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T cell receptor (TCR) and B cell receptor (BCR) stimulation by antigen presented

on an antigen-presenting cell (APC) induces the formation of the immune synapse

(IS), the convergence of secretory vesicles from T and B lymphocytes toward the

centrosome, and the polarization of the centrosome to the immune synapse. Immune

synapse formation is associated with an initial increase in cortical F-actin at the synapse,

followed by a decrease in F-actin density at the central region of the immune synapse,

which contains the secretory domain. These reversible, actin cytoskeleton reorganization

processes occur during lytic granule degranulation in cytotoxic T lymphocytes (CTL) and

cytokine-containing vesicle secretion in T-helper (Th) lymphocytes. Recent evidences

obtained in T and B lymphocytes forming synapses show that F-actin reorganization also

occurs at the centrosomal area. F-actin reduction at the centrosomal area appears to be

involved in centrosome polarization. In this review we deal with the biological significance

of both cortical and centrosomal area F-actin reorganization and some of the derived

biological consequences.

Keywords: T lymphocytes, B lymphocytes, immune synapse, actin cytoskeleton, protein kinase C δ, centrosome,

multivesicular bodies, FMNL1

INTRODUCTION

T and B lymphocyte activation by antigen-presenting cells (APC) takes place at a specialized
cell to cell interface called the immunological synapse (IS). IS establishment by T and B
lymphocytes is a very dynamic, plastic and critical event, acting as a tunable signaling
platform that integrates spatial, mechanical and biochemical signals, involved in antigen-specific,
cellular and humoral immune responses (Fooksman et al., 2010; de la Roche et al., 2016).
The IS is described by the formation of a concentric, bullseye spatial pattern, termed the
supramolecular activation complex (SMAC), upon cortical actin reorganization (Billadeau et al.,
2007; Griffiths et al., 2010; Yuseff et al., 2013; Kuokkanen et al., 2015). This reorganization yields
a central cluster of antigen receptors bound to antigen called central SMAC (cSMAC) and a
surrounding adhesion molecule-rich ring, called peripheral SMAC (pSMAC), which appears to
be crucial for adhesion with the APC (Monks et al., 1998; Fooksman et al., 2010). Surrounding
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the pSMAC, at the edge of the contact area with the APC, is the
distal SMAC (dSMAC), which consists of a circular array of dense
filamentous actin (F-actin) (Griffiths et al., 2010; Le Floc’h and
Huse, 2015) (Figure 1A).

T cell receptor (TCR) and B cell receptor (BCR) stimulation
by antigen presented by APC, together with accessory molecules
interaction with their ligands on the APC, induces IS formation,
convergence of T and B lymphocyte secretory vesicles toward the
centrosome and, almost simultaneously, centrosome polarization
to the IS (Huse, 2012; de la Roche et al., 2016). This
leads to polarized secretion of extracellular vesicles, lytic
granules, stimulatory cytokines, or lytic proteases (Figure 1).
The centrosome is the major microtubule organization center
(MTOC) in T and B lymphocytes, and consists of two centrioles
surrounded by pericentriolar material (PCM), generating a radial
organization of microtubules (Sanchez and Feldman, 2017). IS
formation is associated with an initial increase in cortical F-actin
at the IS (Billadeau et al., 2007), followed by a decrease in F-actin
density at the central region of the IS that includes the cSMAC
and contains the secretory domain (Griffiths et al., 2010; Ritter
et al., 2015). Subsequently, F-actin recovery at the cSMAC leads to
conclusion of lytic granule secretion in cytotoxic T lymphocytes
(CTL) (Ritter et al., 2017). These reversible actin cytoskeleton
reorganization processes occur during lytic granule secretion in
CTL and cytokine-containing vesicle secretion in T-helper (Th)
lymphocytes (Na et al., 2015; Ritter et al., 2017).

IMMUNE SYNAPSE MORPHOLOGY
FORMED BY DIFFERENT IMMUNE CELLS

The IS has long been characterized by the general concentric
architecture that adopts during its maturation (Le Floc’h and
Huse, 2015). The bullseye actin cytoskeleton architecture of the
IS and the F-actin reorganization process are common to CD4+

Th lymphocytes, CD8+ CTL, B lymphocytes, and natural killer
(NK) cells forming IS (Rak et al., 2011; Lagrue et al., 2013; Le
Floc’h and Huse, 2015). However, for space reasons in this review
we deal only with IS made by T and B lymphocytes. The bullseye

Abbreviations: 3D-SIM, 3D structured illumination microscopy; ADAP, adhesion

and degranulation-adaptor protein; APC, antigen-presenting cell; BCR, B-cell

receptor for antigen; C, center of mass; cSMAC, central supramolecular

activation cluster; CTL, cytotoxic T lymphocytes; DAG, diacylglycerol; DGKα,

diacylglycerol kinase α; DGKζ, diacylglycerol kinase ζ; Dia1, Diaphanous-1;

dSMAC, distal supramolecular activation cluster; F-actin, filamentous actin;

FMNL1, formin-like 1; ILPs; invadosome-like protrusions; IS, immune synapse;

ITAM, immunoreceptor tyrosine-based motifs; LAT, linker activation of T

cells; LFA-1, lymphocyte function-associated antigen 1; LLSM, lattice light

sheet microscopy; MHC, major histocompatibility complex; MVB, multivesicular

bodies; MTOC, microtubule-organizing center; NK, natural killer; NPFs, actin

nucleation promoting factors; PCM, pericentriolar material; PKC, protein kinase

C; PKCθ, protein kinase C θ isoform; PKD, protein kinase D; PLC, phospholipase

C; PKCδ, protein kinase C δ isoform; pSMAC, peripheral supramolecular

activation cluster; ROI, region of interest; SEE, staphylococcal enterotoxin E;

SIM, structured illumination microscopy; SL, secretory lysosomes; SLP76, SH2

domain-containing leukocyte protein of 76 kDa; SMAC, supramolecular activation

cluster; STED, stimulated emission depletion; TCR, T-cell receptor for antigen;

Th, T-helper; TIRFM, total internal reflection fluorescence microscopy; WASH;

Wiskott-Aldrich syndrome protein and SCAR homolog; WASp, Wiskott-Aldrich

syndrome protein; ZAP70, Syk-kinase zeta chain-associated protein of 70 kDa.

