and passed through a 0.22-µm filter.
Finally, the medium was centrifuged and concentrated using
ultrafiltration conical tubes (Amicon Ultra-15 with membranes
selective for 5 kDa).

Tube Formation Assay
The angiogenic effect of MSC-derived CdM was assessed with
capillary tube formation assays. Briefly, 3 × 104 HUVECs
were plated in 96-well plates coated with growth-factor-reduced
Matrigel (BD Biosciences, San Jose, CA, United States; 356230).
Next, HUVECs were treated with CdM from YMSCs, AMSCs,
or Apelin-AMSCs for 6 h. Finally, capillary-like tube formation
was randomly photographed. Tube lengths were calculated
by ImageJ software (National Institutes of Health, Bethesda,
MD, United States).

Transmission Electron Microscopy
The autophagosomes of MSCs from different groups were viewed
with Transmission electron microscopy (TEM). Briefly, MSCs
were fixed with 2.5% glutaraldehyde in phosphate buffer for 4 h
and then postfixed with 1% OsO4 for 2 h. Subsequently, MSCs
were dehydrated with a graded concentration of ethanol (30,
50, 70, 80, 90, 95, and 100%). Next, MSCs were infiltrated with
1:1 acetone:Spurr resin (SPI-Chem, 02690-AB) for 1 h at room
temperature, 1:3 acetone:Spurr resin for 3 h, and then absolute
Spurr resin overnight. Finally, images were acquired using an
H-7650 TEM (Hitachi, Tokyo, Japan).

Western Blotting
Total protein from MSCs was extracted using a total protein
extraction kit (Bestbio, Xi’an, China; BB-3101), and the
concentrations were measured with bicinchoninic acid assay kits
(Thermo Fisher Scientific, Waltham, MA, United States; 231227).
A total of 30 µg protein was resolved by 10% Tris-glycine gel
electrophoresis and then transferred onto polyvinylidene fluoride
(PVDF) membranes. After blocking with 5% fat-free milk in
Tris-buffered saline with Tween (TBST), the PVDF membranes
were incubated overnight at 4◦C with the following antibodies:
anti-p16 (Abcam, Cambridge, United Kingdom; ab151303), anti-
p21 (Abcam; ab109199), anti-Apelin (Abcam; ab59469), anti-p-
AMPK (CST, Danvers, MA, United States; 4184), anti-AMPK
(CST; 5832), anti-LC3I/II (CST; 12741), anti-Beclin (CST; 3738),
anti-p62 (CST; 5114), and anti-glyceraldehyde 3-phosphate
dehydrogenase (GAPDH; CST; 2118). Next, the membranes were
washed three times with TBST and incubated with secondary
antibodies (1:1,000; CST) at room temperature for 1 h and then
exposed in a dark room. Western blots were analyzed using
ImageJ software in three independent experiments.

MI Model Establishment and MSC
Transplantation
All animal experiments were approved by the Committee on
the Use of Live Animals in Teaching and Research of the
Tongji University for Laboratory Animal Medicine (approval
number: TJBB00120102). The MI model was established
in C57/B6J mice at 6–8 weeks of age by ligating the
left anterior decedent coronary artery (LAD) as previously
described (Liang et al., 2019). After LAD ligation, all MI
mice were intramuscularly injected with one of the following
treatments: (1) PBS (MI group, n = 12); (2) 3 × 105

YMSCs (YMSC group, n = 12); (3) 3 × 105 AMSCs (AMSC
group, n = 12) or 3 × 105 Apelin-AMSCs (Apelin-AMSC
group, n = 12) at four sites around the border zone of
the infarcted heart. All MSCs were suspended in 40 µL
PBS. The mice that underwent thoracotomy without LAD
ligation served as the sham group (Sham group, n = 6).
Cardiac function in the different groups was measured using
transthoracic echocardiography (Ultramark 9; Soma Technology,
Bloomfield, CT, United States) at baseline (before MI) and 1 and
28 days following MI.

Masson’s Staining
After measuring heart function at 28 days post-MI, all mice
were sacrificed, and heart tissues were harvested. After paraffin
embedding, the hearts were cut into 5-µm sections. Next,
Masson’s staining was performed to detect fibrosis according to
the manufacturer’s protocol (Sigma, St. Louis, MO, United States;
HT15). Finally, the percentage of infarct size was evaluated as the
ratio of fibrosis area to total left ventricular area× 100%.

