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Wnt signaling is one of the key signaling pathways that govern numerous physiological
activities such as growth, differentiation and migration during development and
homeostasis. As pathway misregulation has been extensively linked to pathological
processes including malignant tumors, a thorough understanding of pathway regulation
is essential for development of effective therapeutic approaches. A prominent feature
of cancer cells is that they significantly differ from healthy cells with respect to their
plasma membrane composition and lipid organization. Here, we review the key role of
membrane composition and lipid order in activation of Wnt signaling pathway by tightly
regulating formation and interactions of the Wnt-receptor complex. We also discuss
in detail how plasma membrane components, in particular the ligands, (co)receptors
and extracellular or membrane-bound modulators, of Wnt pathways are affected in
lung, colorectal, liver and breast cancers that have been associated with abnormal
activation of Wnt signaling. Wnt-receptor complex components and their modulators are
frequently misexpressed in these cancers and this appears to correlate with metastasis
and cancer progression. Thus, composition and organization of the plasma membrane
can be exploited to develop new anticancer drugs that are targeted in a highly
specific manner to the Wnt-receptor complex, rendering a more effective therapeutic
outcome possible.

Keywords: Wnt, frizzled, plasma membrane, cancer, lipid raft

INTRODUCTION

The Wnt signaling pathway is an evolutionarily conserved signal transduction cascade that controls
a wide range of biological events from embryonic development to tissue regeneration (Nusse,
2005; Aman et al., 2018; Steinhart and Angers, 2018). The pathway is broadly divided into two
branches as the canonical (β-catenin-dependent) Wnt signaling and the non-canonical (β-catenin-
independent) Wnt signaling, which is further branched into the Wnt/planar cell polarity (PCP)
and the Wnt/Ca2+ pathways. Wnt signaling pathways play a multitude of essential roles in cell fate
determination, cell polarity, cell migration and patterning during embryonic development, adult
tissue homeostasis and regeneration of various tissues and organs. Consequently, misregulation
of Wnt signaling has been associated with a variety of human diseases including developmental
defects, degenerative diseases, and many cancers. Although numerous components of the Wnt
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pathways have been characterized for their functional roles,
many questions related to tight regulation and modifications
of signaling remain unanswered. Besides, despite many efforts,
so far no drugs have been approved to specifically target the
pathway, leading to a gap in targeted therapy of Wnt-related
diseases (Nusse and Clevers, 2017; Krishnamurthy and Kurzrock,
2018). A better understanding of the molecular mechanisms
underlying Wnt-mediated cellular responses is especially critical
for development of effective anticancer drugs that are expected to
interfere with the highly activated Wnt signaling in many cancers
(Jung and Park, 2020).

The plasma membrane plays a dual central role in regulation
of cell signaling. On the one hand, it acts as a barrier and ensures
spatial segregation between extracellular environment and the
cytosolic compartment. At the same time, by harboring many
cell surface receptors and regulators that are involved in cell
signaling, it actively controls transmission of molecular signals
from the exterior to the interior of a cell and precisely links
them to downstream signaling events. The plasma membrane
is likewise vital for initiation of Wnt signaling where Wnt
ligands bind to their receptor complexes in specialized membrane
domains that are considered as dynamic assemblies of various
saturated lipids, sterols and lipid-anchored proteins (Sezgin
et al., 2017a,b, 2015) (Figure 1). Owing to their central roles
in initiation of signaling, Wnt pathway components acting at
the plasma membrane have been frequently investigated as drug
targets (Gurney et al., 2012; Krishnamurthy and Kurzrock, 2018;
Zeng et al., 2018a). Since plasma membranes of healthy and
diseased cells display major structural differences, the influence
of membrane nanoenvironment on signaling function should
be considered carefully when developing novel therapeutic
approaches that target Wnt pathways at the membrane.

Here, we review the cellular mechanisms underlying
regulation of Wnt signaling pathways at the plasma membrane
domains with a specific focus on the role of lipid molecules. Next,
we address how Wnt pathways are misregulated at the plasma
membrane through their ligands, receptors and membrane
associated pathway modulators in cancer. Since Wnt signaling
has been associated with numerous cancers, here we will focus
on four common cancers, i.e., lung, colorectal, liver, and breast
cancers. We also discuss the therapeutic approaches that aim
to inhibit aberrant signaling activity in cancer by targeting the
Wnt-receptor complex at the plasma membrane.

WNT SIGNALING PATHWAYS

Wnt signaling pathway regulates proliferation, survival, polarity,
and migration, differentiation of cells as well as maintenance of
stem cells of various lineages during embryonic development and
tissue homeostasis (Clevers et al., 2014). Examples come from the
stem cells that reside in different regions of the body including the
digestive tract, hematopoietic system and the nervous system (Lee
et al., 2000; Willert et al., 2003; Nusse et al., 2008). The Wnt target
gene Lgr5 has been identified as a stem cell marker at the crypts
of small intestine and colon (Barker et al., 2007). Further studies
have revealed that Lgr5 and Axin2 are expressed in the stem cells

of multiple organs such as the liver, mammary gland, stomach,
brain, kidney, cochlea and ovary and associated with widespread
self-renewal capacity (Barker et al., 2010, 2012; van Amerongen
et al., 2012; Bowman et al., 2013; Flesken-Nikitin et al., 2013;
Huch et al., 2013; Jan et al., 2013). Thus, by ensuring the
formation of the stem cell pool and its continuity via asymmetric
divisions, Wnt signals play critical roles in establishing niches
for stem cells in various tissues and organs and determining
molecular programs of tissue regeneration.

The Wnts consist of a large family of protein ligands that
interact with a number of receptors and co-receptors at the
plasma membrane. Based on 19 Wnt ligands and 10 Fz receptors
in mammals, these interactions constitute one of the most
complex relationships between extracellular ligands and cell
surface receptors (Clevers and Nusse, 2012). While some Wnt
ligands are associated with a particular Wnt signaling pathway,
others that cannot easily be attributed to a single Wnt pathway
are competent to initiate signaling in more than one branch.

Wnt/β-Catenin Signaling: The Canonical
Wnt Pathway
Being the most studied Wnt pathway, canonical Wnt signaling
operates through cytoplasmic accumulation of β-catenin
protein and is essential for embryonic development, adult
homeostasis and stem cell maintenance (Nusse and Clevers,
2017). In the absence of canonical Wnt ligand, β-catenin is
phosphorylated by a multiprotein destruction complex that
includes the serine-threonine kinases glycogen synthase kinase
3β (Gsk3β) and casein kinase 1α (Ck1α), the scaffold protein
Axin and the cytoplasmic effector proteins dishevelled (Dvl)
and Adenomatous Polyposis Coli (APC), and targeted for
degradation by the ubiquitin-proteasome system (Kimelman
and Xu, 2006; MacDonald et al., 2009). Active canonical Wnt
ligand, however, binds to its cell surface receptor frizzled (Fz)
and co-receptor low-density lipoprotein receptor-related protein
5/6 (Lrp5/6) and recruits Dvl and Axin to the plasma membrane,
leading to disassembly of the destruction complex (Figure 2).
β-catenin then accumulates in the cytoplasm, translocates
into the nucleus and interacts with the T-cell factor/lymphoid
enhancer factor (TCF/LEF) family of transcription factors
to regulate the expression of target genes (Logan and Nusse,
2004; Taketo, 2004; Nusse, 2005; Angers and Moon, 2009;
Clevers and Nusse, 2012).