pattern of a mature synapse includes redistribution of F-actin and
surface receptors in concentric regions. In this context, radially
symmetric spreading of the T lymphocyte over the surface of the
APC is conducted by protrusive actin polymerization (Le Floc’h
and Huse, 2015; de la Roche et al., 2016), leading to TCR-pMHC
interactions at the tip of these actin-rich interdigitations (de la
Roche et al., 2016). This is accompanied by the formation of TCR
microclusters in the synaptic membrane that, as TCR signaling
is initiated, coalesce in the center of the synapse to form the
cSMAC (Le Floc’h andHuse, 2015; de la Roche et al., 2016). Thus,
as the IS develops, retrograde (centripetal) F-actin flow drives
TCR microclusters into the cSMAC, while F-actin intensively
reorganizes into the peripheral ring that will become the dSMAC
(Le Floc’h and Huse, 2015). F-actin flow within the dSMAC
promotes adhesion by clustering integrins such as LFA-1 in the
pSMAC (Comrie et al., 2015), that eventually will interact with
ICAM-1 located on the APC (Figure 1B), reinforcing adhesion
between these cells and amplifying TCR signaling (Le Floc’h and
Huse, 2015; de la Roche et al., 2016). Remarkably, all the above
mentioned immune cells share the capability to directionally
secrete stimulatory cytokines, proteases, cytotoxic factors, or
extracellular vesicles (including exosomes) at the IS (Calvo and
Izquierdo, 2020). This F-actin structure for polarized secretion is
thought to enhance the specificity and efficiency of the triggered
biological responses (Le Floc’h and Huse, 2015). Although the
IS formed by all these immune cells share this general F-actin
pattern, important differences in terms of stability, duration but
also synaptic F-actin structure exist among CD4+ Th, CD8+

CTL, B lymphocytes, and NK cells (Murugesan et al., 2016;
Carisey et al., 2018). For instance, whereas CD4+ cells form stable
IS (fromminutes up to several hours), that are necessary for both
directional and continuous secretion of stimulatory cytokines
(Ueda et al., 2011), IS made by primed CTL trigger the rapid
polarization (from seconds to very few minutes) of their lytic
granules or secretory lysosomes (SL) toward the IS (Griffiths
et al., 2010; Huse, 2012). CTL form very transient IS, lasting
only few minutes, until target cells are eliminated. Optimal CTL
function is thought to require rapid and transient contacts in
order to consecutively deliver as many successive lethal hits as
possible to several target cells (Calvo and Izquierdo, 2020). Apart
from these kinetic and stability differences, the canonical bullseye
actin pattern was described in CD4+ T lymphocytes using lipid
bilayers or upon interaction with B cells. However, a variation of
this canonical pattern was observed when CD4+ T lymphocytes
were challenged with dendritic cells as APC, resulting in a
multifocal cell to cell IS (Brossard et al., 2005; Kumari et al.,
2019). Thus, 3D spatial differences between the IS made by
the same immune cell type exist. Moreover, under comparable
stimulation conditions, differences in actin cytoskeleton spatial
organization and dynamics among immortalized human and
primary mouse and human T lymphocytes exist (Colin-York
et al., 2019; Kumari et al., 2019), and there are differences in
the organization and molecular mechanisms underlying these
F-actin networks (Kumari et al., 2019) (Table 1).

Although IS architecture and dynamics are major
determinants of antigen recognition and signaling by TCR
and BCR, the molecular components that contribute to the
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FIGURE 1 | (A) Cortical actin cytoskeleton reorganization and MTOC polarization. After the initial scanning contact of TCR with pMHC on the APC, both naive and

effector T lymphocytes form mature IS with antigen-presenting cells (APC). Th IS lasts many hours during which de novo cytokine (i.e., IL-2, IFN-γ) production and

secretion occur, that require continuous TCR signaling. Primed effector CTL establish more transient, mature IS after scanning the target cells (i.e., a virus-infected

cell), and secrete lytic granules within a few minutes. Secretory vesicles (lytic granules in CTL and cytokine-containing vesicles in Th cells) are rapidly transported

(several minutes for Th cells and very few minutes or seconds for effector CTL) toward the MTOC (in the minus “–” direction) and, almost simultaneously, the

MTOC polarizes toward the cSMAC of the IS, a F-actin poor area that constitutes a secretory domain. MTOC translocation to the IS appears to be dependent on

PKCθ-controlled dynein anchored to ADAP at the pSMAC, that pulls MTOC in the minus direction. In both types of IS, the initial F-actin reorganization in the cell-to-cell

contact area, followed by a decrease in F-actin at the cSMAC and an accumulation of F-actin at the dSMAC appears to be involved in vesicle secretion. (B) Actin

cytoskeleton reorganization events occurring at the CD4+ Jurkat T lymphocyte IS model: PKCδ and MTOC/MVB polarization: both FMNL1β and paxillin are

phosphorylated by PKCδ. Before forming the IS, both FMNL1β (in the cytosol) and paxillin (located at the centrosome), proteins that regulate the assembly and

disassembly of F-actin, are dephosphorylated, which keeps them inactive. Left: in an early IS there is an accumulation of F-actin in the central region of the IS,

while the centrosome is surrounded by a dense F-actin network that keeps it retained near the nucleus and away from the IS. Right: after PKCδ is activated by TCR

stimulation at the IS, FMNL1β is phosphorylated in the C-terminal, DAD autoinhibitory domain, and is located in the IS (P-FMNL1β). In addition, paxillin is

phosphorylated in Threonine 538 and remains located in the centrosome (P-paxillin). These events lead to F-actin reduction at the central region of the IS that

corresponds to cSMAC, F-actin accumulation into the dSMAC and the depolymerization of F-actin surrounding the centrosome. All these processes, most probably

acting in a coordinated manner, may facilitate the movement of the centrosome toward the IS and the convergence of MVB toward the F-actin depleted area in the

cSMAC, which facilitates MVB fusion at the cSMAC and the subsequent secretion of exosomes (Calvo and Izquierdo, 2020) in the synaptic cleft toward the APC.