Immunofluorescence Labeling
To examine capillaries and small arteries at day 28 post-MI,
heart sections were stained with anti-CD31 (Abcam; ab19898)
and anti-α-smooth muscle actin (α-SMA) (Abcam; ab5694),
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respectively. Capillary and arteriole densities were evaluated
using the average number of CD31- or α-SMA-positive blood
vessels per field (×100).

Polymerase Chain Reaction
The expression of the senescence-associated secretory phenotype
(SASP) including matrix metallopeptidase 3 (MMP3), interleukin
1 beta (IL-1β), C-C motif chemokine ligand 5 (RANTES)
and tumor necrosis factor alpha (TNF-α) expression, and
angiogenesis cytokines including fibroblast growth factor 2
(FGF2), heparin binding EGF like growth facto (HBEGF),
hepatocyte growth factor (HGF), and insulin like growth factor
(IGF) were determined by quantitative real-time Polymerase
chain reaction (PCR). Briefly, total RNA was extracted from
skin specimens with RNeasy Mini Kit (Qiagen, 74124). cDNA
was synthesized from 500 ng of total RNA with a RevertAid
First Strand cDNA Synthesis Kit (Takara, RR0036A). Then
quantitative reverse transcription polymerase chain reaction
analysis was performed with Fast SYBR Green Master Mix
(4385617) in an ABI QuantStudio 6 Flex System. The relative
standard curve method (2−1 1 CT) was used to determine
the relative mRNA expression, with glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) as the reference gene. The primers
were listed in Table 1. Human Alu-sx repeat sequences in heart
tissue from the different groups was evaluated by genomic
PCR as previously described (Deng et al., 2020). The human
Alu-sx primers were: F:5′-GGCGCGGTGGCTCACG-3′, R:5′-
TTTTTTGAGACGGAGTCTCGCTC-3′. The human GAPDH
primers were: F:5′-GTCTCCTCTGACTTCAACAGCG-3′,
R:5′-ACCACCCTGTTGCTGTAGCCAA-3′. The product was
detected by electrophoresis in 1.5% agarose gel supplemented
with ethidium bromide.

TABLE 1 | Primer sequence.

Gene Sequence

IL-1β-forward CCACAGACCTTCCAGGAGAATG

IL-1β-reverse GTGCAGTTCAGTGATCGTACAGG

Rantes-forward CCTGCTGCTTTGCCTACATTGC

Rantes-reverse ACACACTTGGCGGTTCTTTCGG

TNF-α-forward CTCTTCTGCCTGCTGCACTTTG

TNF-α-reverse ATGGGCTACAGGCTTGTCACTC

MMP3-forward CACTCACAGACCTGACTCGGTT

MMP3-reverse AAGCAGGATCACAGTTGGCTGG

FGF2-forward AGCGGCTGTACTGCAAAAACGG

FGF2-reverse CCTTTGATAGACACAACTCCTCTC

HBEGF-forward TGTATCCACGGACCAGCTGCTA

HBEGF-reverse TGCTCCTCCTTGTTTGGTGTGG

HGF-forward GAGAGTTGGGTTCTTACTGCACG

HGF-reverse CTCATCTCCTCTTCCGTGGACA

IGF-forward CTCTTCAGTTCGTGTGTGGAGAC

IGF-reverse CAGCCTCCTTAGATCACAGCTC

GAPDH forward GTCTCCTCTGACTTCAACAGCG

GAPDH reverse ACCACCCTGTTGCTGTAGCCAA

Statistical Analysis
All data are expressed as the mean ± SD (standard deviation).
Statistical analyses were carried out using Prism 5.04 software
(GraphPad Software). Students’ t-tests and one-way analysis of
variance followed by Bonferroni tests were used to compare data
between two groups and more than two groups, respectively.
Differences were considered significant at p < 0.05.

RESULTS

Apelin Expression Is Downregulated in
AMSCs
First, we examined Apelin expression in both YMSCs and
AMSCs. Both mRNA and protein levels of Apelin were
significantly downregulated in AMSCs compared with YMSCs
(Figures 1A,B). Next, we measured the concentration of secreted
Apelin in CdM from YMSCs and AMSCs. It was much
lower in CdM from AMSCs than YMSCs (Figure 1C). These
results indicate that decreased Apelin expression may affect the
regulation of MSC senescence.