The Non-canonical Wnt Pathways
Acting independently of β-catenin, the non-canonical Wnt/PCP
pathway coordinates cell movement and tissue polarity via small
GTPase RhoA or c-Jun N-terminal kinase (JNK) (Katoh, 2005).
The typical non-canonical ligands Wnt5a, Wnt5b, and Wnt11
initiate the PCP signaling via interacting with their receptors
Fz3 or Fz6 and co-receptors Ror1, Ror2, or Ptk7 (Humphries
and Mlodzik, 2018). The human planar cell polarity proteins
Vangl1, Vangl2, Prickle1, and Prickle2, Cadherin EGF LAG
seven-pass G-type receptors (Celsr1, Celsr2, Celsr3), Dvl1, Dvl2,
Dvl3, and Ankyrin repeat domain 6 (Ankrd6) are involved in the
signaling cascade (Figure 2). Dvl-dependent Wnt/PCP signals
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FIGURE 1 | Structure of the plasma membrane. The plasma membrane consists of ordered and disordered domains. Basically, ordered domains are enriched in
cholesterol, sphingolipids, glycerophosholipids, glycosylphosphatidylinositol (GPI)-anchored proteins, glycoproteins, dimeric proteins, and saturated lipids, whereas
the disordered domains usually contain monomeric and transmembrane proteins and unsaturated lipids. Created with BioRender.com.

are transduced through the Dishevelled-associated activator
of morphogenesis (Daam1 and Daam2) proteins or Mitogen
activated protein (MAP) kinase kinase kinase (MAPKKK) and
MAPKK4/7 and activate the Ras homolog family member
A-Rho-associated protein kinase (RhoA-Rock) or Rac-JNK
signaling cascades, respectively. On the other hand, the Dvl-
independent G protein-dependent non-canonical Wnt pathway
operates through G proteins, Receptor tyrosine kinases (RTKs)
and Phospholipase C (PLC), leading to intracellular calcium
release, activation of the serine/threonine protein phosphatase
calcineurin and accumulation of Nuclear factor of activated T
cells (NFAT) in the nucleus (Katoh, 2005; Kohn and Moon,
2005; Katoh and Katoh, 2017). Elevated cytoplasmic calcium can
also activate Nemo-like kinase (NLK) signaling pathway through
Calcium/calmodulin dependent kinase II (CaMKII).

Regulation of Wnt Pathways at the
Plasma Membrane
Both canonical and non-canonical Wnt signaling pathways
are tightly regulated by a number of modulators that are
evolutionarily conserved and function either extracellularly

to regulate ligand-receptor interactions or intracellularly to
modify cytosolic or nuclear components of the pathway.
Extracellular modulators can be either secreted, membrane-
bound or transmembrane proteins and are broadly classified
into two groups according to their functions: (1) The agonists
that include Norrin, R-spondins (Rspos), GPI-anchored
membrane proteins Ly6/Plaur domain-containing 6 (Lypd6)
and Reck, G protein-coupled receptors Gpr124 and Gpr37 and
(2) the antagonists that include secreted Dickkopf proteins
(Dkks), Secreted frizzled-related proteins (Sfrps), secreted
Wnt-inhibitory factor 1 (Wif-1), secreted Wise/Sost proteins,
secreted protein Cerberus, secreted insulin-like growth-factor
binding protein 4 (Igfbp-4), secreted palmitoleoyl-protein
carboxylesterase Notum, single-transmembrane proteins Shisa,
Wnt-activated inhibitory factor 1 (Waif1/5T4), adenomatosis
polyposis coli down-regulated 1 (Apcdd1), membrane-bound
metalloprotease Tiki1, transmembrane E3 ubiquitin ligase Zinc
and ring finger 3 (Znrf3) and its functional homolog Ring finger
protein 43 (Rnf43), (Cruciat and Niehrs, 2013; Jiang and Cong,
2016; Berger et al., 2017; Eubelen et al., 2018). Owing to their
critical roles in ligand or receptor modification, ligand-receptor
complex formation, regulation of signaling activity in membrane
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FIGURE 2 | The Wnt signaling pathways at the plasma membrane. Canonical Wnt signaling pathway: In the Wnt OFF state, defined by the absence of canonical
Wnt ligand, β-catenin is phosphorylated by the destruction complex that is comprised of glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α), Axin
and dishevelled (DVL) and Adenomatous Polyposis Coli (APC). Ring finger protein 43 (RNF43) also inhibits the pathway by binding the Fz receptor via DVL. In the
Wnt ON state, canonical Wnt ligand binds to the Frizzled (Fz) receptor and the low-density lipoprotein receptor-related protein 5/6 (LRP5/6) co-receptor. This
interaction recruits DVL and AXIN to the Wnt-receptor complex and leads to disassembly of the destruction complex, causing stabilization of β-catenin in the cytosol.
Binding of R-spondin to leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) enhances Wnt signaling activity by neutralizing RNF43. Non-canonical
Wnt signaling pathways: In the PCP pathway, non-canonical Wnt ligands bind to the ROR/RYK-Fz receptor complex and recruit DVL. Next phosphorylation of
VANGL activates the pathway. In calcium pathway, binding of non-canonical Wnt ligands to ROR/RYK-Fz recruits DVL and activated DVL binds to the small GTPase
that further activates phospholipase C (PLC). Created with BioRender.com.

subdomains and receptor internalization, these secreted and
membrane proteins are noteworthy candidates for therapeutic
targeting of Wnt signaling pathways.

INITIATION OF WNT SIGNALING AT THE
PLASMA MEMBRANE

The plasma membrane has a complex heterogeneous and
highly dynamic structure that is composed of lipids and
proteins with varying features and compartmentalized into
numerous smaller structures called micro- or nanodomains
(Eggeling et al., 2009; Owen et al., 2012; Sarmento et al., 2020).
This heterogeneity leads to formation of ordered membrane
domains, also known as lipid rafts or lipid nanodomains,
which are assembled from saturated lipids, sphingolipids, sterols,
glycolipids, glycoproteins and certain lipid-anchored proteins

such as glycosylphosphatidylinositol (GPI)-anchored proteins
and fatty acylated proteins, leaving the relatively disordered
domains occupied by unsaturated lipids and a large fraction
of membrane proteins (Sezgin et al., 2015, 2017b; Fakhree
et al., 2019; Kusumi et al., 2020; Figure 1). The ordered
domains of the plasma membrane have been shown to be
essential for cell signaling events by controlling membrane-
cytoskeleton communication, ligand-receptor interaction and
receptor clustering (Simons and Toomre, 2000; Thomas et al.,
2004; Ozhan et al., 2013; Agarwal et al., 2018; Azbazdar et al.,
2019). For example, activation of epidermal growth factor
receptor (EGFR) signaling by the epidermal growth factor (EGF)
has been proposed to induce coalescence of different lipid rafts
and formation of signaling platforms (Hofman et al., 2009; Irwin
et al., 2011). After exposure to the Gram-negative bacterial cell
wall component lipopolysaccharides, Toll-like receptor 4 (TLR4)
of the immune system cells likewise interacts with its sorting
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adaptor Toll/interleukin-1 receptor domain-containing adaptor
protein (TIRAP) in the lipid rafts (Barnett and Kagan, 2020).

