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Objective: Increasing pieces of evidence suggest that abnormal brain connectivity
plays an important role in the pathophysiology of schizophrenia. As an essential
strategy in psychiatric neuroscience, the research of brain connectivity-based
neuroimaging biomarkers has gained increasing attention. Most of previous studies
focused on a single modality of the brain connectomics. Multimodal evidence
will not only depict the full profile of the brain abnormalities of patients but
also contribute to our understanding of the neurobiological mechanisms of
this disease.

Methods: In the current study, 99 schizophrenia patients, 69 sex- and education-
matched healthy controls, and 42 unaffected first-degree relatives of patients
were recruited and scanned. The brain was parcellated into 246 regions and
multimodal network analyses were used to construct brain connectivity networks for
each participant.

Results: Using the brain connectomics from three modalities as the features,
the multi-kernel support vector machine method yielded high discrimination
accuracies for schizophrenia patients (94.86%) and for the first-degree relatives
(95.33%) from healthy controls. Using an independent sample (49 patients
and 122 healthy controls), we tested the model and achieved a classification
accuracy of 64.57%. The convergent pattern within the basal ganglia and
thalamus–cortex circuit exhibited high discriminative power during classification.
Furthermore, substantial overlaps of the brain connectivity abnormality between
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patients and the unaffected first-degree relatives were observed compared to
healthy controls.

Conclusion: The current findings demonstrate that decreased functional
communications between the basal ganglia, thalamus, and the prefrontal cortex
could serve as biomarkers and endophenotypes for schizophrenia.

Keywords: schizophrenia, classification, magnetic resonance imaging, endophenotype, relatives

INTRODUCTION

Although numerous studies have been performed to discover the
objective diagnostic biomarkers for schizophrenia, there is still
remarkably less information available besides symptom-based
assessments. The lifetime prevalence of schizophrenia is up to
1%, with a high contributing 13.4 million years of life lived
with disability to the burden of disease globally (Charlson et al.,
2018), which have been characterized by impaired semantics,
hallucinations, delusions, loss of initiative, and impairments in
cognitive functions (Owen et al., 2016). As a neuropsychiatric
disorder, schizophrenia reflects the structural and functional
changes of the brain; therefore, the well-developed neuroimaging
approaches may provide potential biomarkers supporting an
auxiliary diagnosis of this disease (Scognamiglio and Houenou,
2014; Voineskos, 2014). As a polygenic hereditary disorder,
the approximately estimated heritability of schizophrenia is
0.8 (Sullivan et al., 2003), and it is hypothesized that the
identification of the neuroimaging-based “endophenotypes,”
which are more proximal to genetic influences than the illness
itself (Winkler et al., 2010), will contribute to elucidating
the biological mechanisms underlying schizophrenia and to
identifying individuals at high risk.

The dysconnection hypothesis, which has been corroborated
by structural and functional evidence, suggests that the
dysconnectivity of functional brain networks, instead of a
localized neural deficit, is linked to the neurological symptoms
and cognitive impairments of schizophrenia (Vogeley and
Falkai, 1998; Wagner et al., 2015; O’Neill et al., 2018).
With the advance of neuroimaging techniques, studies have
begun elucidating abnormalities in communications across
brain regions and assessing the relationships between these
abnormalities and the severity of the symptoms in schizophrenia
(Fitzsimmons et al., 2013; Birur et al., 2017). Converging
evidence from functional neuroimaging studies have revealed
that functional connectivity of the prefrontal cortex (PFC) is
reduced in schizophrenia (Zhou et al., 2015), with several
independent studies reporting reduced intra-PFC connectivity in
schizophrenia (Karbasforoushan and Woodward, 2012). A meta-
analysis found hypoconnectivity in areas like the ventromedial
PFC, hippocampus, and posterior cingulate cortex and, at the
same time, hyperconnectivity/activity in the lingual gyrus in
patients suffering from schizophrenia compared with healthy
controls (Kühn and Gallinat, 2013). Even without obvious
behavioral impairments, a decreased activity in the dorsal
PFC was also observed in the unaffected relatives of patients
with schizophrenia (Meda et al., 2008). Additionally, previous