Apelin Regulates MSC Senescence
To verify the role of Apelin in MSC senescence regulation,
we used siRNA to knock down Apelin in YMSCs. As shown
in Figure 2A, Apelin-siRNA treatment greatly decreased
Apelin protein expression but increased p16 and p21
levels in YMSCs (Figure 2A). Furthermore, Apelin-siRNA
treatment greatly enhanced SA-β-gal activity in YMSCs
(Figures 2B,C). Next, we treated AMSCs with Apelin-lentivirus
to overexpress Apelin. Apelin-lentivirus treatment increased
Apelin expression and decreased p16 and p21 expression in
AMSCs (Figure 2D). In addition, the number of SA-β-gal-
positive cells was significantly reduced in Apelin-AMSCs
compared with AMSCs (Figures 2E,F). We determined
the SASP including MMP3, IL-1β, RANTES and TNF-α
expression in YMSC, AMSC, and Apelin-AMSC by qRT-
PCR (Supplementary Figure 2). The expressions of MMP3,
IL-1β, RANTES, TNF-α were significantly upregulated in
AMSC compared with YMSC, and Apelin overexpression in
AMSC partially downregulated the expression of the above
mentioned cytokines in AMSCs (Supplementary Figure 2).
We next examined whether Apelin overexpression improved
the paracrine effects of AMSCs. We collected CdM from
YMSCs, AMSCs, and Apelin-AMSCs and evaluated their
angiogenic capacities. Compared with YMSC-CdM, HUVEC
tube length was significantly reduced following treatment
with CdM from AMSCs. However, tube length was markedly
increased in Apelin-AMSC-CdM compared with AMSC-
CdM (Figures 2G,H). In accordance with tube formation,
the expression levels of FGF2, HBEGF, HGF, and IGF were
markedly downregulate in AMSC compared to YMSC, and
Apelin overexpression partially restored the expression of
the above mentioned cytokines in AMSCs (Supplementary
Figure 3). Collectively, these results demonstrate that Apelin
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FIGURE 1 | Downregulation of Apelin expression in AMSCs. (A) Quantitative analysis of Apelin mRNA levels in YMSCs and AMSCs. (B) Western blotting and
quantitative analysis of Apelin protein levels in YMSCs and AMSCs. (C) Apelin concentrations were measured by ELISA in the CdM of YMSCs and AMSCs. Data are
expressed as mean ± SD (n = 3). **p < 0.01, ***p < 0.001.

regulates MSC senescence and that its overexpression could
rejuvenate AMSCs.

Apelin Overexpression Rejuvenates
AMSCs by Activating Autophagy
We and others have shown that autophagy levels mediate
MSC senescence (Ma et al., 2018; Kim et al., 2019; Zhang
et al., 2019). Therefore, we examined whether Apelin
overexpression rejuvenates AMSCs by regulating autophagy. It
significantly increased the number of autophagosomes in AMSCs
(Figures 3A,B). Apelin overexpression also upregulated protein
levels of Beclin1 and LC3II/LC3I but downregulated that of p62
(Figure 3C). Combined with the decreased p16 and p21 levels
and the number of SA-β-gal-positive cells in Apelin-AMSCs
compared with AMSCs, we concluded that Apelin-mediated
rejuvenation of aged-MSCs may be due to activation of
autophagy (Figures 3C,D). However, treating Apelin-AMSCs
with the autophagy inhibitor 3-methyladenine (3-MA) reduced
autophagy and increased p16 and p21 levels in Apelin-AMSCs
(Figures 3A–C). The number of SA-β-gal-positive cells was also
greatly increased in 3-MA-treated Apelin-AMSCs compared with
Apelin-AMSCs (Figure 3D). These results further confirmed
that Apelin overexpression rejuvenates AMSCs by activating
autophagy. Accumulating evidence indicates that AMPK
signaling plays a critical role in regulating autophagy (Zhao et al.,
2019; Khorraminejad-Shirazi et al., 2020). Next, we investigated
whether Apelin mediates autophagy levels in AMSCs via this
pathway. Western blotting showed that p-AMPK levels were
significantly increased in Apelin-AMSCs compared with AMSCs
(Figure 3E). Combined with the increased autophagy level
and decreased senescence in Apelin-AMSCs (Figures 3F,G), it
suggests that Apelin overexpression may activate autophagy to
rejuvenate AMSCs by regulating AMPK signaling. However,
treating Apelin-AMSCs with compound C (an AMPK inhibitor)
robustly downregulated p-AMPK and autophagy levels and
partially abrogated the reduced senescence in Apelin-AMSCs
(Figures 3E–G). Collectively, these data show that Apelin
overexpression activates autophagy to rejuvenate AMSCs by
regulating the AMPK pathway.

