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The NLRP3 inflammasome represents a critical inflammatorymachinery driving pathology

in many acute (e. g., myocardial infarction or stroke) and chronic (Alzheimer’s disease,

atherosclerosis) human disorders linked to the activity of IL-1 cytokines. Although the

therapeutic potential of NLRP3 is undisputed, currently no clinically approved therapies

exist to target the NLRP3 inflammasome directly. The recent discovery of BTK as a direct

and positive regulator of the NLRP3 inflammasome has, however, raised the intriguing

possibility of targeting the NLRP3 inflammasome via existing or future BTK inhibitors.

Here, I review the mechanistic basis for this notion and discuss the molecular and cellular

role of BTK in the inflammasome process. Specific attention will be given to cell-type

dependent characteristics and differences that may be relevant for targeting approaches.

Furthermore, I review recent (pre-)clinical evidence for effects of BTK inhibitors on

NLRP3 activity and highlight and discuss open questions and future research directions.

Collectively, the concept of targeting BTK to target NLRP3-dependent inflammation will

be explored comprehensively at the molecular, cellular and therapeutic levels.

Keywords: Bruton’s tyrosine kinase, NLRP3 inflammasome, inflammation, phosphorylation, Interleukin-1 (IL-1),

kinase inhibitor

INTRODUCTION

Within the immune system, Bruton’s tyrosine kinase (BTK) appears to be something like a “Swiss
Army knife,” a highly versatile molecule that seemingly participates in innumerable processes
[reviewed in Weber et al. (2017)]: These range from immune cell development and differentiation
in neutrophils and B cells (Khan et al., 1995; Fiedler et al., 2011), to innate functions e.g.
Toll-like receptor (TLR), Fc, and growth factor receptor signaling, phagocytosis, and platelet
activation (Quek et al., 1998; Horwood et al., 2006; Jongstra-Bilen et al., 2008; Melcher et al.,
2008; Singhal et al., 2011; Strijbis et al., 2013), and to adaptive immunity, e.g. BCR signaling
(Wilson et al., 2015). To add to this, BTK is not only relevant in normal cells but also in
the context of malignancy, most notably as a target for B cell malignancies (Wilson et al.,
2015). Recent evidence regarding novel splice variants of BTK in colon (Grassilli et al., 2016)
and breast (Eifert et al., 2013) cancer expand its significance from the well-known and critical
role of BTK in malignant B cells. It is the latter that has driven intense research and clinical
development of pharmacological inhibitors to target the kinase activity of BTK. Ibrutinib was
the first inhibitor approved by the FDA for the treatment of chronic lymphocytic leukemia and
mantle cell lymphoma (Byrd et al., 2013; Mcnally et al., 2015) and later steroid-resistant chronic
Graft-vs.-Host disease (GvHD) (Jaglowski and Blazar, 2018), but multiple other molecules are
now in development or clinical testing. So the coming years are not only going to witness better