For more details please refer to Herranz et al. (2019) and Bello-Gamboa et al. (2020).

distinct F-actin patterns observed in IS formed by different
immune cells remain largely unknown (Kumari et al.,
2019). Indeed, this knowledge is required to understand
how different immune cells acquire and develop their
functional specialization. It has been speculated that the
actin cytoskeleton can arbitrate a force balance across the IS

interface to regulate the dimensions and lifetimes of diverse
subsynaptic zones that, in turn, may alter different T cell
activation steps (Kumari et al., 2019). Remarkably, several
F-actin regulatory proteins are different for each synapse
subtype (summarized in Table 1), thus these differences may
underlie the spatiotemporal differences in F-actin architecture
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TABLE 1 | F-actin reorganization and polarized secretion events in T and B lymphocyte IS and involved proteins.

T lymphocyte IS B lymphocyte IS

(*) CTL/APC CD4+ T cell /APC B/APC B /CD4+ T cell

F-actin reorganization at

the IS

+

CDC42/WASP/ARP2/3(Billadeau

et al., 2007; Sinai et al., 2010)

TAGNL2 (Na et al., 2015)

+

CDC42/WASP/ARP2/3 (Chemin

et al., 2012)

dynamin 2 (Gomez et al., 2005)

CDC42 (Stowers et al., 1995)

FMNL1, Dia1 (Murugesan et al.,

2016)

HS1 (Gomez et al., 2006)

TAGNL2 (Na et al., 2015)

+

CDC42/WASP/ARP2/3

Ezrin, Moesin(Kuokkanen et al.,

2015)

+

TAGNL2(Na et al., 2016)

F-actin reduction at

cSMAC and

centrosome polarization

+

(Ritter et al., 2015, 2017)

CDC42/IQGAP1 (Stowers et al.,

1995; Stinchcombe et al., 2006)

+

PKCδ, FMNL1β(Herranz et al., 2019;

Bello-Gamboa et al., 2020)

Dynein(Combs et al., 2006; Liu et al.,

2013; Sanchez et al., 2019)

+

dynein, proteasome(Schnyder et al.,

2011; Ibanez-Vega et al., 2019)

Unknown

F-actin reduction at

centrosome and

centrosome polarization

Unknown +

PKCδ, paxillin

(Bello-Gamboa et al., 2020)

WASH, ARP2/3(Farina et al., 2016)

+

ARP2/3(Obino et al., 2016)

Proteasome(Ibanez-Vega et al.,

2019)

Unknown

Lytic granules and/or

Exosome secretion

+

(Peters et al., 1989)

+

(Alonso et al., 2011)

+

(Yuseff et al., 2011; Kuokkanen

et al., 2015)

+

(Muntasell et al., 2007)

Centrosome polarization +

(Stinchcombe et al., 2006)

+

(Ueda et al., 2011)

+

(Yuseff et al., 2011)

+

(Duchez et al., 2011)

Mechanisms of

centrosome polarization

Paxillin (Herreros et al., 2000;

Robertson and Ostergaard,

2011)

FMNL1, Dia1 (Gomez et al.,

2007)

CDC42/IQGAP1 (Stowers et al.,

1995; Stinchcombe et al., 2006)

FMNL1, Dia1 (Gomez et al., 2007)

PKCθ, dynein (Quann et al., 2009)

CDC42 (Stowers et al., 1995)

PKCδ, paxillin(Herranz et al., 2019;

Bello-Gamboa et al., 2020)

ARP2/3 (Obino et al., 2016)

Proteasome(Ibanez-Vega et al.,

2019)

Unknown

DAG/DGK-control of

centrosome polarization.

+

(Quann et al., 2009)

+

DAG, DGKα(Quann et al., 2009;

Alonso et al., 2011)

DAG, dynein(Liu et al., 2013)

DAG/dynein/PKC (Sanchez et al.,

2019)

+

DAG, DGKζ (Merino-Cortés et al.,

2020)

Unknown

PKC/PKD control of

secretory granules/MVB

traffic

+

PKCδ (Ma et al., 2007)

PKCθ(Monks et al., 1998; Quann

et al., 2011)

+

PKCδ (Herranz et al., 2019)

PKD1/2 (Mazzeo et al., 2016)

+

PKCζ (Siemasko et al., 1998; Yuseff

et al., 2011)

PKD1/3 (Mazzeo et al., 2016)

Unknown

(*) The quoted biological response in the first column corresponds to the response of the effector, first cell type for each indicated cell-cell synapse.

existing among different IS. It is out of the scope of this
review to detail these differences, please refer to some excellent
reviews on this subject, that include also data on F-actin
reorganization in the IS made by NK cells (Billadeau et al.,
2007; Lagrue et al., 2013; Hammer et al., 2018; Li et al., 2018;
Blumenthal and Burkhardt, 2020).

SIGNALS REGULATING CORTICAL ACTIN
REORGANIZATION IN THE IMMUNE
SYNAPSE

cSMAC, pSMAC, and dSMAC formation characterizes a mature
IS and is the basis of a signaling platform that integrates signals