Activation of Canonical Wnt Signaling in
the Plasma Membrane Domains
Interaction of the canonical Wnt ligand with its (co)receptors
triggers Lrp6 phosphorylation and endocytosis of receptor
complexes, both of which appear to occur preferentially in the
ordered membrane domains (Yamamoto et al., 2008; Sakane
et al., 2010). While appearing in a way unexpected due to
the fact that majority of the receptor Fz and the co-receptor
Lrp6 are preferentially localized in the disordered membrane
domains, both processes are facilitated by the GPI-anchored
Lypd6 protein that interacts with Lrp6, helps it to associate with
the ordered membrane domains via its GPI anchor and enhances
Wnt/β-catenin signaling by promoting Lrp6 phosphorylation in
these domains (Ozhan et al., 2013). Lipid raft disruption via
induction of cholesterol efflux from the membrane with methyl-
β-cyclodextrin significantly reduces Lrp6 phosphorylation in
neuroblastoma cells, indicating that membrane order and
integrity is essential for Lrp6 activity (Riitano et al., 2020). Further
work has revealed that the canonical Wnts bind to their receptor
complexes selectively in the ordered membrane domains (Sezgin
et al., 2017a). Disruption of the membrane order in vitro or in vivo
using inhibitors that specifically target lipids associated with the
ordered domains significantly reduces canonical Wnt signaling
activity, underscoring the influence of the plasma membrane
lipid content on early interaction of the canonical Wnt with
its receptors and downstream signaling activity (Sezgin et al.,
2017a). Presence of canonical Wnt ligand stimulates enrichment
of cholesterol, an essential component of the ordered membrane
domains, in the inner membrane leaflet and receptor clustering
that is likely aided by other membrane components such
as heparin sulfate and phosphatidylinositol-4,5-bisphosphate
(PIP2) (Mii et al., 2017; Erazo-Oliveras et al., 2018). Defects in
synthesis of cholesterol thus reduces Wnt signaling and results
in abnormalities in craniofacial development and neural crest
cell differentiation (Sezgin et al., 2017a; Castro et al., 2020). The
glycosphingolipid mannosyl glucosylceramide, which assembles
with sterols into ordered membrane domains, likewise enhances
presynaptic Wnt1/Wingless (Wg) signaling in the lipid rafts
and promotes synaptic bouton formation at the Drosophila
neuromuscular junction (Huang et al., 2018). Wnt/β-catenin
signaling can also act in combination with Reactive Oxygen
Species (ROS) signaling to regulate nuclear β-catenin levels
during neural differentiation in a lipid raft dependent manner
(Haack et al., 2015).

Regulation of Wnt-receptor interaction in ordered domains
through membrane proteins appears not to be restricted to
canonical Wnt signaling. The heparan sulfate proteoglycan
Glypican-4 (Gpc4) is one such bifunctional molecule that
controls canonical and non-canonical Wnt pathways by binding
to Wnt3a and Lrp6 in the ordered domains and to Wnt5a and
Ror2 in the disordered domains, respectively (Sakane et al., 2012).
Likewise, autocrine Wnt10b has been shown to be drafted to
the ordered domains by the fibroblast-derived (FD) exosomes

and activate mTOR signaling that in turn promotes axonal
regeneration independently of β-catenin (Tassew et al., 2017).
Conversely, inhibition of fatty acid synthase (FASN), the major
source of long-chain fatty acids such as palmitate, interferes with
lipid biosynthesis, disrupts ordered membrane architecture and
inhibits Wnt/β-catenin signaling along with PI3K-AKT-mTOR
pathways, most likely also inhibiting protein lipidation that is
necessary for proper signal transduction (Ventura et al., 2015).

Apart from the components of the Wnt-receptor complex,
N-terminally dephosphorylated (dephospho) β-catenin, the de
novo synthesized form of β-catenin that correlates with Wnt
signaling activity, has been reported to colocalize at the plasma
membrane with Lrp6 and two members of the destruction
complex, namely APC and Axin, shortly after Wnt stimulation
and independently of E-cadherin (Hendriksen et al., 2008).
Routing of dephospho-β-catenin to the membrane via the Wnt
receptor complex appears to constitute a key step in regulation
of its transcriptional activity and Wnt signaling. The activity of
β-catenin as a membrane component may be controlled by other
molecules under certain ambient conditions. For example, non-
muscle myosin II induces accumulation of cortical F-actin and
E-cadherin to the adherens junctions, resulting in corecruitment
of β-catenin to the membrane to maintain cellular contraction
and inhibition of Wnt signaling due to reduced levels of
cytoplasmic β-catenin (Hall et al., 2019). Cytoskeletal networks
have also been reported to regulate Wnt signaling activity
through plasma membrane domains during differentiation of
stem cells (von Erlach et al., 2018).

Wnt Signalosome and the Role of
Endocytosis
Interaction of Wnts ligands with their surface receptors
within particular membrane domains activate an immediate
biochemical response that triggers internalization of the Wnt
signalosome, a dynamic signaling complex assembled by Dvl
upon formation of the Wnt-receptor complex (Bienz, 2014;
Gammons et al., 2016). Internalization of signalosome is essential
for pathway activation that is balanced by degradation of
excessive ligands and clearance of surface receptors, ultimately
downregulating the signaling (Feng and Gao, 2015). At the same
time, paradoxically, receptor-mediated endocytosis negatively
regulates Wnt signaling through internalization and degradation
of the receptor complex. The route of endocytosis is determined
by multiple factors including the types of ligands and receptors,
other molecules in the environment, feedback regulatory
mechanisms and how the signal is terminated.

Canonical Wnt-mediated receptor complex is known to be
endocytosed via the clathrin-independent route in the smooth
invaginations of the plasma membrane, the so-called caveolae,
which form as subset of the ordered membrane domains (Parton
et al., 2006; Yamamoto et al., 2006; Bilic et al., 2007; Gong et al.,
2008). Tyrosine-based motifs within the cytoplasmic tail of Lrp6
has been shown to be essential for determining its distribution
within the membrane domains and its internalization routes,
which is critical to keep signal activity under control (Liu
et al., 2014). However, a large body of evidence supports that
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clathrin-dependent endocytosis of the Wnt-receptor complex can
also enhance β-catenin-dependent signaling and that clathrin is
a prerequisite for Wnt signalosome formation (Kim et al., 2013;
Hagemann et al., 2014; Gammons et al., 2016; Brunt and Scholpp,
2018). Endocytosis has been proposed to regulate Wnt/β-Catenin
signaling mainly via four alternative ways that include early
endosomal acidification of the co-receptor Lrp6 for pathway
activation, sequestration of GSK-3 to limit β-catenin proteolysis,
clearance of ubiquitin ligases that target Wnt receptors for
degradation and facilitation of signaling by stabilization of Dvl
(Brunt and Scholpp, 2018).

β-catenin-independent Wnt pathway operates through
clathrin-dependent endocytic route that mediates uptake of
PCP components together with Syndecans, the transmembrane
proteoglycans (Yamamoto et al., 2008; Ohkawara et al., 2011).
Wnt/PCP signaling regulates cell adhesion and migration by
regulating internalization of cadherins via protocadherins during
vertebrate gastrulation (Brinkmann et al., 2016; Brunt and
Scholpp, 2018). Recent data obtained from plasma membrane
capacitance recordings have further supported that non-
canonical Wnt5a is exclusively endocytosed via clathrin-coated
vesicles (Bandmann et al., 2019).

Endocytosis of the Wnt-receptor complex can also be affected
by different molecules and pathways. For example, in addition
to regulating proteolytic degradation of β-catenin as part of the
destruction complex, APC keeps Wnt receptor internalization
and pathway activation under control by forming a complex
with clathrin (Saito-Diaz et al., 2018). AP2-associated kinase 1
(Aak1), which is activated by Wnt/β-catenin signaling, likewise
promotes clathrin-mediated endocytosis of Lrp6 and thus
negatively regulates the pathway (Agajanian et al., 2019). The
mammalian target of rapamycin complex 1 (mTORC1) signaling
has also been shown to inhibit Wnt/β-catenin signaling by
suppressing the expression of membrane Fz through enhancing
its Dvl-dependent clathrin-mediated internalization (Zeng et al.,
2018b). Further mechanistic studies on the interplay between
Wnt signaling and other molecules will provide a deeper
understanding of the tight control of pathway activity.