studies have frequently reported altered connectivity between
the cortical and subcortical regions in schizophrenia, such as
between the thalamus and cortex and between the posterior
cingulate cortex and cerebellum (Byne et al., 2009). While
dysconnectivity is strongly supported by empirical evidence
from functional MRI, it is plausible to hypothesize that the
connection problems originated in the disrupted structures.
Enlarged lateral ventricles and reduced gray matter (GM)
volume in the frontal operculum and lateral temporal lobes
have been consistently reported (Wright et al., 2000; Horga
et al., 2011). Recent advancement in diffusion MRI facilitates
capturing subtle white matter abnormalities in schizophrenia,
which cannot be detected by structural MRI (sMRI) alone.
A recent meta-analysis revealed white matter bundle alterations
consisting of callosal and commissural fibers, part of the
motor descending fibers, and fronto-temporal-limbic pathways
(Vitolo et al., 2017).

Most of the previous studies have focused only on
single modalities, each of which has its own strengths and
challenges (Jeurissen et al., 2011; Deloche et al., 2015). Different
neuroimaging modalities provide different views of brain
function or structure. Intuitively, the integration of multiple
modalities may uncover the previously hidden information that
cannot be found using any single modality. Given the limitations
of single modalities, multimodal analysis provides a new avenue
for reappraising the common beliefs of schizophrenia pathology
and provides a full profile of the brain changes in mental
disorders (Li et al., 2017, 2019, 2020). However, studies that
combined these three modalities are still scarce. On the other
hand, as a polygenic hereditary disorder, the approximately
estimated heritability of schizophrenia is 0.8 and the SNP-based
heritability is ∼20%, indicating that most of the heritability is
unexplained. The brain alterations of the unaffected relatives
of schizophrenia patients may deepen our understanding of
this disease (Sullivan et al., 2003). It is hypothesized that shared
neuroimaging abnormalities are considered genetically driven
markers of risk. However, so far, the full profiles of the brain
abnormalities of the at-risk yet healthy relatives of patients have
not been fully exploited.

Very naturally, this study had three major objectives: (a)
to determine whether the support vector machine (SVM)
classifier established on integrated neuroimaging data from
multimodalities can reliably distinguish patients and the
unaffected first-degree relatives from healthy controls and to
further verify the classifier in an independent sample; if so,
(b) which regions show the highest discriminative power in
discriminating schizophrenic patients and healthy subjects; and
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(c) to further investigate whether first-degree relatives share some
overlapping abnormalities with schizophrenic patients.

MATERIALS AND METHODS

Participants
Ninety-nine patients with chronic schizophrenia, 42 unaffected
first-degree relatives of patients with schizophrenia, and 69
healthy control subjects were recruited for this study; the
patients were identified at the Beijing Hui-Long-Guan Hospital,
Beijing, China. The diagnosis of schizophrenia was made by one
experienced psychiatrist (Zhao RJ) according to the Diagnosis
and Statistic Manual of Mental Disorders, 4th edition (DSM-
IV) criteria for schizophrenia using the Structured Clinical
Interview for DSM-IV-TR Axis I Disorders, Patient Edition
(SCID-I/P). All of the patients were evaluated for the severity
of symptoms using the Positive and Negative Syndrome Scale
(PANSS) within 1 week of the MRI scan. Of the 99 patients
with schizophrenia, 19 were first-episode drug-naive patients,
and 80 of them have been medicated (the drugs used include
risperidone, olanzapine, aripiprazole, clozapine, quetiapine,
ziprasidone, and amisulpride). To exclude the illness state-
induced heterogeneity, an independent analysis was conducted
on a sample that only included the 80 medicated patients
(see Supplementary Table 5). The healthy controls did not
have a family history of schizophrenia, personal psychiatric,
or a neurological disorder. The following exclusion criteria
were applied to all groups: (a) <18 or >45 years of age;
(b) left-handedness; (c) history of brain trauma with loss of
consciousness, neurological diseases, or serious physical diseases
(such as respiratory disorders and cardiovascular disease); (d)
diagnosis of alcohol/substance abuse within 12 months before
participation; and (e) contraindications for MRI scan.