and coordinates molecular interactions leading to both exocytic
and endocytic processes, necessary for an appropriate antigen-
specific immune response (Griffiths et al., 2010; Xie et al., 2013).
Actin reorganization plays a central role in IS maintenance,
as well as in antigen receptor-derived signaling (Billadeau
et al., 2007). In brief, TCR and BCR stimulation, together
with interaction of adhesion and co-stimulatory molecules
at the IS, trigger early second messengers such as calcium
and diacyglycerol (DAG) (Izquierdo and Cantrell, 1992). DAG
regulates several protein kinase C (PKC) family members
(including novel PKC members, PKCδ and PKCθ), protein
kinase D (PKD1), and Ras/ERK2 pathway (Spitaler et al., 2006),
leading to the activation of the two major actin regulatory
pathways: the formin (FMNL1 and Dia) pathway involved in
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F-actin nucleation, and the CDC42/WASP/ARP2/3 pathway
involved in actin filament branching (Kühn and Geyer, 2014;
Kumari et al., 2014). In the IS made by T lymphocytes, TCR
engagement triggers multiple signaling pathways that regulate
actin organization and rearrangements at the different F-actin
networks inside and outside the IS (Billadeau et al., 2007; Kumari
et al., 2014; Le Floc’h and Huse, 2015; Hammer et al., 2018).
Thus, actin polymerization is a result of complex molecular
interactions, and a diverse and complex set of TCR-downstream
molecular pathways contributes to actin polymerization. Once
the T cell is bound to the pMHC complex on the APC,
the immunoreceptor tyrosine-based motifs (ITAM) in the
cytosolic tail of the TCR-associated CD3 complex undergo
phosphorylation, which then serve as docking sites for the
Syk-kinase zeta chain-associated protein of 70 kDa (ZAP70)
(Kumari et al., 2014). CD3-recruited ZAP70 then leads to
phosphorylation and activation of two key adaptormolecules that
associate with a variety of molecules in TCR-associated signaling
complexes. First, ZAP70 phosphorylates linker activation of
T cells (LAT), which in turn associates via Gads with the
SH2 domain-containing leukocyte protein of 76 kDa (SLP76).
SLP76 recruitment to phosphorylated LAT allows subsequent
SLP76 phosphorylation by ZAP70. Phosphorylated LAT also
directly interacts with PLCγ1, a major regulator of Ca2+
influx in response to TCR triggering. PLCγ is recruited via
LAT interaction to the synaptic membrane and generates DAG
at the IS. SLP76 acts as a scaffold for a multitude of actin
effectors including Rho GTPases nucleotide exchange factor,
Vav1, adaptor molecule Nck, and actin nucleation promoting
factors (NPFs). Alternatively, Rho GTPases (CDC42, Rho, Rac)
can also bind and activate actin NPFs (ARP2/3, WAVE), which
in turn activate actin nucleation factors (ARP2/3, formins),
ultimately leading to F-actin formation. In addition, PI3K
activated by LAT/SLP76 activation produces PIP3 at the plasma
membrane that, by recruiting DOCK2 to the IS, activates Rac
and, ultimately, WAVE/ARP2/3 (Le Floc’h and Huse, 2015).
An intriguing feature of actin cytoskeleton regulation at the IS
is the variety of both actin NPFs and actin nucleation factors
involved in actin cytoskeleton assembly. This could be related to
the complexity of the four F-actin networks contributing to the
architecture of the IS described below (Hammer et al., 2018).

More recently, by using super-resolution imaging techniques,
such as total internal fluorescence microscopy combined with
3D structured-illumination microscopy (TIRFM/3D-SIM) on
functionalized stimulatory surfaces, it has been shown that
following initial TCR-antigen interaction, at least four discrete
F-actin networks form and maintain the shape and function
of this canonical IS (Hammer et al., 2018; Blumenthal and
Burkhardt, 2020): branched F-actin network at the dSMAC
controlled by WAVE/ARP2/3 activity; actomyosin arc network
at the pSMAC controlled by formin Dia1 and phosphorylated
myosin; hypodense F-actin at the cSMAC controlled by ARP2/3
and probably formins such as FMNL1/Dia1; F-actin foci at the
dSMAC and pSMAC controlled by WASP and HS1 (Hammer
et al., 2018; Blumenthal and Burkhardt, 2020). Therefore, in
the same cell type distinct regulators control discrete F-actin
networks. The four F-actin networks at the T lymphocyte IS

are related to the three distinct functional and signaling areas
at the IS (SMACs). Thus, the outer ring of the IS, the dSMAC,
corresponds to the lamellipodium region of a migrating cell
and forms quickly upon TCR stimulation and contains highly-
branched actin filaments generated by the ARP2/3 activator
WAVE2. Radially arranged within the dSMAC are bundles of
linear actin filaments, generated by formin (Dia) activity near
the edge of the spreading lymphocyte, that bend as they move
inward the dSMAC, forming actomyosin arcs spanning the
pSMAC. Therefore, these actomyosin arcs define the pSMAC,
which is enriched in integrins. Actomyosin network disassembly
at the pSMAC leads to a F-actin poor region in the center
of the IS known as the cSMAC. cSMAC is associated with
receptor internalization and provides a site for exocytic vesicle
secretion (Figure 1). Finally, the fourth actin network consists of
dense actin foci related to protrusive structures rich in F-actin
called invadosome-like protrusions (ILPs) (Hammer et al., 2018;
Blumenthal and Burkhardt, 2020). Recent evidences support
the view that the described F-actin network complexity is, at
least in part, based on the action of different F-actin regulatory
pathways. For instance, branched F-actin network at the dSMAC
is controlledby PI3K-PIP3-DOCK2-WAVE/ARP2/3, whereas F-
actin foci at the cSMAC is regulated by ZAP70-LAT/SLP76-VAV-
CDC42-WASP-ARP2/3 (Hammer et al., 2018).

SYNAPTIC ACTIN CYTOSKELETON
CONTROL OF CENTROSOME AND
SECRETION VESICLES POLARIZATION:
RELEASE OF EXTRACELLULAR VESICLES
AND LYTIC GRANULES

Regarding the mechanisms controlling centrosome polarization
and the role of cortical actin reorganization in MTOC
polarization, DAG production at the IS has been shown to be
important for centrosome polarization in both CTL and CD4+