Posttranslational Modifications in Wnt
Proteins
Wnts are 350–400 amino acid-long cysteine-rich secreted
glycoproteins that are highly conserved in metazoans. Mammals
have 19 Wnt ligands that act through the canonical or non-
canonical Wnt pathway and thus contributes to the pathway
specificity and complexity (Clevers and Nusse, 2012).

The high number of conserved cysteine residues that
Wnt proteins harbor suggest that the intra- and inter-
molecular disulfide bonds are important for the proper folding,
multimerization and function of Wnt proteins (Tang et al., 2012).
Wnts undergo two main types of posttranslational modifications,
i.e., N-glycosylation and lipidation/acylation at the endoplasmic
reticulum (ER) and are subsequently transported to the plasma
membrane via the cargo protein Wntless (Wls)/Evi, which is
essential for Wnt secretion (Glaeser et al., 2018; Gradilla et al.,
2018). Various mutations introduced at N-linked glycosylation

sites of different Wnt proteins have shown that glycosylation
is essential for proper folding and secretion of Wnt proteins
but dispensable for their signaling activity (Mason et al., 1992;
Komekado et al., 2007; Kurayoshi et al., 2007; Tang et al., 2012).

The Role of Palmitoylation in Wnt Function
Being a prominent mode of lipidation, acylation of Wnts takes
place at conserved amino acid residues through palmitoylation
and is mainly catalyzed by the protein Porcupine, a membrane-
bound O-acyltransferase of the ER (Willert and Nusse, 2012;
Gao and Hannoush, 2014; Nile and Hannoush, 2016). Initial
mass spectrometry-based studies on mouse Wnt3a propounded
two different sites for addition of palmitoyl moieties, which were
a thioester-linked palmitic acid at a conserved cysteine and an
oxyester-linked palmitoleic acid at a conserved serine (Willert
et al., 2003; Takada et al., 2006). While the conserved serine
has been confirmed as the consensus acylation site across all
Wnts by high-resolution crystal structure analysis of Xenopus
Wnt8, the conserved cysteine was found to be engaged in a
disulfide bond, thus preventing it from serving as a lipidation
site (Janda et al., 2012). Interestingly, canonical Wnts have been
proposed to be acylated by palmitoleic acid, a monounsaturated
fatty acid, which is assumed to exhibit a kinked conformation
and thus fit into the cavity of the Porcupine (Takada et al.,
2006; Nile et al., 2017; Lee et al., 2018, 2019). However,
considering the fact that palmitoylation targets soluble proteins
into ordered membrane domains, palmitoylation of Wnt by
a monounsaturated fatty acid contradicts with its preferential
binding in the ordered domains and ability to activate signaling
therein (Zhai et al., 2004; Levental et al., 2010; Ozhan et al.,
2013; Sezgin et al., 2017a). Computational structural analyses
have indeed supported that canonical Wnt is likely modified by
palmitic acid, a saturated fatty acid, by adopting a conformation
compatible with the stereochemical features of Wnt modification
(Azbazdar et al., 2019).

The role of lipidation in Wnt secretion and functionality has
been investigated by mutagenesis of the conserved palmitoylation
sites of various Wnt proteins (Kurayoshi et al., 2007; Franch-
Marro et al., 2008; Tang et al., 2012; Luz et al., 2014; Hosseini
et al., 2019; Speer et al., 2019). For example, palmitoylation
mutants of mouse Wnt1 and Wnt3a were found to be secreted
at varying levels while their signaling activities were significantly
and consistently reduced (Takada et al., 2006; Doubravska
et al., 2011; Galli and Burrus, 2011; Gao and Hannoush, 2014).
Acylation mutant of Drosophila Wg was likewise found to be
secreted normally but with markedly weaker signaling activity
(Franch-Marro et al., 2008). Strikingly, several non-acylated
mutants of Wnt1, Wnt3a, and Wnt8 from different species have
been identified to vary dramatically in their rates of secretion,
interactions with the receptor Fz and abilities to activate signaling
in vitro or in vivo (Speer et al., 2019). Studies on the zebrafish
canonical Wnt ligands have reported that Wnt palmitoylation
is essential for activation of signaling but may be dispensable
for secretion (Luz et al., 2014; Azbazdar et al., 2019). APT1-
mediated depalmitoylation has been shown to be important for
asymmetric localization of β-catenin and Wnt signaling activity
during development (Stypulkowski et al., 2018). Interestingly,
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Drosophila WntD does not appear to undergo any glycolysis
and acylation (Ching et al., 2008). Therefore, the impact of
acylation on the secretion and function of different types of
Wnts appears to vary significantly. We believe that individual and
context-dependent characterization of Wnt ligands will provide
critical insight into the how Wnt signaling activity is modified in
different types of cancers and how therapeutic approaches could
be specifically designed.

The Impact: How Can We Benefit From
What We Have Learned So Far?
Wnt signaling pathways control a plethora of cellular responses
involved in development, homeostasis and disease. Thus, the
molecular interactions underlying initiation of Wnt pathways at
the plasma membrane have the potential to serve as attractive
drug targets, especially for cancer where Wnt signaling is broadly
misregulated. The disclosure of the functional role of plasma
membrane organization in Wnt/β-catenin signaling will shed
light on how the membrane background can be exploited for
therapeutic approaches:

(1) The drugs can be packed in specific lipid-based drug
delivery systems to directly target them to the relatively
ordered domains of the membrane where Wnt-receptor
complex formation occurs.

(2) The peptide drugs can be modified by introducing
particular lipid moieties that help them target Wnt-
receptor complex more precisely. Posttranslational
lipid modifications, in particular palmitoylation,
might be a good candidate to enhance domain-specific
receptor targeting.

(3) A very convenient strategy would be lipid fingerprinting
of cancer cells to characterize membrane lipid profiles
of individual cell types. This would enable selectively
inhibition of aberrant activated Wnt signaling pathway by
direct modification of membrane lipid composition.

Overall, we believe that unraveling plasma membrane
organization with respect to (mis)regulation of Wnt signaling
in health and disease will help not only develop new strategies
on targeted anticancer therapies and but also increase target
specificity of existing drugs that interfere with the ligand-receptor
complex at the plasma membrane.

MISREGULATION OF WNT SIGNALING
PATHWAYS AT THE PLASMA
MEMBRANE IN CANCER

Dysregulation of plasma membrane domains with respect to its
structural organization and dynamics, disruption of membrane
protein and lipid homeostasis or mutations in genes encoding
for membrane proteins can cause misregulation of cell signaling
events and promote oncogenic signaling activities. For example,
breast cancer cell lines with high levels of epidermal growth
factor receptor (EGFR) have been found to be resistant for the
tyrosine kinase inhibitors (TKIs) targeting EGFR because of

EGFR accumulation in the lipid rafts at the membranes of these
cells and pharmacological depletion of cholesterol from the rafts
decreased this resistance (Irwin et al., 2011). The constitutively
active mutant form of the non-receptor tyrosine kinase Src
has likewise been reported to accumulate in the lipid rafts of
small cell lung cancer (SCLC) cells and stimulate oncogenic
phosphoinositide 3-kinase (PI3K) signaling by facilitating the
interaction of particular PI3K isoforms with Src kinases (Arcaro
et al., 2007). Epithelial-to-mesenchymal transition (EMT) has
also been associated with modulation of lipid raft properties
strongly suggesting that alterations of membrane biophysical
phenotypes are required to maintain metastatic potential of
cancer cells (Tisza et al., 2016). In this section we will review how
misregulation of Wnt signaling mainly in four common cancers;
i.e., lung, colorectal, liver, and breast, is linked to the defective
signaling at the plasma membrane and discuss the potential
therapeutic approaches based on targeting the Wnt pathway at
the membrane in these cancers.