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targeting of B cell malignancies but a host of new applications
especially in innate immunity await exploration. Especially
in innate immunity, one process has recently gained
considerable interest as a regulator of inflammation, the
NLRP3 inflammasome (Agostini et al., 2004; Swanson et al.,
2019; Weber et al., 2020). NLRP3 is a cytoplasmic danger and
stress sensor belonging to the Nod-like receptor family of pattern
recognition receptors (PRRs) (Agostini et al., 2004; Takeuchi
and Akira, 2010), that is activated by homeostasis-perturbing
exogenous and endogenous cues. Its expression has been
reporter for multiple myeloid cells, ranging from macrophages
(Franchi and Nunez, 2008), dendritic cells (Ghiringhelli et al.,
2009), platelets (Murthy et al., 2017) and neutrophils (Mankan
et al., 2012) to microglia (Freeman et al., 2017), Kupffer cells
(Huang et al., 2013) and cardiomyocytes (Yao et al., 2018)
[summarized in Guarda et al. (2011) and Weber et al. (2020)].
At least in vitro, NLRP3 activation involves a transcriptional
and post-translational priming phase (signal 1), e.g., via TLR
signaling, followed by an actual activation step (signal 2), which
has been linked to K+ efflux (Munoz-Planillo et al., 2013). The
latter leads to conformational changes in NLRP3 (Tapia-Abellan
et al., 2019) and the assembly of a large multi-protein complex
termed the inflammasome (Figure 1) (Agostini et al., 2004;
Swanson et al., 2019). The NLRP3 inflammasome additionally
includes an adaptor, ASC, and the enzyme pro-caspase-1
(Swanson et al., 2019). Upon assembly, caspase-1 becomes
active and cleaves inactive IL-1 cytokine family members to
mature into biologically active and secreted forms that potently
trigger inflammation (Swanson et al., 2019). Comprehensive
reviews of NLRP3 activation and regulation are found here
(Mangan et al., 2018; Swanson et al., 2019; Weber et al., 2020).
Inflammation instigated by NLRP3 has been shown to be
fundamental to pathophysiological changes in diseases like
cryopyrin-associated periodic fever syndrome (CAPS) (Agostini
et al., 2004), myocardial infarction (Abbate et al., 2015), stroke
(Ito et al., 2015), liver inflammation (Wree et al., 2014), type
2 diabetes (Masters et al., 2010), Alzheimer’s disease (Heneka
et al., 2013) Parkinson’s disease (Gordon et al., 2018) and
aging (Swanson et al., 2019; He et al., 2020; Weber et al.,
2020). Hence, targeting NLRP3 is one of the most prominent
therapeutic goals in innate immunity (Mangan et al., 2018).
Unfortunately, there are so far no clinically approved inhibitors
for direct targeting of NLRP3 or caspase-1 (Mangan et al., 2018;
Swanson et al., 2019). When others and us recently discovered
BTK as a novel positive regulator (Ito et al., 2015; Liu et al.,
2017) this posed the intriguing possibility to target NLRP3-
mediated inflammation using BTK kinase inhibitors (Banoth
and Cassel, 2017; Henrickson, 2017; Liu et al., 2017). I here
review the mechanistic and clinical basis for this notion, current
controversies and open questions.