T lymphocytes forming IS (Quann et al., 2009). With respect to
potential DAG effectors, DAG-activated PKCθ at the IS triggers
the adhesion and degranulation-adaptor protein (ADAP)/dynein
complex localization at the F-actin/integrin rich, pSMAC ring
(Figure 1A). Since dynein is a minus end-directed microtubule
motor, after being recruited to the IS it can bindmicrotubules and
reorient the centrosome by minus end-directed motion (Combs
et al., 2006; Quann et al., 2009, 2011; Liu et al., 2013) (Figure 1A).
At the early stages of IS formation F-actin accumulates at
the lymphocyte-APC contact area to generate filopodia and
lamellipodia, that produce dynamic changes between extension
and contraction in the lymphocyte over the APC surface (Le
Floc’h and Huse, 2015). Subsequently, once IS growth has
stabilized, cortical F-actin accumulates into the dSMAC, and
F-actin reduction at the cSMAC appears to facilitate secretion
toward the APC by focusing secretion vesicles on the IS
(Stinchcombe et al., 2006), creating regions within the canonical
bullseye IS structure (Figure 1A). Thus, F-actin reduction at the
cSMAC does not simply allow secretion, since it apparently plays
an active role in centrosome movement to the IS (Stinchcombe
et al., 2006; Ritter et al., 2015; Sanchez et al., 2019). It is widely
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thought that centrosome reorientation promotes cytotoxic and
Th lymphocyte specificity by guiding secretory vesicles to the IS
for directional secretion (Stinchcombe et al., 2006; Huse et al.,
2008). However, in the context of secretory traffic at the IS, not
always centrosome polarization is necessary for either secretory
vesicle transport or secretion at the IS in CD4+ T lymphocytes
(Chemin et al., 2012) or lytic granule polarization and secretion
in CTLs (Ma et al., 2007; Bertrand et al., 2013; Nath et al.,
2016). For instance, it has been shown that an early and rapid
secretion phase of lytic granules constitutively positioned nearby
the IS precedes centrosome polarization at the CTL-target cell
IS (Bertrand et al., 2013). In addition, in PKCδ-KO mouse CTL,
lytic granules did not polarize to the IS and, subsequently, CTL
activity and target cell death were inhibited (Ma et al., 2007).
However, centrosome polarization toward the IS was not affected
by the absence of PKCδ (Ma et al., 2007). In contrast, in the
synapses made by CD4+ Jurkat T lymphocytes, multivesicular
bodies (MVB, a type of secretory vesicles involved in exosome
secretion by CD4+ Jurkat and primary CD8+ and CD4+ T
lymphocytes (Alonso et al., 2005, 2011)) and centrosome always
co-migrated toward the IS, and MVB and centrosome did not
polarize in PKCδ-interfered CD4+ Jurkat T lymphocytes and the
centrosome/MTOC center of mass (MTOCC) was coincident or
very proximal to the MVB center of mass (MVBC) regardless of
polarization (Herranz et al., 2019; Bello-Gamboa et al., 2020). In
summary, all these results broaden current views of CTL biology
by revealing an extremely rapid lytic granule secretion step
and by showing that centrosome polarization is dispensable for
efficient lytic granule secretion. All these examples of segregation
between centrosome movement and lytic granule polarization
point out that centrosome repositioning, secretory vesicles traffic,
and F-actin architecture and dynamics at several locations should
be analyzed at the single cell level, to obtain amore complete view
of the secretion process.

In addition, it has been recently described that centriole-
deficient CTL exhibited reduced cytotoxicity due to an alteration
in secretory granule biogenesis, although this deficient response
was not due to impaired polarized secretion, since lytic granule
traffic and secretion toward the IS remained unaffected (Tamzalit
et al., 2020). Instead, it has been proposed that the defect was in
part due to impaired F-actin reorganization at the IS produced
by centriole deletion (Tamzalit et al., 2020), which points out an
unexpected role of the intact centrosome in supporting synaptic
F-actin architecture and dynamics. Interestingly, CTL lacking
centriole formed synapses that lacked an obvious F-actin cleared
region at the cSMAC, a similar phenotype to that found in PKCδ-
interfered CD4+ Jurkat T lymphocytes (Herranz et al., 2019;
Bello-Gamboa et al., 2020). Polarized secretion is known to occur
in IS domains that have been cleared of F-actin and are, thus,
accessible to secretion vesicles (Griffiths et al., 2010; Huse, 2012;
Ritter et al., 2015; Herranz et al., 2019).

More recently, it has been shown that PKCδ-dependent
F-actin clearing at the cSMAC and PKCδ-dependent
phosphorylation of formin FMNL1β at the IS, are involved
in centrosome/MVB polarization leading to exosome secretion
in CD4+ Jurkat T lymphocytes forming IS (Herranz et al., 2019;
Bello-Gamboa et al., 2020). The formins Dia and FMNL1 are

constitutively inactive because they undergo intramolecular,
autoinhibitory folding in the cytoplasm, which blocks their ability
to nucleate and elongate actin filaments (Hammer et al., 2018).
In this context, a different formin, FMNL2, is phosphorylated
by PKCα and PKCδ at S1072, reversing its autoinhibition by
the C-terminal, DAD auto-inhibitory domain and enhancing
F-actin assembly, β1-integrin endocytosis, and invasive motility
(Wang et al., 2015). In the FMNL1 isoform FMNL1β, S1086 is
surrounded by a sequence displaying high homology to the one
surrounding S1072 of FMNL2 (Wang et al., 2015; Bello-Gamboa
et al., 2020). Our results support that IS-induced, PKCδ-
dependent phosphorylation in FMNL1β C-terminal region
containing the auto-inhibitory domain (possibly at S1086)
activates FMNL1β and mediates centrosome polarization. Thus,
PKCδ appears to regulate F-actin reorganization, most probably,
by controlling FMNL1β activation through phosphorylation
at S1086 (Bello-Gamboa et al., 2020), as certain PKC isoforms
activate FMNL2 activity (Wang et al., 2015).

CENTROSOMAL F-ACTIN AND
CENTROSOME POLARIZATION

The centrosome nucleates and anchors microtubules and is
thus considered to be the principal MTOC. In addition, few
years ago it was discovered that the centrosome organizes a
local F-actin network and should be considered as a F-actin
organizing center (Farina et al., 2016). Isolated centrosomes from
Jurkat T lymphocytes efficiently nucleate actin filaments, and
the centrosome is associated in vivo with an actin network, and
these results were extended to other cell types (Farina et al.,
2016; Plessner et al., 2019). Moreover, actin filament nucleation at
the centrosome is mediated by the nucleation-promoting factor
Wiskott-Aldrich syndrome protein (WASP) and SCAR homolog
(WASH), in combination with the ARP2/3 complex (Farina et al.,
2016). Pericentriolar material seems to modulate F-actin network
by regulating WASH/ARP2/3 recruitment to the centrosome
(Farina et al., 2016).

Centrosomal F-actin and B Lymphocytes
Centrosome-associated ARP2/3 locally nucleates F-actin, which
is needed for centrosome tethering to the nucleus (Obino
et al., 2016). Upon B lymphocyte activation with BCR-
ligand-coated beads as a synapse model, ARP2/3 is partially
depleted from the centrosome, as a result of its recruitment
to the IS, where it regulates cortical F-actin. This leads to
a reduction in F-actin nucleation at the centrosome and
thereby allows its detachment from the nucleus and polarization
to the IS (Obino et al., 2016). Thus, centrosomal F-actin
depletion appears to be crucial allowing centrosome polarization
toward the IS during BCR stimulation in B lymphocytes
(Obino et al., 2016). Thus, both in vitro and living-cell
experiments support this new view of centrosome as a genuine
and plastic F-actin-organizing center. However, the precise
function of the F-actin network at the centrosome is not
well understood. In the same B lymphocyte model, F-actin
depletion around the centrosome, F-actin reorganization at
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the IS, and centrosome polarization depend on proteasome
activity (Ibanez-Vega et al., 2019). By inhibiting proteasome
activity, an inhibition of F-actin dismantling around centrosome
correlated with the inhibition of centrosome polarization toward
the B lymphocyte synapse (Ibanez-Vega et al., 2019). Thus, it
appears that at least two mechanisms controlling centrosomal
area F-actin co-exist in B lymphocytes, and both regulate
centrosome polarization.