Apelin-AMSC Transplantation Improves
Cardiac Function in Mice With MI
To assess the therapeutic effects of Apelin-AMSCs, they were
transplanted into mice following MI. Echocardiography revealed
that compared with control group, left ventricle ejection fraction
(LVEF) and fraction shorting (LVFS) were robustly reduced
on 1 day post-Ml in the Ml group, YMSC group, AMSC
group, and Apelin-AMSC group, indicating that the MI mouse
model was successfully established (Supplementary Figure 4).
Notably, no difference in LVEF and LVFS was observed among
the MI group, YMSCs group, AMSCs group, and Apelin-
AMSCs group, suggesting that a similar degree of infarction in
these groups (Supplementary Figure 4). The heart function of
different groups was evaluated by echocardiography 28 days after
MI. Representative echocardiography images from the different
groups are shown in Figure 4A. The results demonstrated that
compared with the MI group, LVEF and LVFS were significantly
enhanced in all MSC transplantation groups (Figures 4B,C).
Although LVEF and LVFS were the highest in the YMSC group
28 days after cell transplantation, both values were much higher
in the Apelin-AMSC group compared with the AMSC group
(Figures 4B,C). Next, we examined infarction size using Masson’s
trichrome staining. Compared with the MI group, infarction size
was significantly decreased in all MSC transplantation groups
(Figures 4D,E). Notably, the YMSC group had smaller infarcts
than the Apelin-AMSC and AMSC groups (Figures 4D,E).
Furthermore, infarct size in the Apelin-AMSC group was greatly
reduced compared to the AMSC group (Figures 4D,E). Taken
together, these data indicate that Apelin-AMSCs have greater
therapeutic efficacy for MI.

Apelin Overexpression Improves AMSC
Survival in the Ischemic Mouse Heart
Following MI
Since the transplanted MSCs were isolated from human, we first
performed anti-HNA staining to detect MSC survival 28 days
after transplantation. MSCs were detected in all three MSC-
transplanted groups (Figure 5A). The number of surviving MSCs
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FIGURE 2 | Apelin regulates MSC senescence. (A) Western blotting and quantitative analysis of Apelin, p16, and p12 expression in YMSCs transfected with control
siRNA or Apelin-siRNA. (B) Representative images of SA-β-gal staining in control-siRNA and Apelin-siRNA-treated YMSCs. (C) Quantitative analysis of
SA-β-gal-positive cells in control siRNA- or Apelin-siRNA-treated YMSCs. (D) Western blotting and quantitative analysis of Apelin, p16, and p12 expression in
AMSCs transfected with control-lentivirus or Apelin-lentivirus. (E) Representative images of SA-β-gal staining in control-lentivirus- or Apelin-lentivirus-treated AMSCs.
(F) Quantitative analysis of SA-β-gal-positive cells in control-lentivirus or Apelin-lentivirus-treated YMSCs. (G) Representative images of tube formation in HUVECs
treated with YMSC-CdM, AMSC-CdM, or Apelin-AMSC-CdM. (H) Tube length analysis in HUVECs treated with YMSC-CdM, AMSC-CdM, or Apelin-AMSC-CdM.
Data are expressed as mean ± SD (n = 3). **p < 0.01, ***p < 0.001.
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FIGURE 3 | Apelin overexpression rejuvenates AMSCs by activating autophagy. (A) Representative TEM images of autophagosomes in YMSCs and AMSCs with or
without 3-MA treatment. (B) Quantitative analysis of autophagosomes in AMSCs and Apelin-AMSCs with or without 3-MA treatment. (C) Western blotting and
quantitative analysis of Beclin, LC3II/I, p62, p16, and p21 expression in AMSCs and Apelin-AMSCs with or without 3-MA treatment. (D) Quantitative analysis of
SA-β-gal-positive cells in AMSCs and Apelin-AMSCs with or without 3-MA treatment. (E) Western blotting and quantitative analysis of p-AMPK and AMPK levels in
AMSCs and Apelin-AMSCs with or without Compound C treatment. (F) Quantitative analysis of autophagosomes in AMSCs and Apelin-AMSCs with or without
Compound C treatment. (G) Quantitative analysis of SA-β-gal-positive cells in AMSCs and Apelin-AMSCs with or without Compound C treatment. Data are
expressed as mean ± SD (n = 3). **p < 0.01, ***p < 0.001.