Lung Cancer
Being the most common cause of cancer-related death in the
world, lung cancers are histologically classified as non-small-
cell lung cancer (NSCLC), which comprises about 85% of lung
cancers, and small-cell lung cancer (SCLC). The main subtypes of
NSCLCs are adenocarcinoma (ADC), squamous cell carcinoma
(SCC), and large cell carcinoma (LCC). Wnt signaling is
frequently abnormally activated in lung cancers. Overexpression
of Wnts1-3, Wnt5a, Wnt11, and Fz8 is common in NSCLC
(Nakashima et al., 2012; Stewart, 2014; Huang et al., 2015; Rapp
et al., 2016). Resected NSCLC samples with high levels of Wnt3
are characterized with a significantly higher Ki67 proliferation
index and a significantly lower apoptotic index, resulting in
a considerably lower survival rate in patients with high-
Wnt tumors than in those with low-Wnt tumors (Nakashima
et al., 2012). Wnt3a treatment has been found to decrease
the expression of E-cadherin and increase that of N-cadherin
and Vimentin, thereby promoting EMT and metastasis in
NSCLC cells (Li et al., 2015). Intriguingly, overexpression
of the cell surface heparan sulfate proteoglycan Glypican-5,
which competitively binds to Wnt3a, inactivates Wnt/β-catenin
pathway and consequently suppresses EMT and metastasis in
lung ADC (Wang et al., 2016). Wnt7a and its receptor Fz9
are significantly downregulated in NSCLC compared to normal
uninvolved lung tissue and, upon interaction; they likewise
trigger a tumor suppressor pathway by inhibiting transformed
cell growth and promoting epithelial differentiation through
activation of JNK pathway but not the Wnt/ß-catenin pathway
(Winn et al., 2005). On the other hand, upregulation of Ror
1, a member of the Ror family of RTKs, has been shown to
promote lung carcinogenesis through activation of Wnt/PCP and
Wnt/RTK signaling cascades (Katoh and Katoh, 2017).

Abnormalities in Wnt Ligands, Receptors and
Pathway Modulators in Lung Cancer
In a recent analysis of correlation between expression of Wnt
ligands and 23 immunosuppressive genes across all cancer types
in the TCGA dataset, high levels of Wnt1 has been found to
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significantly and negatively correlate with CD8 + T cells, showing
that it induces immune resistance in lung adenocarcinoma cells
and thus immunologically cold tumors (Kerdidani et al., 2019).
A meta-analysis based on the data from 1805 NSCLC patients
has reported a similar overexpression of Wnt1 and Wnt5a with
an inverse correlation to the overall survival of these patients
(Jin et al., 2016) (Figure 3).

FIGURE 3 | RNAseq gene expression levels of Wnt ligands in different
cancers. (A) Lung cancer (B) Colon cancer (C) Liver cancer (D) Breast
cancer. The data were downloaded from https://xenabrowser.net/on August
10, 2020. For each cancer type, data were filtered from the browser extension
data set on the TCGA TARGET GTEx dataset, which includes approximately
13 thousand genes. Studies were obtained from GTEx project and TCGA.
Gene expressions were analyzed using RSEM fpkm method. Significance was
calculated using Welch’s t-test and graphs were generated using GraphPad
Prism 7.

Another comparative study on NSCLC subtypes has reported
that non-canonical Wnt5a was significantly upregulated in the
SCC, while ADC was marked by a prominent expression
of canonical Wnt7b (Vesel et al., 2017). In SCC, Wnt5a
downregulates the ATP-binding cassette (ABC) transporter
family members Abcb1 and Abcg2, which are involved in
chemotherapy resistance and appear to be upregulated by
canonical Wnt signaling when the cells are treated with the
chemotherapeutic agent cisplatin (Vesel et al., 2017).

Aberrant pathway activation occurs as a result of mutations
or polymorphisms in pathway genes, repression of pathway
inhibitors or synergistic effect with other mutations such as
Kras (Testa et al., 2018a). For example, Lrp6 rs10845498
polymorphism has been associated with a reduced risk of
lung SCC while LRP6 rs6488507 polymorphism synergistically
increased the risk of NSCLC in tobacco smokers (Deng et al.,
2014). Loss of function mutations in the Wnt-feedback induced
cell surface E3 ligases Rnf43 and Znrf3, which bind to Fz
and target it for degradation and fusions of the Wnt agonists
Rspo2 and Rspo3 have been reported in lung cancer (Katoh
and Katoh, 2017). Tobacco smoking, as the main factor
responsible for lung cancer, appears to activate Wnt signaling
through polycomb-induced repression of the secreted Wnt
antagonist Dkk1, resulting in a tumorigenic effect (Hussain
et al., 2009). Moreover, concurrent activation of Wnt/β-catenin
signaling and expression of the constitutively active Kras
mutant KrasG12D in the bronchiolar epithelium of the adult
mouse lung, significantly increased the tumor number and size
(Pacheco-Pinedo et al., 2011).

Misregulation of Wnt signaling in lung cancers have also
been associated in many reports with abnormal expression
of miRNAs that regulate the membrane components of Wnt
pathways. For example, smoking-induced repression of miR-
487b -a tumor suppressor miRNA that normally inhibits Wnt5a,
Myc, and Kras and upregulates the Wnt antagonists Dkk1,
Sfrp1, Sfrp4, and Wif1 to regulate lung stem cells- results in
increased proliferation, invasion and metastatic potential of lung
cancer cells (Xi et al., 2013). Expression of miR-148a is likewise
significantly downregulated in primary cancer tissues of NSCLC
patients compared to their adjacent normal lung tissues, and
negatively correlates with the expression of Wnt1, a direct target
of miRNA-148a (Chen et al., 2017). In contrast, elevated levels of
miR-650 in NSCLC has been associated with promotion of cell
proliferation and invasion through activation of Wnt1-mediated
β-catenin signaling (Tang et al., 2019). Exosomal transfer of miR-
1260b has been associated with increased tumor cell invasiveness
in lung ADC proliferation through activation of Wnt/β-catenin
signaling in neighboring cells (Xia et al., 2020). Interestingly,
miR-1260b can induce biosynthesis of ceramides, depletion of
which leads to accumulation of Wnt and inhibits Wnt signaling
(Pepperl et al., 2013).

Targeting Wnt Pathway at the Plasma Membrane for
Lung Cancer Therapy
Several therapeutic approaches have been unraveled to suppress
lung cancer progression via interfering with Wnt-receptor
complex components at RNA or protein levels. For example,
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aspirin-induced miR-98 expression and long non-coding RNA
(lncRNA) MIR503HG have been found to suppress proliferation
of lung ADC and NSCLC cells via targeting Wnt1 and thus
serve as tumor suppressors (Gan et al., 2019; Lin et al., 2019).
Similarly, miR-5587-3p has been reported to suppress Wnt5b,
a prognostic biomarker that is highly expressed in lung ADC
and positively correlates with metastasis and cancer progression
(Zhang et al., 2020). lncRNA AK126698 suppresses Wnt pathway
by targeting Fz8 in NSCLC cells, and prevents their proliferation
and migration (Fu et al., 2016). miR-135b has been identified
to directly target Fz1 at its 3’UTR in NSCLC cells and enhance
the chemosensitivity of cisplatin-resistant lung cancer cell lines
(Su et al., 2016). On the other hand, antimalarial compounds
artemisinin, dihydroartemisinin and artesunate can specifically
suppress Wnt pathway by decreasing the protein level of Wnt5a/b
(Tong et al., 2016). Qiyusanlong (QYSL) decoction, a formula
composed of ten different traditional Chinese medicine, likewise
reduces the protein levels of Wnt1, Wnt 2, and Wnt 5a, alone or
with Cisplatin (Tong et al., 2018).