Centrosomal F-actin and T Lymphocytes
We have shown that F-actin clearing at the cSMAC and
centrosomal area F-actin depletion, respectively, mediated by
PKCδ-dependent phosphorylation of FMNL1β or paxillin, are
associated with centrosome/MVB polarization and exosome
secretion in CD4+ Jurkat T lymphocytes forming IS (Herranz
et al., 2019; Bello-Gamboa et al., 2020) (Figure 1B). Although
PKCδ appeared to regulate centrosomal area F-actin, FMNL1β
did not appear to participate in this regulation (Bello-Gamboa
et al., 2020). A possible PKCδ downstream effector involved
in centrosomal area F-actin reorganization could be the actin
regulatory protein paxillin, whose phosphorylation at threonine
538 (T538) by PKCδ leads to actin cytoskeleton depolymerization
and regulates integrin-mediated adhesion and migration of
B lymphoid cells (Romanova et al., 2010). Moreover, the
centrosome cannot polarize to the IS in paxillin-interfered
CTL (Robertson and Ostergaard, 2011). In addition, paxillin
phosphorylation is required for CTL lytic granule secretion
(Robertson et al., 2005), and both paxillin (Herreros et al.,
2000) and PKCδ (Fanning et al., 2005) are localized at the
centrosome. Thus, in CD4+ Jurkat T lymphocytes forming IS,
we have found that PKCδ-dependent paxillin phosphorylation
may govern a F-actin reorganization network different from
F-actin at the IS, such as centrosomal F-actin, that may also
contribute to the diminished centrosome polarization observed
in PKCδ-interfered Jurkat T lymphocyte clones (Figure 1B). This
PKCδ-dependent, paxillin-regulated mechanism for centrosomal
area F-actin reorganization appears to co-exist in CD4+ Jurkat
T lymphocytes with the PKCδ-dependent, FMNL1β-regulated
mechanism for cortical F-actin reorganization explained above.
More research is necessary (i.e., experiments involving phospho-
deficient and phospho-mimetic mutants of paxillin at T538
and/or FMNL1β at S1086) to establish the relative contribution
of these mechanisms to the polarization processes.

In addition, impaired F-actin reorganization at the IS
was produced by centriole deletion in CTL (Tamzalit et al.,
2020), which points out an unexpected role for the intact
centrosome and/or centrosomal F-actin in supporting synaptic
F-actin architecture and dynamics. Moreover, lower centrosomal
actin filament densities enhanced microtubule growth at the
centrosome (Inoue et al., 2019), that decisively affected cell
adhesion and spreading. These results, together with the fact
that ARP2/3 is partially depleted from the centrosome as a
result of its recruitment to the IS (Farina et al., 2016), suggest
an unsuspected direct or indirect interaction (i.e., competition
for F-actin regulators such as ARP2/3), between cortical and
centrosomal area F-actin networks, that in turn may regulate
tubulin cytoskeleton at different subcellular locations. The

distinct F-actin networks may be functionally interconnected
by coordinated activation of different actin assembly factors
(Bello-Gamboa et al., 2020) (Figure 1B), competition for the
same regulatory factor (Obino et al., 2016) and/or actin
monomer availability (Suarez and Kovar, 2016). Pericentriolar
material seemed to modulate the centrosomal F-actin network
by regulating ARP2/3 andWASH recruitment to the centrosome
(Farina et al., 2016). Since F-actin reorganization at the remaining
proteinaceous pericentriolar material (PCM) area, containing
pericentrin and γ-tubulin, was not analyzed in centriole-deficient
CTL (Tamzalit et al., 2020), it will be interesting to study
pericentriolar area F-actin in detail in these cells. In addition,
considering that PKCδ is located in the centrosome (Fanning
et al., 2005; Ma et al., 2008a), but also in lytic granules in CTL (Ma
et al., 2008b), it is conceivable that PKCδ, directly or indirectly,
may coordinately regulate both centrosomal area and synaptic
F-actin networks.

CURRENT RESEARCH GAPS

Lipid Bilayer Synapse Model
Most of what we know about the formation, organization, and
dynamics of the four described F-actin and actomyosin networks
at the IS results from high spatio-temporal resolution image
analysis of T cells engaged with activating surfaces such as coated
glass and planar lipid bilayers, which position these networks
in the ideal imaging plane, avoiding the Z spatial dimension
(Hammer et al., 2018). This approach is certainly somewhat
reductionist since it is not possible to guarantee that all the
molecular interactions occurring in a real, cell to cell synapse
will also occur upon interaction with the coated glass or the lipid
bilayer (Fooksman et al., 2010). In fact, supported lipid bilayers
do not completely imitate the complex and irregular surface
of an APC or target cell, possibly causing non-physiological
interactions in the IS (Bertolet and Liu, 2016). Thus, although
studies using supported planar bilayers are powerful in terms of
resolution and sensitivity, it is important to test the predictions
of these model systems using in vitro or in vivo cell–cell systems
in order to extend the results to a more physiologic scenario
(Dustin, 2009).

Actin Cytoskeleton in Primary vs.
Immortalized T Cells and Different Synapse
Subtypes
Striking differences in F-actin architecture and dynamics at
the IS have been found between human primary CD4+ and
immortalized CD4+ T lymphocytes, such as Jurkat cells, under
comparable activation conditions on lipid bilayers (Colin-York
et al., 2019; Kumari et al., 2019). In contrast, no major differences
were found between the synaptic architecture of Jurkat cells
and mouse CD8+ primary CTLs (Murugesan et al., 2016)
on stimulatory lipid bilayers. F-actin network dynamics and
mechanics are likely to be different in these cells, and influence
how T cells employ mechanical cues in different ways during
antigen recognition (Kumari et al., 2019). Thus, caution should
be taken when generalizing the cellular mechanisms underlying
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the variety of IS patterns and motility behaviors to specific T
cell subtypes and across different species (Kumari et al., 2019).
It is conceivable that these differences also exist in different
real cell-cell synapses, although they have not been observed yet
(Colin-York et al., 2019; Kumari et al., 2019). In addition, while
PKCδ regulates centrosomal area F-actin upon IS formation by
CD4+ Jurkat cells (Bello-Gamboa et al., 2020), more research
is necessary to extend these results to both CD8+ and CD4+