Independent Sample
We used a separate dataset (from the website https://openfmri.
org/dataset/ds000030/) to test whether the models of the
classification are robust. This dataset included 171 participants,
which consisted of 49 patients with schizophrenia (age,
36.13 ± 8.89 years; gender, 36 males) and 122 healthy controls
(age, 31.59± 8.81 years; gender, 65 males).

Neuroimaging Data Acquisition and
Preprocessing
Resting-state functional MRI (fMRI) data, diffusion tensor
imaging (DTI) data, and T1-weighted 3D high-resolution
brain images were acquired for each subject on a Siemens
MAGNETOM Trio 3.0-T imaging system with a standard head
coil at the Peking University Third Hospital.

For image registration, high-resolution structural T1 MRI
data were acquired with the following acquisition parameters:
256 × 256 matrix size, 192 contiguous axial slices, 1 mm slice
thickness, 1 × 1 × 1 mm3 voxel resolution, 7◦ flip angle, 3.44 ms
echo time, 2,530 ms repetition time, and 1,100 ms inversion time.

Resting-state functional scans were obtained using a gradient-
recalled echo-planar imaging (GRE-EPI) sequence that was

sensitive to blood oxygen level-dependent contrast (2,000 ms
repetition time, 30 ms echo time, and 90◦ flip angle). The slice
thickness was 4 mm (no gap) with a matrix size of 64 × 64
and a field of view of 220 × 220 mm2, resulting in a voxel
size of 3.4 × 3.4 × 4.0 mm3. Each brain volume comprised
33 axial slices, and each functional run contained 240 image
volumes. During data acquisition, the subjects were instructed to
close their eyes, relax, and remain awake. The head movement
represents a major confound, and there are two methods to
detect excessively moving subjects in the present study. Firstly,
the MRI machine we used has a monitor to tell the head
movement, so patients with excessive motions were excluded
during the data collection. Secondly, the preprocessing section
also calculated the head motion and tried to exclude the patients
with excessive head movements. Frame-wise displacement (FD)
was calculated to measure volume-to-volume changes in head
position. There was no significant difference among these groups
in FD [F(2,210) = 1.47, p = 0.23], and none of them had greater
than 0.5 mm in FD scores.

Diffusion tensor imaging data were collected using a diffusion-
weighted single-shot spin-echo planar imaging sequence with
the following parameters: repetition time, 7,000 ms; echo time,
92 ms; field of view, 256 × 256 mm2; b0 image and 64 gradient
directions at b = 1,000 s/mm2; matrix size, 128 × 128; voxel, size
2.0× 2.0× 3.0 mmł; and number of slices, 50.

The T1-weighted structural data were preprocessed using
the VBM toolbox in SPM12 software1. The fMRI data were
preprocessed by SPM12 and Data Processing and Analysis for
Brain Imaging package2. The PANDA toolbox3 was adopted
to preprocess the DTI data. Detailed descriptions of the data
preprocessing procedures are in the Supplementary Material.

Quality control of the neuroimaging data was performed
manually by visually inspecting the data at each step in
the processing pipeline. To ensure a standard operation
procedure, the fMRI scan will be performed with the same
scanner and operator.