MOLECULAR CONTRIBUTIONS OF BTK
TO THE NLRP3 ACTIVATION PROCESS

BTK was identified as a NLRP3 regulator by two independent
groups based on tyrosine kinase inhibitor and phospho-
proteomics screens (Ito et al., 2015; Liu et al., 2017): Ito et al.

(2015) showed a positive regulatory role for BTK in murine
myeloid cells and its targeting reduced NLRP3 inflammasome-
dependent IL-1β release. Similar results were obtained in
our lab for primary human immune cells (Liu et al., 2017).
Both studies also showed a physical interaction of BTK with
NLRP3 and its adaptor ASC in overexpression systems (Ito
et al., 2015; Liu et al., 2017), hinting to a direct role in
the inflammasome process. BTK seemed specific for NLRP3
as other inflammasomes were not affected (Ito et al., 2015).
Interestingly, BTK was rapidly phosphorylated upon NLRP3
activation, suggesting that its kinase activity might be relevant
for the NLRP3 activation process. We therefore investigated
whether BTK also interacted with endogenous NLRP3 in primary
immune cells. Indeed, an interaction was detected after LPS
stimulation of cells, i.e., after initiation of the priming phase
(signal 1) and before the actual activation step (signal 2).
Furthermore, we noted that NLRP3 became phospho-tyrosine-
modified upon activation of NLRP3 by nigericin, in our hands
(Bittner et al., 2020, Preprint) and also observed in Mao et al.
(2020). This modification was BTK-dependent as it was reduced
in BTK-ablated murine Btk KO BMDM and human XLA PBMC
or inhibitor treated cells (Bittner et al., 2020, PrePrint). We
subsequently mapped BTK-modified tyrosine residues and found
that BTK was able to modify at least four tyrosine residues—
three located in a critical localization motif of NLRP3, the so-
called polybasic motif (PBM), and one adjacent to this motif
(Bittner et al., 2020, PrePrint). The positively charged PBM was
shown to direct NLRP3 toward phospho-inositol-4-phosphate
(PIP4)-rich membranes (e.g., Golgi and possibly endosomes
or mitochondria-associated membranes) via charge interactions
(Zhang et al., 2017; Chen and Chen, 2018; Seoane et al.,
2020). On these membranes, NLRP3 is thought to oligomerize
(Chen and Chen, 2018) but then dissociate and re-locate to the
microtubule-organizing center (MTOC) where ASC and NEK7
are engaged (Magupalli et al., 2020). On a peptide level, phospho-
modification of tyrosine residues in the PBM altered the charge
of this region (Bittner et al., 2020, PrePrint) and therefore may
support the translocation or release of NLRP3 from PI4P-rich
membranes, which would enable HDAC-6/dynein-dependent
transport toward the MTOC where NLPR3 was shown to
assemble a macromolecular ASC- and caspase-1 containing
inflammasome (Magupalli et al., 2020). This would be similar
to the described function of Protein Kinase D to promote
membrane dissociation (Zhang et al., 2017), albeit the latter
mechanism appears PBM-independent as the modified site, S295,
locates outside the PBM, but may also involve charge repulsion
upon serine phosphorylation. In line with this notion of BTK-
mediated phosphorylation to alter PBM charge, mutation of
the BTK-modified tyrosines in overexpressed NLRP3 resulted
in lower binding to PIP4 beads (Bittner et al., 2020, Preprint).
Furthermore, BTK inhibition or genetic ablation in primary cells
coincided with a reduced ability of NLRP3 to form oligomers and
to engage ASC (Bittner et al., 2020, Preprint). Furthermore, we
observed that a mutant form of NLRP3, in which the modified
tyrosines were mutated to phenylalanine failed to induce IL-
1 release (Bittner et al., 2020, Preprint), indicating that these
tyrosine positions indeed are vital for full NLRP3 activation.
Collectively, studies by us (Liu et al., 2017; Bittner et al., 2020,
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FIGURE 1 | Role of BTK in NLRP3 inflammasome activation and resulting opportunities for indirect targeting of NLRP3 via BTK. Simplified scheme of NLRP3

activation highlighting the role of BTK. For further details see main article and Weber et al. (2020). Based on in vitro, pre-clinical mouse models as well as ex vivo

analyses in human samples and patients, indirect targeting of NLRP3 via current BTK inhibitors could be envisaged especially in acute NLRP3/IL-1 axis-mediated

inflammatory conditions, whereas in chronic conditions NLRP3-selective targeting would be necessary.

Preprint) and others (Ito et al., 2015) suggest that BTK is a direct
and positive regulator of the inflammasome process, raising the
intriguing notion of targeting NLRP3-mediated inflammation
directly via BTK (Banoth and Cassel, 2017; Henrickson, 2017; Liu
et al., 2017).

TARGETING NLRP3 INDIRECTLY VIA
BTK—A VIABLE THERAPEUTIC
OPPORTUNITY IN THE ABSENCE OF
CLINICALLY APPROVED DIRECT NLRP3
INHIBITORS