primary T lymphocytes forming IS. While TIRFM combined
with super-resolution 3D-SIM provided probably the best live-
cell images of synapses on lipid bilayer models (Murugesan et al.,
2016; Colin-York et al., 2019), the best live-cell images of F-actin
architecture and dynamics within T cells engaged with an APC
were obtained using high temporal resolution, lattice light sheet
microscopy (LLSM) in a diffraction-limited mode (Ritter et al.,
2015; Fritzsche et al., 2017). An option to improve the image
spatial resolution is taking advantage of the better XY resolution
of microscopes with respect to the axial (Z) resolution (Calvo
and Izquierdo, 2018), by using LLSM combined with 3D-SIM.
Other options are placing the T lymphocyte on top of an APC
by using “pairing and coupling” microfluidic devices (Jang et al.,
2015), or on a very flat APC in which the IS is located in the
XY optical plane (Wang et al., 2018). These last two options will
indeed provide real cell-cell synapse models. While LLSM images
in a diffraction-limited mode (Ritter et al., 2015; Fritzsche et al.,
2017) showed with remarkable definition the branched F-actin
network dynamics in the dSMAC, including its contribution to a
flow of F-actin up the sides of the APC-bound T cell, none of the
four F-actin networks observed by TIRFM combined with 3D-
SIM in lipid bilayers were visible using LLSM (Hammer et al.,
2018). These latter F-actin networks, all of which aremuch fainter
F-actin structures than those observed in the dSMAC (Hammer
et al., 2018), will probably become discernible in the future by
using one or more of the cell setups and super-resolution imaging
methods described above.

Centrosomal F-actin Network
Characterization and Measurements
Although in the original publication the authors defined the
existence of a “centrosomal” F-actin network, it should be
underlined this is an operative definition that does not specify
the extension and/or the limits of such a network (Farina et al.,
2016). In fact, the authors arbitrarily defined a 2 µm-diameter
region of interest (ROI) including the centrosome for F-actin
fluorescence intensity measurements. Subsequent publications
have incorporated for centrosomal F-actin measurements the
use of a 1.6–2µm diameter, centrosome-centered ROI (Obino
et al., 2016; Ibanez-Vega et al., 2019; Bello-Gamboa et al.,
2020). However, a more appropriate term could be “centrosomal
area” F-actin, to remark that measures were referred to an area
centered at the centrosome and surely larger than the centrosome
itself. Indeed, this is a more accurate term that includes the
complexity of organelle interconnection. This is an important
issue for centrosomal area F-actin evaluation, since the imaging
techniques used in these publications (confocal microscopy,
TIRFM, epifluorescence microscopy plus deconvolution) do not

allow enough resolution to sustain that F-actin assembles at
the pericentrosomal matrix instead of other membrane-bound
organelles included in this area (Obino et al., 2016; Bello-
Gamboa et al., 2019; Ibanez-Vega et al., 2019). Since interphase
centrosomes are smaller than mitotic centrosomes (Decker et al.,
2011) and cells may be at any cell cycle phase, it is difficult
to establish a fixed centrosomal diameter. If a 2 µm-diameter
centrosomal area ROI is analyzed, it cannot be ruled out that
other F-actin-regulating organelles are included in this area,
such as the Golgi, endosomes, or MVB (Colon-Franco et al.,
2011; Bello-Gamboa et al., 2020). MVB are also involved in
actin polymerization at the IS during intracellular reorganization
(Calabia-Linares et al., 2011). Electron microscopy images show
that vesicles and endosomes are located nearby the centrosomes
(Ueda et al., 2011). The use of a pericentriolar marker, together
with new imaging super-resolution techniques, would facilitate
the study of the centrosomal area and the specific localization and
dynamics of centrosomal F-actin. Indeed, in the future, emerging
and promising techniques, such as LLSM (Ritter et al., 2015;
Fritzsche et al., 2017), combined with non-diffraction limited,
super-resolution microscopy (Fritzsche et al., 2017; Calvo and
Izquierdo, 2018), may help to a better definition of centrosomal
area F-actin structure and function, as it occurred for the four
recently defined, synaptic F-actin networks that contribute to
maintain the shape and function of the canonical IS (Section
Signals Regulating Cortical Actin Reorganization In The Immune
Synapse). In this context, TIRFM or TIRFM combined with
3D-SIM are exceptionally useful imaging techniques to study
both F-actin cytoskeleton and secretion vesicle degranulation
on the XY plane of coated glass or lipid bilayer (Rak et al.,
2011; Murugesan et al., 2016; Sinha et al., 2016; Carisey et al.,
2018), due to its high signal-to-noise ratio and improved spatial
resolution below the diffraction limit (Calvo and Izquierdo,
2018). However, this procedure is somewhat limited since only
an illuminated homogeneous surface can be used to stimulate
cells and TIRFM would dismiss subcellular structures (i.e.,
centrosome) or molecules located beyond a minor Z distance
from the stimulatory surface (>200–300 nm). Thus, centrosome
movement in the Z dimension from distal subcellular locations
cannot be imaged, although its last stages approaching the
IS can be properly imaged. One possibility to circumvent
this problem is to limit centrosome movement in the Z
dimension by using the cell setups explained above. Indeed,
other techniques as the already mentioned diffraction-limited
LLSM, combined with 2D or 3D stimulated emission depletion
(STED) super-resolution microscopy (Fritzsche et al., 2017),
may provide in the future new tools to address the study
of centrosomal area F-actin organization and dynamics at the
nanoscale level.