Network Construction
The Human Brainnetome Atlas (Fan et al., 2016) was used to
segment the brain into 246 regions (Supplementary Table 1
lists the labels, names, and abbreviations for these regions)
to define the nodes of the brain networks. Specifically, the
construction details of the morphological network, functional
network, and DTI network are as follows:Morphological networks
(T1): To quantify individual morphological relations of the
brain regions, the Kullback–Leibler divergence-based similarity
(KLS) measurement was utilized to construct networks based
on the T1 data. The closer the GM density distribution of
two brain regions, the higher is the KLS value [for a detailed
description of this approach, please refer to Kong et al. (2014)
and Wang et al. (2016)].

Functional networks: A time series of the low-frequency
blood oxygenation level-dependent (BOLD) signals was extracted

1http://www.fl.ion.ucl.ac.uk/spm
2http://www.rfmri.org/dpabi
3https://www.nitrc.org/projects/panda/
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for each of the 246 regions and averaged over all voxels in
each node. For each subject, the time series of all 246 regions
were correlated with each other to create an undirected and
weighted correlation matrix using Pearson’s correlation. These
steps were performed with the CONN toolbox4. In contrast to
partial correlation, the Pearson’s correlation coefficient is gaining
higher values of reproducibility. In this network, each region
represents a node with the correlation coefficients of the time
series between the different regions defining the edges, resulting
in a 246 × 246 connectivity matrix. No global signal regression
was performed as it may result in a lower reproducibility of the
network metrics.

Anatomical networks (DTI): The anatomical network of each
subject was constructed by the DTI data using the probability
tracking algorithm. Firstly, the T1-weighted structural images
and the corresponding fractional anisotropy (FA) map were
registered. Secondly, the Human Brainnetome Atlas template
was registered into the individual DTI space. Thirdly, these
246 nodes were used as the seed points, respectively, to
carry out probability tracking using the FDT of the FSL
package. Typically, the connection probability of two brain
regions has directivity (A→B is different from B→A).
The connection probability PAB is defined by the average
of PA→B and PB→A.

Multiple-Kernel SVM Classifier
In this article, multiple kernel support vector machine (MK-
SVM) was used, which can integrate multiple modalities of
heterogeneous connection data (i.e., T1, fMRI, and DTI) for
the individual classification of patients with schizophrenia
(or first-degree relatives) from healthy controls (Zhu et al.,
2014) since most of the classification studies of psychosis
are focused on one modality and employed single-kernel
SVM approaches. In general, each kernel is associated with
a specific source of information and their combination
is carried out to exploit complementary content coming
from several features and modalities. Let us suppose there
are n numbers of training samples and each of them is of
the M numbers of modalities. Let xmi represent a feature
vector of the m-th modality of the i-th sample, and its
corresponding class label be yi ∈ Error! Bookmark not defined.
Multiple-kernel-based SVM solves the following
primal problem:

min
wm,b,ξ

1
2

M∑
m = 1

βm
∣∣∣∣wm∣∣∣∣2 + C

n∑
i = 1

ξi

s.t.yi(
M∑

m = 1

βm(wm)Tφm(xmi )b) ≥ 1−ξi (1)

ξ ≥i = 0, i = 1, · · · , n

where wm, φm, and βm ≥ 0 denote the normal vector of
the hyperplane, the kernel-induced mapping function, and the

4https://web.conn-toolbox.org/

combined weight on the m-th modality, respectively. As in the
conventional SVM, the dual form of the multiple-kernel SVM can
be represented as below:

max
α

n∑
i = 1

αi−
1
2

∑
i,j

αiαjyiyj
M∑

m = 1

βmkm(xmi , x
m
j )

s.t.
n∑

i = 1

αiyi = 0 (2)

0 ≤ α i ≤ C, i = 1, 2

where km(xmi , x
m
j ) = ϕm(xmi )Tϕm

(
xmj
)

is the kernel function
for the two training samples on the m-th modality. The symbol
n is the number of training samples. For a new test sample
x = {x1, x2, ..., xM }, km(xmi , x

m
j ) = ϕm(xmi )T ϕm (xm) is

firstly denoted as the kernel between the new test sample and
each training sample on the m-th modality. Then, the decision
function for the predicted label can be obtained as below:

f (x1, x2, ..., xM) = sign(
n∑

i = 1

yiαi
M∑

m = 1

βmkm
(
xmi , x

m)
+b)