Colorectal Cancer
Colorectal cancer (CRC) ranks second among cancer-related
deaths worldwide and majority of CRCs arise sporadically in
patients with no family history of disease (Brenner et al.,
2014). Hyperactivation of the Wnt pathway due to mutational
inactivation of the APC tumor suppressor is thought to be the
initiating event and key oncogenic driver in most sporadic and
familial CRCs (Schatoff et al., 2017). Furthermore, mutations
in both the components and the modulators of Wnt-receptor
complex are frequently associated with CRC (Kuipers et al., 2015;
Katoh and Katoh, 2017; Testa et al., 2018b). The Cancer Genome
Atlas (TCGA) consortium report reveals that Wnt signaling is
altered in up to 93% of all sporadic CRCs with at least one
and up to sixteen alteration(s) in Wnt pathway components
including APC, CTNNB1, TCF7L2, DKK family members,
AXIN2 and the pathway negative regulator FAM123B/WTX
(Cancer Genome Atlas Network, 2012).

Wnt2 and its receptor Fz7 have been found to be expressed
at high levels in CRC as compared to normal colonic mucosa
(Holcombe et al., 2002; Kalhor et al., 2018). Wnt3, Wnt6 and
Wnt11 are likewise upregulated in CRC in correlation with
poor survival rate, and when downregulated proliferation and
migration are suppressed and apoptosis is induced (Zheng and
Yu, 2018; Gorrono-Etxebarria et al., 2019; Nie et al., 2019; Peng
et al., 2019) (Figure 3). Polymorphic adenoma-like protein 2,
a zinc finger transcription factor, is also overexpressed in CRC
and can promote Wnt6 expression by binding to its promoter
region (Li et al., 2019b). The tubulin acetyltransferase αTAT1
promotes CRC progression via regulating subcellular localization
of β-catenin and inducing expression of Wnt1 (Oh et al., 2017).
Interestingly, Wnt1 is downregulated in response to Salmonella
infection in CRC and this inhibits cancer cell invasion and
migration (Wang et al., 2018). High levels of Wnt5a and its
receptor Ror2 have been associated with drug resistance in CRC
by concomitant induction of non-canonical Wnt signaling and
suppression of canonical Wnt signaling (Bordonaro et al., 2011).
Apart from these Wnt ligands, various Fz receptors including

Fz4, Fz7, and Fz10, are also upregulated in CRC and their
elevated levels have been associated with increased stemness,
metastasis and recurrence (Cancer Genome Atlas Network, 2012;
Ye et al., 2019; Chi et al., 2020). Wnt co-receptor Lrp6 is likewise
significantly upregulated in many tumoral tissues of CRC in
correlation with high malignancy and poor prognosis (Rismani
et al., 2017). Various Lrp6 polymorphisms such as T867A, N789S,
W239L have also been associated with susceptibility to early-
onset CRC (de Voer et al., 2016).

Several membrane proteins have been reported to regulate
Wnt signaling activity in CRC. For example the low-density
lipoprotein receptor-related protein 1B (Lrp1b), which is
downregulated in CRC, can suppress the growth and migration
of cancer cells via inhibiting the interaction between Dvl2 and the
Axin and hence the Wnt/β-catenin signaling (Wang et al., 2017).
Expression of the cystic fibrosis transmembrane conductance
regulator (Cftr) gene is likewise reduced in CRC, and this
reduction enhances Wnt/β-catenin signaling via promoting
interaction of Dvl-2 with the plasma membrane (Strubberg et al.,
2018). On the contrary, the elevated expression of the type
I transmembrane protein CUB-domain containing protein 1
(CDCP1) in CRC has been associated with high metastasis via
promoting nuclear localization of β-catenin and Wnt signaling
activity (He et al., 2020).

The R-Spondin/Lgr5/Rnf43 Module in CRC
Wnt signaling is essential for normal intestinal function due
to its roles in maintenance, proliferation and differentiation
of intestinal stem cells. In particular, Lgr5 + intestinal stem
cells exhibit high levels of canonical Wnt pathway activity
reinforced by Rspo1-4 that drives a physical interaction between
Lgr4/5 and Rnf43/Znrf3 (de Lau et al., 2014). Rspo fusions
with protein tyrosine phosphatase receptor type K (PTPRK-
RSPO3) and eukaryotic translation initiation factor subunit E
(EIF3E-RSPO2) are frequently observed in colorectal traditional
serrated adenomas and characterized by Rspo overexpression
and activation of Wnt signaling (Sekine et al., 2017; Hashimoto
et al., 2019). In contrast, Rspo2 appears to inhibit CRC metastasis
by competing with the tumor-promoting Wnt5a for binding to
Fz7 and thus antagonizing Wnt5a-driven non-canonical Wnt
signaling (Dong et al., 2017). Although the majority of the studies
conducted in primary clinical tissue have suggested a higher
expression of the Rspo receptor Lgr5 in CRC cells relative to the
adjacent normal tissue, a tumor-promoting role and enhanced
chemoresistance, several studies have reported a potential tumor
suppressive function of Lgr5 in CRC progression (Hsu et al.,
2013; Morgan et al., 2018). N-terminal mutations of Rnf43, one
of the most commonly mutated genes in CRC, have also been
linked with enhanced Wnt/β-catenin signaling activity in colon
cancer while C-terminal truncation mutants act similarly to the
wild-type Rnf43 (Giannakis et al., 2014; Li et al., 2020).

Targeting Wnt Pathway at the Plasma Membrane for
Colon Cancer Therapy
Due to their potential function as tumor suppressors mentioned
above, Lrp1b and Ctfr might offer promising strategies for the
treatment of colon cancer. LiCl treatment also inhibits CRC cell
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proliferation via concomitant induction of the non-canonical
ligand Wnt9 and suppression of β-catenin expression (Ali et al.,
2016). Combination of inositol hexaphosphate and inositol can
also reduce Wnt/β-catenin signaling via downregulating Wnt10b
and β-catenin and suppress liver metastasis of CRC (Liu et al.,
2020). Different microRNAs have been shown to affect CRC
tumorigenesis as well. While miR-140-5p and miR-185 target
Wnt1 and act as tumor suppressors, miR-410 targets Dkk1 and
thus functions as an oncogene in CRC (Zhang et al., 2018;
Wang et al., 2019b; Yeon et al., 2019). These findings reveal
that miRNAs can be used as prognostic markers and to produce
potential therapeutic agents for CRC patients.

Liver Cancer
Liver cancer is the fourth common cancer-related death in the
world. Hepatocellular carcinoma (HCC), also referred to as
hepatoma, is the most common type of liver cancer, constituting
approximately 90% of all liver cancers. The molecular events
that take place during multi-step initiation and progression of
HCC are only partially understood. HCCs are broadly classified
into the “proliferation class” and the “non-proliferation class”
(Caruso et al., 2019). The proliferation class is further subdivided
into the “Wnt-TGFβ subclass” with activated Wnt and TGFβ

pathways and the “progenitor subclass” characterized by several
features including overexpression of hepatic progenitor markers
and mutations in AXIN1 (Rebouissou and Nault, 2020). On the
other hand, the “non-proliferation class” of HCC includes tumors
that are more heterogeneous, less aggressive, more differentiated
with hepatocyte-like features, and contains at least two subclasses
(Rebouissou and Nault, 2020). The most well described subclass
is characterized by mutations in the β-catenin gene CTNNB1,
leading to highly activated Wnt/β-catenin pathway, along with
the TERT promoter and TP53 mutations (Yang et al., 2019a;
Rebouissou and Nault, 2020). Thus, Wnt/β-catenin signaling
is aberrantly activated in approximately 50% of HCC cases,
in association with increased proliferation and inflammation,
malignant tumor progression, poor prognosis, immune escape,
and resistance to therapy (Yang et al., 2013; Khalaf et al., 2018;
Jiang et al., 2019b; Ruiz de Galarreta et al., 2019).