POTENTIAL FUTURE DEVELOPMENTS IN
THE FIELD. IMAGING THE
IMMUNOLOGICAL SYNAPSE

For adequate IS imaging by fluorescence microscopy,
harmonizing temporal and spatial resolutions, overcoming
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spatial constraints due to imaging in Z optical axis, improving
signal-to-noise ratio, and solving the photobleaching and
cytotoxicity inherent to any live cell imaging, are required
(Combs and Shroff, 2017; Calvo and Izquierdo, 2018). Please
refer to some excellent reviews dealing with the more relevant
fluorescence microscopy techniques used in cell biology in
general (Combs and Shroff, 2017; Lambert and Waters, 2017;
Sahl et al., 2017), and specifically for IS imaging (Rossy et al.,
2013; Calvo and Izquierdo, 2018; Herranz et al., 2019), since
it is out of the scope of this review to deal with these relevant
technical issues. In this context, it is remarkable that to date
difficulties in visualization of both primary and transformed
T lymphocyte models at high spatio-temporal resolution have
somewhat limited our understanding of the principles underlying
T lymphocyte subtype-specific activation (Kumari et al., 2019).
However, visualization and quantification of actin cytoskeleton
and the underlying patterns and dynamics has evolved to a
significant degree due to the advances in microscopy regarding
spatiotemporal resolution (Kumari et al., 2019). Currently,
we only have a limited knowledge of how actin cytoskeleton
organization affects distinct synaptic patterning and signaling.
This is due to several facts, including the low transfection
efficiency of F-actin reporters in primary lymphocytes, the
rapid kinetics of changes, the reduced area of cell-cell synapses,
and the active, highly plastic and irregular cell-cell synaptic
interface that precludes image capture at high spatiotemporal
resolution (Kumari et al., 2019; Blumenthal and Burkhardt,
2020). In the future, the development of emerging and promising
techniques such as LLSM (Ritter et al., 2015) and new 3D live-cell
super-resolution microscopy (Fritzsche et al., 2017), combined
with some useful probes for F-actin in living cells (Lukinavicius
et al., 2013, 2014; Bello-Gamboa et al., 2020) will transform how
we image cellular and protein dynamics during IS interactions.
These advances will indeed shed more light into our knowledge
of these processes.

Thus, some techniques of choice have been specifically used
for IS imaging and to overcome the mentioned caveats. Planar
lipid bilayers and coverslips or beads-coated with surface proteins
or agonistic antibodies are good options. These approaches
reduce a 3D complex structure such a cell-cell IS to only two
dimensions (XY), enabling high-resolution imaging techniques
such as TIRFM (Huppa and Davis, 2003) and, since stimulation
occurs at a homogenous, well-defined Z position, image capture
at high spatial resolution becomes feasible. If the imaged cell is
flat enough, or the Z dimension-restricted cell setups described
above are used, secretory vesicle movement at the XY focus plane
is a centripetal convergence toward the cSMAC area and can
be conveniently imaged and analyzed (Fooksman et al., 2010;
Sinha et al., 2016). Using this technique for some structures
contained and reorganizing within the IS (i.e., F-actin), the
images obtained by using anti-TCR-coated coverslips and lipid
bilayers and TIRFM and TIRFM-SIM combination probably
exhibit, by far, the highest definition and spatial resolution
obtained to date (Murugesan et al., 2016; Sinha et al., 2016). The
opportunity to change the composition of the lipid bilayer or the
stimulatory antibodies by loading antigens, accessory molecules,
changing lipids, etc., allows for reconstitution approaches,

increasing the flexibility of this strategy (Huppa and Davis, 2003),
although centrosomal area F-actin imaging in living cells will
require to develop alternative strategies such as LLSM combined
with super-resolution imaging techniques (i.e., STED, 3D-SIM),
harboring higher temporal resolution and full competence in the
Z dimension.

Apart of the described role of F-actin regions and SMACs
in vesicle secretion obtained by high-resolution microscopy,
emerging evidences obtained thanks to high-resolution live
imaging microscopy support that F-actin-driven and maintained
structures such as T cell microvilli, acting as finger-like
membrane protrusions or invadosome-like protrusions, may
participate in sensing pMHC on APCs, acting as bona fide
“synaptosomes” (Sage et al., 2012; Kim et al., 2018; Kim and Jun,
2019), or acting as interfacial protrusions at the IS contact area
to facilitate lytic granule secretion and CTL activity (Tamzalit
et al., 2019). The formation, maintenance and activity of the later
protrusions, as SMACs architecture and functions, both depend
on WASP and ARP2/3 activity. The fact that some of the IS
actin networks consist of dense actin foci related to protrusive
structures rich in F-actin, called invadosome-like protrusions
(ILPs) (Hammer et al., 2018; Blumenthal and Burkhardt, 2020),
supports that these protrusions should also be analyzed in
the IS and actin cytoskeleton studies. Moreover, T lymphocyte
microvilli should also be considered not only as structures
involved in surveying antigen on APCs or target cells, but also
in signaling to APCs or target cells. Thus, these structures are
related with relevant immune regulation mechanisms previously
discovered (Kim and Jun, 2019). More research involving state-
of-the-art microscopy techniques is necessary to understand the
mechanisms controlling their generation and function.

CONCLUDING REMARKS

Cells precisely control the formation and the dynamics of both
tubulin and actin cytoskeleton networks to coordinate important
processes, including motility, cell division, endocytosis and
polarized secretion. In addition, cells coordinate the formation
of distinct F-actin networks from a general cytosolic pool
of actin monomers (Suarez and Kovar, 2016). The available
literature concerning the centrosomal subcellular localization
and actin cytoskeleton dynamics described here and elsewhere
(Dogterom and Koenderink, 2019) demonstrate the existence of
a relevant connection between tubulin and actin cytoskeletons
and centrosome/MVB polarized traffic and function. Although
these links between F-actin and microtubule dynamics are
intriguing, very little is known about their molecular bases and
functional relevance (Le Floc’h and Huse, 2015). In addition,
recent evidences demonstrate that the different F-actin networks
appear to be co-ordinately regulated and interconnected. Close
coordination between centrosome and centrosomal area F-actin
with synaptic F-actin could facilitate the efficient organization
of synaptic responses in space and time (Tamzalit et al., 2020).
In addition, inhibitor studies indicate that the four discrete
cortical actin networks more recently described at the IS (Section
Signals Regulating Cortical Actin Reorganization In The Immune
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Synapse) largely function independently of one another, although
there is some coordinate control due to competition for free
actinmonomer (Hammer et al., 2018). How these distinct cortical
and non-cortical networks are regulated, how they interact with
the TCR signaling network, as well as their interconnections
constitute an intriguing and challenging issue to be addressed
in the future. The application of super-resolution microscopy in
this context will enable, together with conventional biochemistry
techniques, to tackle some of these issues through directly
analyzing the interactions between the cytoskeletons and other
cell proteins at immune synapses.
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