Given its involvement in multiple inflammatory disorders,
multiple strategies for targeting NLRP3-mediated inflammation
have been proposed. FDA-approved since 2001 is the targeting
of IL-1 itself via either recombinant IL-1 receptor antagonist
(IL-1RA, tradename Rilonacept) or monoclonal antibodies
(tradenames Anakinra and Canakinumab) (Dinarello and Van
Der Meer, 2013). These treatments are well-established and show
good efficacy; however, they involve regular injections, suffer
from resistance mechanisms such as anti-drug antibodies, and do
not target NLRP3 directly; rather, they only target one (IL-1) of
the several NLRP3-regulated inflammatory alarmins (e.g., IL-18
and HMGB-1) (Wiken et al., 2018) and do not affect pyroptosis.
The development of direct NLRP3 inhibitors hence is receiving
much attention and industrial efforts, especially since the
discovery of MCC950 (also known as CRID3) as a direct NLRP3
inhibitor (Coll et al., 2015). MCC950 binds to the NACHT
domain and stabilizes the closed, i.e., inactive, conformation
of NLRP3, thus blocking its activity (Coll et al., 2019; Tapia-
Abellan et al., 2019). A growing number of pre-clinical in vivo

models have since reported efficacy for MCC950, e.g., in models
of cryopyrin-associated periodic syndrome [CAPS (Coll et al.,
2015)], Alzheimer’s disease [APP/PS1 model (Dempsey et al.,
2017)], sarcoidosis [trehalose 6,6’-dimycolate-granuloma model
(Huppertz et al., 2020)], atherosclerosis [ApoE model (Van Der
Heijden et al., 2017)] or cystic fibrosis [Cftr transgenic model
(Mcelvaney et al., 2019)].

However, despite several clinical studies, so far no direct
NLRP3 inhibitor resembling MCC950 has reached late stage
clinical development or approval. Thus, alternative strategies will
be of high interest for probably at least the next 5–8 years.
Targeting NLRP3 indirectly via BTK could be one of them.
It would build upon the fact that BTK is a well-established
apharmacological target and that pharmacological inhibitors
are either already FDA-approved (ibrutinib, acalabrutinib, and
zanubrutinib) or in late-stage clinical development. Compared
to anti-IL-1 therapy, inhibiting BTK probably would still target
NLRP3 proximally enough to block all knownNLRP3-dependent
effects, both in terms of alarmins and pyroptosis. Of course
similar indirect NLRP3 targeting approaches could be envisaged
for other known direct NLRP3 regulators [e.g., protein kinase D
(Zhang et al., 2017)], albeit none of the known ones are clinically
revant to date.

EVIDENCE FROM PRECLINICAL IN VIVO

MODELS FOR THE PLAUSIBILITY OF
BTK-FOCUSSED NLRP3 TARGETING

Insights into the plausibility of the targeting NLRP3 via BTK
firstly came from our description of a reduced NLRP3 activity
in patients on ibrutinib therapy (Liu et al., 2017). In these
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patients, who received a daily oral dose of ibrutinib of 420–
560mg, nigericin- and ATP-dependent IL-1 cleavage and release
were reduced, whereas TNF release was comparable (Liu et al.,
2017). We also observed a moderate effect in an S. aureus
in vivo infection model, where ibrutinib administration led to
reduced bacterial control (Liu et al., 2017). More prominent
are the data by Ito et al. (2015) in an experimental model of
ischemic stroke. They reported that ibrutinib suppressed infarct
volume growth and neurological damage in line with reduced
maturation of IL-1β and caspase-1 activation in infiltrating
macrophages and neutrophils in the infarcted area. More
recently, cardiac failure in the wake of sepsis was studied
in an experimental model under ibrutinib and acalabrutinib
administration (O’Riordan et al., 2019). Btk-deficient Xid mice
were also protected in a polymicrobial sepsis model, with reduced
NLRP3 activation contributing to the phenotype (O’Riordan
et al., 2020). Interestingly, BTK inhibition reduced NLRP3
protein levels and IL-1 in the serum. Moreover, Purvis et al.
(2020) described that ibrutinib treatment ameliorated the NLRP3
contribution to inflammation upon high-fat-diet in mice, which
resulted in improved glycemic control. In stark contrast is a
recent study proposing BTK as a negative regulator, based on
increased intestinal inflammation in a BTK-inhibited or-deficient
context (Mao et al., 2020): In this study, high LPS concentrations
used for priming led to increased IL-1 release under conditions
of BTK inhibition and in a colitis model, BTK deficiency was
associated with greater inflammation. However, the ablation of
regulatory B cells by BTK-deficiency (Yanaba et al., 2011; Kondo
et al., 2018) or the intestinal involvement of other inflammasomes
(e.g., NLRC4, NLRP6, pyrin or AIM2) (Elinav et al., 2011;
Romberg et al., 2014; Hu et al., 2015; Sharma et al., 2018), which
are not BTK-dependent (Ito et al., 2015), both could explain why
IL-1 inhibition in vivo could counteract the seemingly negative
regulatory role of BTK proposed (Mao et al., 2020). In humans,
effective suppression of the NLRP3/IL-1 axis by BTK inhibitors,
and thus a positive regulatory effect of BTK on NLRP3, was
instead suggested by a recent off-label trial of acalabrutinib in
COVID-19 patients (Roschewski et al., 2020). The improvement
of patients under ventilation or oxygenation treatment was
attributable to BTK function in macrophages, but not B cells
(Roschewski et al., 2020), implicating BTK function in these cells
and hence the NLRP3 inflammasome. Although in most of these
studies, mechanistic details, e.g., phosphorylation of NLRP3 or
interaction or phosphorylation of BTK, need to be clarified, a case
for intervening in NLRP3-mediated inflammation at the level of
BTK can clearly be made (Figure 1).