Wnt-receptor complex components have been largely
identified to take part in hepatocarcinogenesis. For example,
several Fz receptors and the canonical Wnt ligands Wnt3 and,
to a lesser extent, Wnt10b are strongly upregulated in a variety
of HCC cells with different expression levels of hepatocyte
lineage, epithelial and mesenchymal markers (Kim et al., 2008;
Yuzugullu et al., 2009). Wnt2b, Wnt4, Wnt5a, Wnt5b, Wnt7b,
Wnt8b, and Wnt9b are among the other ligands that have
significantly increased expression in HCC cell lines (Yuzugullu
et al., 2009) (Figure 3). Wnt1 is also highly expressed in HCC cell
lines and has been associated with increased tumor recurrence
after curative tumor resection in HBV- and HCV-related HCC
patients (Lee et al., 2009; Wei et al., 2009). However, Wnt5a and
Ror2 have been reported to be downregulated in HCC tissues
with a poorer prognosis than HCC patients with elevated Wnt5a
and Ror2 expression (Geng et al., 2012). In another study, Wnt5a
overexpression was also found to decrease cell proliferation
and tumor size in HCC, supporting that Wnt5a may serve

as a tumor suppressor in HCC (Wang et al., 2019a). Another
non-canonical ligand Wnt11a likewise decreases in HCC and its
ectopic expression could suppress cell motility and migration via
activation of RhoA/Rho kinase (Toyama et al., 2010). In addition
to the Wnt ligands, high levels of Fz2, Fz7, Lrp5, and Lrp6 in
HCC have also been found to be promote cell proliferation,
migration, invasion, and EMT (Merle et al., 2004; Yuzugullu
et al., 2009; Tung et al., 2012; Ou et al., 2019).

Targeting Wnt Pathway at the Plasma Membrane for
Liver Cancer Therapy
In search of novel potential therapeutic targets for HCC, the
tumor-promoting function of Fz7 could be effectively reverted
by small interfering RNAs that suppressed proliferation and
metastasis of HCC cells and enhanced their apoptosis and
sensitivity to chemotherapeutic drugs (Chen et al., 2016, 2018;
Xue et al., 2018). Similarly, miR-542-3p, a common tumor-
suppresser that is also downregulated in HCC tissues and cell
lines, has been shown to inhibit HCC cell growth by targeting Fz7
and may thus represent a novel therapeutic target for HCC (Wu
et al., 2017). An anti-Wnt1-antibody has been found to inhibit
Wnt/β-catenin signaling and tumor growth in a xenograft mouse
model (Wei et al., 2009). In contrast, anti-Wnt1 suppressed
proliferation and apoptosis, but did not affect tumor size and
growth in diethylnitrosamine-induced hepatocellular adenomas
(Sklavos et al., 2018). Interestingly, garlic-derived compound
S-allylmercaptocysteine reduced HCC tumorigenesis by directly
targeting Lrp6 at the plasma membrane (Xiao et al., 2018).

Breast Cancer
Breast cancer is the leading cause of cancer death among
females worldwide (Bray et al., 2018). Breast cancer is classified
into three main subtypes based on the expression of estrogen
receptor (ER) or progesterone receptor (PR) and amplification
of the human epidermal growth factor 2 (ERBB2, commonly
referred to as HER2): hormone receptor positive/ERBB2 negative
(HR+/ERBB2-), ERBB2 positive (ERBB2+; HR+ or HR-
) and triple-negative (lacking all three molecular markers)
(Waks and Winer, 2019). Wnt signaling activity has been
reported to increase in both cell lines and patient-derived
metastatic cells of breast cancer and positively correlate with
the ER expression (Lamb et al., 2013). Wnt/β-catenin pathway
activation, characterized by reduction of membranous β-catenin
with its concomitant nuclear accumulation, appears to correlate
with poor clinical outcome in triple-negative breast cancer
(TNBC) and basal-like breast cancer (BLBC), an aggressive
subtype of breast cancer characterized by strong expression of
basal markers such as cytokeratins (Khramtsov et al., 2010; Geyer
et al., 2011; Xu et al., 2015).

The role of plasma membrane in breast cancer has been
unraveled in a study that characterized the role of cell adhesion
protein CD44, which appears to localize preferably to the
lipid rafts due to palmitoylation. Raft affiliation of CD44 was
observed to be higher in non-invasive breast cell lines, while
decreasing in highly invasive cell lines or in case of mutagenesis
of palmitoylation sites, suggesting that lipid raft association is
a key regulatory mechanism in cancer cell migration (Babina
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et al., 2014). Interestingly γ-Tocotrienol, a natural isoform of
vitamin E, appears to disrupt the lipid raft integrity, suppress
Wnt/β-catenin signaling pathway and reduce cell motility in
breast cancer (Ahmed et al., 2016). Thus, it will be very interesting
to test how lipidation of Wnt and its receptors or raft association
of Wnt-receptor complex influence migration and metastasis of
these cells.

Misregulation of Wnt-Receptor Complex
Components in Breast Cancer
In a network correlation analysis of expression of >100 Wnt
pathway components in healthy and cancerous breast tissues, the
strong coherence in expression levels of the Wnt ligands and Fz
receptors observed in the healthy breast tissue is dramatically
lost in TNBC tissue and also varies widely in TNBC and non-
TNBC (Koval and Katanaev, 2018) (Figure 3). Wnt4 and Wnt16
have been reported to be significantly upregulated in TNBC
recurrence (Tsai et al., 2015). Wnt3a, 5a, 5b, 9a, and 11 are
preferentially overexpressed due to gene amplifications in BLBC
(Shi et al., 2014; Jiang et al., 2019a). Among them, Wnt5b has
been identified as a key regulatory factor that governs the BLBC
phenotype by activating both canonical and non-canonical Wnt
signaling (Jiang et al., 2019a). Interestingly, Wnt5a expression
was shown to decrease at both mRNA and protein levels in
TNBC in association with poor prognosis and Wnt5a signaling
was able to suppress tumor growth and metastasis (Borcherding
et al., 2015; Zhong et al., 2016). Wnt3a and Wnt7a are likewise
upregulated in metastatic breast cancer cell lines in association
with poor prognosis and inhibition of Wnt/β-catenin signaling
via Wnt1 knockdown could efficiently suppress cell proliferation
and tumor growth (Jang et al., 2015; Avgustinova et al., 2016).
The receptors Fz2, Fz3, Fz6, Fz7, and Fz10 as well as the co-
receptor Lrp6 have also been reported to significantly increase
in breast cancer and contribute to mesenchymal-like stemness,
invasion, metastasis, and drug resistance (Liu et al., 2010; Yang
et al., 2011; Gong et al., 2014; Simmons et al., 2014; Bell et al.,
2017; Corda et al., 2017; Yin et al., 2020). Loss-of-function
mutations of the tumor-suppressor-like molecules Rnf43 and
Znrf3 and elevated expression levels of the Wnt agonists Rspo2
and Rspo4 can also be counted among the prognostic biomarkers
of breast cancer (Ciriello et al., 2015; Coussy et al., 2017;
Katoh and Katoh, 2017).