(3)
It is easy to show that the multiple-kernel-based SVM can

be naturally embedded into the conventional single-kernel SVM
if interpreted k(xi, xj) =

∑M
m=1 βmkm

(
xmi , x

m
j

)
and xj, and

k(xi, x) =
∑M

m=1 βmkm
(
xmi , x

m) as a mixed kernel between
the multimodal training sample xi and the test sample x. In fact,
our method can be viewed as a way for a kernel combination that
combines multiple kernels into one kernel.

Different from the previous multi-kernel learning method, the
present method constrains

∑M
m = 1 βm = 1 and uses a coarse-

grid search through cross-validation on the training samples to
find the optimal values instead of jointly optimizing the weights
βm together with other SVM parameters in an iterative way. After
obtaining the values of βm, these values were used to combine
multiple kernels into a mixed kernel and then standard SVM
was performed using the mixed kernel. This kernel combination
method can provide a convenient and effective way of fusing
various data from different modalities.

Subsequently, t-tests comparing every connection between the
patients with healthy controls (and first-degree relatives with
healthy controls) were performed separately for the training set,
yielding a p-value for each connection. Since the dimensions
might be different for the different modalities if we use the
threshold methods, such as a p-value< 0.01, thus, we empirically
selected the top 20 edges from each modality to avoid this
impact. We used cross-validation to select the kernel weight of
the different kernels or modalities, and this method is referenced
to previous studies (Jie et al., 2014; Xu et al., 2020). For each
modality, the top 20 significant connections were selected as
input features for classification (p< 0.001), whereas the rest were
eliminated. A leave-one-out cross-validation strategy was used,
with inner cross-validation to determine the optimal parameters
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and outer cross-validation to determine the classification
performance, as done in the previous study. The parameters,
weight-combined mixed kernel, i.e., βm in Eq. 1, of which
classifier that showed the best classification performance were
determined through the mentioned validation methods. A 10-
fold cross-validation was also conducted to avoid overfitting.
According to the different combinations, seven models were
trained and summarized to compare the judgment effects of
single modes and different modal combinations (including fMRI,
DTI, sMRI, fMRI + DTI, fMRI + sMRI, DTI + sMRI, and
fMRI+ DTI+ sMRI).

RESULTS

Demographics
The demographic and clinical data are summarized in Table 1.
The groups did not differ in gender or educational level. The first-
degree relatives were older than the schizophrenia patients (SZs)
and the healthy controls [F(2,205) = 11.85, p < 0.05]. Significant
differences were found across groups in the test scores for digit
symbol coding (p < 0.05) and verbal fluency (p < 0.05). The
SZs performed significantly worse on all of the cognitive tests
compared with the healthy controls.

Networks and Classification
Firstly, to provide a profile of the multimodal networks, Figure 1
depicts the connectivity network for the healthy controls at
the group level. The multimodal brain patterns we identified
are consistent with a recent study, which also used multimodal
analysis and found similar patterns in the healthy control group
(Zhao et al., 2019). Figure 2 illustrates the hub regions in each
network. The hub regions of the three major networks differed
greatly. In the present study, two separate SVMs were utilized to
classify patients from healthy controls and to classify unaffected
relatives from healthy controls. For each classification, seven

models were trained and summarized to compare the judgment
effects of single modes and different modal combinations
(including fMRI, DTI, sMRI, fMRI + DTI, fMRI + sMRI,
DTI+ sMRI, and fMRI+ DTI+ sMRI).