in ischemic heart tissue was significantly higher in the YMSC
group than in the AMSC and Apelin-AMSC groups. Notably,
the number of surviving MSCs in the Apelin-AMSC group was
much higher than in the AMSC group (Figure 5B). Next, we

performed PCR for the human repeat sequences Alu-sx to further
evaluate MSC survival in heart tissue. As Alu-sx was detected
in all MSC-transplanted groups, but not in the sham or MI
group (Figure 5C). Although Alu-sx expression was highest in
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FIGURE 4 | Transplantation of Apelin-aged-MSCs improves cardioprotection following infarction in mice. (A) Representative images of M-mode echocardiographic
images captured 4 weeks following MI in mice. (B) Quantitative analysis of LVEF 4 weeks following MI. (C) Quantitative analysis of LVFS at 4 weeks following MI.
(D) Representative images of Masson’s Trichrome staining at 4 weeks following MI. (E) Quantitative analysis of heart fibrosis. Data are expressed as mean ± SD
(n = 6–7). **p < 0.01, ***p < 0.001.
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FIGURE 5 | Apelin overexpression improves AMSC survival in the ischemic mouse heart after MI. (A) Representative images of anti-HNA-positive cells in ischemic
hearts 4 weeks after MSC transplantation. (B) Quantitative analysis of MSC survival in ischemic mouse hearts 4 weeks after MI. (C) Alu-sx expression was examined
by PCR in the YMSC, AMSC, and Apelin-AMSC transplantation groups. Data are expressed as mean ± SD (n = 6). **p < 0.01, ***p < 0.001.

the YMSC group, it was much higher in the Apelin-AMSC group
compared to the AMSC group (Figure 5C). These results indicate
that Apelin overexpression could enhance AMSC tolerance to
ischemic challenges.

Apelin-AMSC Transplantation Enhances
Angiogenesis in the Ischemic
Mouse Heart
Next, we examined that whether Apelin-AMSC transplantation
could enhance angiogenesis in the ischemic mouse heart.
The capillary densities in ischemic heart tissue from different
groups was detected by CD31 staining. Compared with the
control group, CD31-positive capillary density was significantly
reduced in the MI group but increased in the MSC-transplanted
groups (Figures 6A,B). Notably, the YMSC group had higher
capillary density than the Apelin-AMSC and AMSC groups
(Figures 6A,B). Furthermore, the capillary density in the
Apelin-AMSC group was much higher than in the AMSC
group (Figures 6A,B). A similar result was observed when we
examined arteriole densities in the different MSC-transplanted
groups. Arteriole density was dramatically enhanced in all MSC-
transplanted groups compared with the MI group, and it was
highest in the YMSC group (Figures 6C,D). Notably, the Apelin-
AMSC group had a much higher arteriole density than the AMSC
group (Figures 6C,D). Collectively, these results demonstrate
that Apelin-AMSC transplantation enhances angiogenesis in the
infarcted mouse heart.

DISCUSSION

There were several major findings in this study. First,
Apelin expression was remarkably reduced in AMSCs. Second,
downregulation of Apelin inhibited AMPK signaling and
induced MSC senescence by regulating autophagy. Third, Apelin
overexpression rejuvenated AMSCs and enhanced their paracrine
effects. Finally, compared with AMSCs, transplantation of
Apelin-AMSCs had greater beneficial effects in mice after MI
because they improved cell survival and angiogenesis.

MSC-based therapy has been intensively investigated as a
potential treatment for MI for many years (Zhang et al., 2015;
Faiella and Atoui, 2016; Yan et al., 2020). Despite promising
results of MSC-based therapy for MI in animal studies and
clinical trials, MSC senescence is a major contributor that
diminishes the regenerative potential. The number and function
of MSCs dramatically decline in physiologically aged individuals
and aging-associated patients (Hu et al., 2020). Although
autologous MSC transplantation avoids immunorejection issues,
most MI patients are elderly, and transplantation of old
autologous MSCs fails to achieve satisfactory results (Trounson
and McDonald, 2015; Zhang D. Y. et al., 2020). Compared
with YMSCs, AMSCs are more sensitive to oxidative stress,
so they have decreased survival capacity in the ischemic
heart tissue (Zhang D. Y. et al., 2020). AMSCs also have
decreased paracrine effects, especially with regard to angiogenic
capacity. Therefore, it is of great value to identify the key
molecules that govern MSC senescence. Apelin is an adipokine
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FIGURE 6 | Apelin-AMSC transplantation enhances angiogenesis in the ischemic mouse heart after MI. (A) Representative images of CD31 staining in ischemic
mouse hearts 28 days following MI. (B) Quantitative analysis of CD31 density in ischemic hearts 28 days following MI. (C) Representative images of α-SMA staining
in ischemic hearts 28 days following MI. (D) Quantitative analysis of α-SMA density in ischemic hearts 28 days following MI. Data are expressed as mean ± SD
(n = 6). **p < 0.01, ***p < 0.001.