Targeting Wnt Pathway at the Plasma Membrane for
Breast Cancer Therapy
A number of studies have assessed the therapeutic potential
of targeting Wnt signaling at the plasma membrane in TNBC.
Being an important biomarker of TNBC, Fz7 is one of the well-
investigated therapeutic options for breast cancer. A recombinant
soluble peptide fragment (rhFzd7) has been shown to antagonize
Fzd7 by competitively binding with Wnt3a and exhibit anti-
tumor and anti-angiogenesis activities in TNBC (Xie et al.,
2018). 2-cyano-3, 12-dioxooleana-1, 9 (11)-dien-28-oic acid-
methyl ester (CDDO-Me) likewise targets Fz7 and Lrp6 and
significantly inhibited tumor growth in breast cancer (Zhou
et al., 2020). miR-142-3p, which is significantly down-regulated
in breast cancer tissues, can also suppress Fz7 and thus serve as

a tumor suppressor in breast cancer (Jia et al., 2018). A recent
in silico study have identified several candidate molecules
similar to palmitoleic acid that could potentially bind to the
Fz7 transmembrane protein and inactivate the Wnt signaling
pathway in TNBC cells (Alves Pinto and Freitas Da Silveira,
2020). In addition to Fz7, targeting Wnt ligands, Dkk1 or Lrp6
at the membrane may offer promising treatment options against
breast cancer. For example, the antihelminthic niclosamide could
sensitize TNBC cells to ionizing radiation (IR) by suppressing
Wnt3a/β-catenin mediated radioresistance (Yin et al., 2016).
A monoclonal anti-Wnt-1 antibody or Wnt-1 siRNA inhibit
could induce apoptosis in a variety of human cancer cell lines
including breast cancer (He et al., 2004). The polycomb protein
chromobox homolog 7a (CBX7) likewise appears to inhibit
breast tumorigenicity by enhancing the expression of the Wnt
antagonist Dkk1 (Kim et al., 2015). The polyether ionophore
antibiotic salinomycin, the milk thistle flavonolignan silibinin,
the natural phenol echinacoside and the natural plant polyphenol
rottlerin have all been shown to inhibit Wnt/β-catenin signaling
by suppressing the Wnt co-receptor Lrp6 expression and exert
anti-tumor effects in TNBC (Lu et al., 2012, 2014; Lu and Li, 2014;
Tang et al., 2020).

Other Cancers
It is noteworthy to mention that aberrant activation of
Wnt signaling pathways is obviously not limited to the
four cancer types mentioned below. Various Wnt ligands,
the agonist Norrin, Fz receptors and the co-receptors
Lrp6 and Ror1/2 have been reported to be abnormally
expressed and associated with metastatic behavior, cancer
progression and chemoresistance in ovarian cancer, glioblastoma
multiforme, chronic lymphocytic leukemia, melanoma, multiple
myeloma, post-transplant smooth muscle tumor, prostate
cancer, pancreatic cancer gastric cancer, oral squamous cell
carcinoma, Ewing sarcoma, osteosarcoma, and malignant
peripheral nerve sheath tumors (Derksen et al., 2004; Larue
and Delmas, 2006; Dissanayake et al., 2007; Yan et al.,
2016; Yu et al., 2016; Li et al., 2017, 2019a; Liu et al.,
2017; Pridgeon et al., 2017; Sandsmark et al., 2017; Jiang
et al., 2018; Sinnberg et al., 2018; Teiken et al., 2018; Yang
et al., 2019b; Chehover et al., 2020; El-Sehemy et al., 2020;
Frenquelli et al., 2020; Kotrbova et al., 2020). Thus, a thorough
understanding of misregulation of Wnt signaling pathways at
the plasma membrane will pave the way for new therapeutic
approaches for cancer.

Inhibition of Wnt Pathway for Cancer
Therapy
Biological inhibitors and small molecules related with the Wnt
pathways are widely exploited in therapeutic approaches to
human diseases, including cancer, that have increased Wnt
signaling activity. With its pivotal role in initiation and tight
control of Wnt signaling activity, components and modulators
of the Wnt-receptor complex constitute promising drug targets
(Katoh and Katoh, 2017; Taciak et al., 2018; Goldsberry et al.,
2019) (Figure 4). For example, Ipafricept (OMP-54F28), a
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FIGURE 4 | Therapeutic molecules that target Wnt signaling pathway at the level of the plasma membrane. Different types of molecules are given with their target
pathway component in boxes. Created with BioRender.com.

recombinant fusion protein comprised of the Fz8 cysteine-rich
domain and human IgG1 Fc fragment, acts as decoy receptor
for Wnt ligands and exhibits antitumor activity (Le et al.,
2015; Jimeno et al., 2017). OTSA 101-DTPA90Y, Vantictumab
(OMP-18R5) and IgG-2919 are monoclonal antibodies targeting
different Fz receptors and decrease tumor growth in different
cancers (Gurney et al., 2012; Nielsen et al., 2015; Steinhart et al.,
2017). The monoclonal antibodies DKN-01 and BHQ880 target
DKK1 and likewise exert anti-tumorigenic activity in relapsed
or refractory cancers including NSCLC, multiple myeloma and
gastrointestinal cancers (Fulciniti et al., 2009; Edenfield et al.,
2014; Iyer et al., 2014; Bendell et al., 2016). Rosmantuzumab
(OMP-131R10) targets Rspo3 and evokes favorable responses
against solid tumors and CRC (Diamond et al., 2016). The
small molecule inhibitor KAN0439834, antibodies Cirmtuzumab
(UC-961), ROR1-CD3-DART, APVO425, and ROR1R-CAR-T
cells target Ror-1 with promising effects on different types
of cancers (Berger et al., 2015; Yu et al., 2016; Katoh
and Katoh, 2017). LGK974, ETC-159 (ETC1922159), RXC004,
CGX1321, GNF-6231, XNM7201, IWP-2, WNT974, and WNT-
C59 are all Porcupine inhibitors that are in the preclinical
or phase I/II stage (Katoh and Katoh, 2017; Taciak et al.,
2018; Goldsberry et al., 2019). When combined with pan-PI3K
inhibitor GDC-0941, porcupine inhibitor ETC-159 has been
shown to potently suppress in vivo tumor growth in pancreatic
cancer (Zhong et al., 2019). Finally, Foxy-5, a small peptide
that mimics Wnt5a, is considered to disrupt the migration and
invasion of epithelial cancer cells and exhibit anti-metastatic
impact in metastatic breast, colorectal and prostate cancers
(Canesin et al., 2017).

Clinical trials with several of these drugs have reported
various adverse effects. For example, while being well tolerated
by the patients with solid tumors, Ipafricept caused at least one
of the treatment-emergent adverse events including dysgeusia,
decreased appetite, fatigue, muscle spasms, and nausea, each
of which were observed in at least 20% of patients (Jimeno
et al., 2017). Different dose combinations of Vantictumab have

been tested for 23 patients with advanced solid tumors, and
likewise caused fatigue, nausea, vomiting, abdominal pain,
constipation, and diarrhea as most common related adverse
effects (Smith et al., 2013). First-in-human study of OTSA-
101 on metastatic synovial sarcomna patients have reported
lymphopenia, anemia, leucopenia, asthenia, hemoptysis,
thrombocytopenia, neutropenia, and anorexia in some or
all patients depending on the applied doses (Giraudet et al.,
2018). The anti-DKK1 antibody DKN-01 also appears to cause
adverse effects including cough, peripheral neuropathy, alopecia,
leukopenia, neutropenia and fatigue in patients of refractory
esophageal cancer or gastro-esophageal junction tumors
(Bendell et al., 2016). Thus, further detailed investigations are
absolutely necessary to assess the potential of Wnt inhibitors in
therapeutic interventions.

CONCLUSION

The plasma membrane composition and organization play an
important role in regulation of Wnt signaling by controlling
ligand-receptor interaction and signal initiation. Since plasma
membrane is highly dysregulated in cancer, it is essential
to consider the unique organization of the Wnt-receptor
complex for specific and effective targeting of the cancer cell.
Understanding complex molecular interactions underlying
Wnt-mediated cellular events at the plasma membrane has
the potential to reveal attractive drug targets in cancers,
and potentially other diseases, where Wnt signaling is
extensively involved.
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