For the classification of patients and healthy controls, the
functional network constructed using fMRI exhibited a relatively
high accuracy rate (83.43%). The morphological networks
constructed using the T1 image achieved an accuracy rate of
84.57%. The anatomical network constructed using the DTI data
achieved the highest accuracy rate (89.71%). The classification
accuracy was improved after combining the network features of
the three modalities, achieving an accuracy of up to 94.86% with
sensitivity and specificity of 92.86 and 96.19%, respectively. For
the single-modality analyses, to classify relatives from healthy
controls, the anatomical network constructed using the DTI data
exhibited the highest accuracy rate (91.59%), followed by the
functional network constructed using fMRI, which achieved an
accuracy rate of 80.37%. The accuracy rate of the morphological
network was 71.96%. Similarly, the classification accuracy was
improved after combining the three modalities, achieving an
accuracy of up to 95.33% with sensitivity and specificity of 94.29
and 91.90%, respectively; for details, see Table 2.

To test the generalizability of the models, validation
(by direct application) of the prediction models should be
tested in independent samples. We downloaded an open
neuroimaging dataset from the OpenfMRI database (UCLA
Consortium for Neuropsychiatric Phenomics5), which
includes both healthy individuals (n = 122) and individuals
with schizophrenia (n = 49). The classifier achieved an
accuracy of up to 64.57% with sensitivity and specificity of
70 and 60.95%, respectively (for details, see Table 3). The
multiple-kernel SVM classifier generated from the dataset
of the present study was used to predict group membership
of the cross-validation testing datasets. Each of the new

5https://openfmri.org/dataset/ds000030/

TABLE 1 | Demographic and clinical features of the participants in each group.

Characteristic Schizophrenia patients
(n = 99)

First-degree relatives
(n = 42)

Healthy control
(n = 69)

Statistics p

Mean (SD) Mean (SD) Mean (SD)

Age (years) 29.84 (8.55) 32.76 (7.97) 25.62 (5.95) 11.69 0.00

Sex (male/female) 39/60 17/25 38/31 4.43 0.11

Education (years) 12.68 (3.04) 11.6 (4.31) 13.35 (4.26) 2.33 0.10

Age of onset (years) 24.31 (7.52)

Duration of illness (years) 5.58 (5.33)

PANSS score

Total 79.37 (7.33)

Positive 26.12 (4.06)

Negative 16.52 (3.69)

General 35.73 (6.54)

Cognitive performance

Digit span 13.55 (3.30) 13.86 (9.41) 15.36 (3.36) 2.64 0.08

Verbal fluency 19.05 (6.51) 21.25 (5.75) 22.76 (5.18) 7.86 0.00

Digit symbol coding 44.61 (13.03) 57.63 (13.97) 64.06 (13.72) 43.73 0.00
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FIGURE 1 | Group networks in healthy controls.

FIGURE 2 | Hub regions for the three networks in healthy controls.

TABLE 2 | Discrimination accuracy of the different models.

Data modality SZ/HC First-degree relatives/HC

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

fMRI 83.43 75.71 88.57 80.37 87.14 67.57

DTI 89.71 85.71 92.38 91.59 87.14 89.19

T1 84.57 80 87.62 71.96 84.29 48.65

fMRI + DTI 91.43 87.14 94.29 93.46 94.29 97.30

DTI + T1 90.29 84.29 94.29 83.18 90 70.27

fMRI + T1 92.57 90 94.29 90.65 90 91.89

fMRI + DTI + T1 94.86 92.88 96.19 95.33 94.29 91.90

fMRI, functional MRI; DTI, diffusion tensor imaging; SZ, patients with schizophrenia; HC, healthy controls.

datasets underwent identical preprocessing procedures
to the original training cohorts. We predicted the group
membership (SZ vs. healthy control) on these new subjects
using the SVM models that were trained on the initial training
cohort of subjects.

Discrimination Features
The overlapped connections for the classification model that
combined the three modal networks were examined. For each
modality, the top 20 significant connections were selected
as input features for classification (p < 0.001), whereas the
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TABLE 3 | Discrimination accuracy of the trained models in an independent
sample.