DISCUSSION

Given the effect of BTK inhibition on B cell development
and function, the applicability of targeting NLRP3 via current
BTK inhibitors at this stage appears limited to and most
suitable for acute settings like myocardial infarction, stroke or
COVID-19 rather than chronic NLRP3-mediated diseases such
as Alzheimer’s or Parkinson’s disease. If strategies could be
found that can discriminate between BTK function in B cells
and macrophages, e.g., by targeted delivery or inhibitors based
on protein-protein interactions, more long-term conditions

may also come into view therapeutically. On the back of
the promising studies described above, further mechanistic
work seems mandatory. Additionally, in pre-clinical in vivo
models conditional BTK alleles that circumvent the simultaneous
ablation of B cell function characteristic for BTK KO mice will
be highly desirable. These should be complemented by ex vivo
studies of NLRP3 activity in cancer patients treated with the
increasingly specific BTK inhibitors or biomaterial from healthy
volunteers and XLA patients. Furthermore, one needs to bear
in mind that BTK is only a partial NLRP3 regulator and that
some IL-1 can still be released in the absence of BTK, albeit at
drastically lower levels (Liu et al., 2017). Evidence from ibrutinib-
treated patients (Liu et al., 2017) indicates that sufficient
NLRP3 blockade may be clinically achievable via BTK inhibitors
at tolerable doses, but prospective off-label clinical studies
would be mandatory for the inflammatory setting of interest.
Although BTK-NLRP3 interactions have been studied mainly in
macrophages, effects of BTK inhibitors on NLRP3 function in
platelets, neutrophils, Kupffer cells or microglia will be important
to study for capturing the effect of systemic application of BTK
inhibitors to blockNLRP3-mediated inflammation in the absence
of clinically approved NLRP3 inhibitors. Collectively, targeting
the NLRP3 inflammasome via BTK represents an attractive yet
fully-to-be-explored alternative application of BTK inhibitors to
pathological inflammatory states beyond B cell malignancies. In
fact, the clinical efficacy of BTK inhibitors in GvHD (Jaglowski
and Blazar, 2018) and COVID-19, and the reported role of
the NLRP3/IL-1 axis in these disease states (Jankovic et al.,
2013; Roschewski et al., 2020) lend support to the notion that
BTK-inhibitor therapy for NLRP3 inhibition warrants further
preclinical and clinical exploration.
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