that is widely expressed in mammalian cells including MSCs
(Zeng et al., 2012) and vascular smooth muscle cells (Wang
et al., 2019). Apelin is reportedly involved in regulating
various biological effects including immunological integration,
cell homeostasis, and cardiovascular activities (Foroughi et al.,
2019). It can also effectively increase MSC survival under
hypoxic-ischemic challenge in vitro, indicating that Apelin
plays a pivotal role in regulating MSC biology (Hou et al.,
2017). In the current study, we found that Apelin expression
was remarkably reduced in AMSCs compared with YMSCs,
suggesting that Apelin level may be associated with MSC
senescence. Subsequently, we revealed the essential role of
Apelin in MSC senescence regulation using loss-gain-of-function
approaches. Apelin overexpression in AMSCs ameliorated MSC
senescence and enhanced cell survival after transplantation in a
mouse MI model. Consistent with previous studies reporting that
Apelin mediates cellular angiogenesis, overexpression of Apelin
enhanced AMSC angiogenic capacity as evidenced by the longer
tube length CdM-stimulated HUVECs. Notably, transplantation
of Apelin-AMSCs improved the capillary density of the ischemic
areas compared with AMSCs. Collectively, our results indicate
that enhancing Apelin levels rejuvenates AMSCs and have
promising therapeutic effects following MI.

Autophagy is a process that sequesters injured cytoplasmic
organelles and impaired macromolecules into autophagosomes
that are transferred into lysosomes for degradation. Although
the underlying mechanisms remain unclear, increasing evidence
suggests that autophagy deficiency contributes to MSC
senescence (Infante et al., 2014; Zhang D. et al., 2020). Ma
et al. (2018) found that autophagy is significantly reduced in
AMSCs compared with YMSCs, and 3-MA treatment induces
YMSCs into a relatively aged state as manifested by deceased
proliferation capacity and osteogenic differentiation. Previous
studies have documented that Apelin regulates autophagy
(Xie et al., 2015; Chen et al., 2020), thus it is important to
clarify whether Apelin is a key molecule that regulates MSC
senescence by mediating autophagic activity. Here we found
that Apelin overexpression increased autophagic activity, as
evidenced by enhanced expression of Beclin and LC3II/I and
decreased expression of p62. This was due to inhibition of
AMPK signaling pathway and rejuvenated cellular senescence
in AMSCs, and these effects were partially reversed by 3-MA or
compound C treatment. Given that autophagy mediates MSC
senescence, activation of autophagy may be a novel strategy to
rejuvenate senescent MSCs. A combination of AICAR (an AMPK
stimulator) and nicotinamide (a sirtuin1 activator) was shown
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to synergistically improve the proliferative capacity of MSCs
and ameliorate the aged phenotype by promoting autophagic
activity (Khorraminejad-Shirazi et al., 2020). Similarly, Apelin
overexpression attenuated senescence-associated changes in
AMSCs by activating AMPK signaling to enhance autophagy.

Our study also has some limitations that must be
acknowledged. First, although we found that Apelin regulates
physiological senescence in AMSCs, whether it mediates
MSC replicative senescence during long-term in vitro culture
has not been determined. Second, since Apelin is involved
in regulating multiple pathways in addition to autophagy,
whether Apelin mediates MSC senescence via other signaling
mechanisms requires further investigation. Third, exosomes
serve as paracrine mediators and play a critical role in MSC-
mediated cardioprotection, whether Apelin could enhance the
beneficial effects of exosomes for MI is unknown. Forth, the
transplanted MSCs are still detectable at day 28. A longer
observation period might provide more information of Apelin-
MSC-mediated protective effects. Finally, although no side effects
were observed in MI model mice that underwent Apelin-AMSC
transplantation, the genomic stability of Apelin-AMSCs must be
carefully evaluated before their clinical application.

CONCLUSION

In summary, our study revealed that Apelin plays an essential
role in regulating MSC senescence by mediating autophagy.
Apelin overexpression rejuvenated AMSCs and enhanced cardiac
protection following infarction by improving cell survival and
activating angiogenesis. We identified Apelin as a novel regulator
for rejuvenating AMSCs that could enhance the therapeutic
efficacy of autologous AMSC transplantation for MI.
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