Data modality SZ/HC

Accuracy (%) Sensitivity (%) Specificity (%)

fMRI 51.43 94.29 25.71

DTI 62.28 52.86 68.57

T1 50.86 90 21.9

fMRI + DTI 52 90 26.67

DTI + T1 62.86 55.71 67.62

fMRI + T1 63.42 55.71 68.57

fMRI + DTI + T1 64.57 70 60.95

fMRI, functional MRI; DTI, diffusion tensor imaging; SZ, patients with schizophrenia;
HC, healthy controls.

rest were eliminated. However, in the cross-validation process,
different top 20 significant connections were used for the
different sample combinations. In Figure 3, all of the identified
connections were displayed. To obtain a clearer point, 20
connections which showed the most significant contributions
to the classifier with the best classification performance
were selected for display (see Supplementary Tables 2–4).
In the functional network, there were substantial overlapped
changes between patients with schizophrenia and the unaffected
first-degree relatives (see Figures 3A,B and Supplementary
Table 2). There were 16 connections of the functional networks
showing decreased functional connectivity in patients with

schizophrenia compared with healthy controls, which were
connections between the basal ganglia (BG) and superior
frontal gyrus, para-hippocampus, and orbital frontal gyrus.
Four of the decreased functional connections were also found
in the unaffected first-degree relatives, whereas the functional
connectivity between the thalamus and orbital frontal gyrus was
increased in the patients and in the first-degree relatives. Frontal
abnormal connections were revealed primarily with the insular,
temporal, and BG regions.

All connections used in the feature set identified from the
anatomical network (DTI) were decreased in the patient group
compared with the healthy controls, and 12 of the connections
showed decreased connectivity in the unaffected first-degree
relatives (see Figures 3C,D and Supplementary Table 3). Most
of the decreased connections were distributed within the PFC,
with several connections between the BG and inferior frontal
gyrus. The unaffected first-degree relatives showed an increase
in connectivity between the inferior temporal gyrus and the
superior frontal gyrus.

All of the connections identified from the morphological
network (T1) found an increased connection for most of
the connections in patients and in unaffected first-degree
relatives compared to healthy controls (see Figures 3D,E and
Supplementary Table 4). There were confidential overlaps
between the increased connection in patients suffering from
schizophrenia and in first-degree relatives, and most of the
increased connections were located in the para-hippocampus, the
thalamus, and the PFC.

FIGURE 3 | The features identified via the different modalities. (A) features used in functional network (SZ vs. HC), (B) features used in morphological network (SZ vs.
HC), (C) features used in anatomical network (SZ vs. HC), (D) features used in functional network (first-degree relatives vs. HC), (E) features used in morphological
network (first-degree relatives vs. HC), (F) features used in anatomical network (first-degree relatives vs. HC). SZ, patients with schizophrenia; HC, healthy controls.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 February 2021 | Volume 9 | Article 631864

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-631864 February 19, 2021 Time: 19:1 # 8

Lin et al. Identifying Brain Connectomic Biomarkers for Schizophrenia

DISCUSSION

This study investigated the intrinsic brain connectivity changes
across multiple imaging modalities in patients with schizophrenia
and their first-degree relatives. The results indicated that
the convergent pattern was mostly located within the para-
hippocampus and basal ganglia–thalamus–cortex circuit, and
the features extracted from the three modalities yielded high
classification accuracies both for the discrimination of patients
and first-degree relatives.

Decreased Functional Connections
Between the Basal Ganglia,
Para-Hippocampus, and Prefrontal
Cortex in Patients and in First-Degree
Relatives
In the present study, the functional network was constructed
by connectivity strengths, which were estimated by Pearson’s
correlation for each pair of brain regions, and yielded a diagnostic
accuracy of approximately 83.43% for identifying the patients
from healthy controls and a distinguishing accuracy of 80.37%
for identifying the first-degree relatives. It was found that the
schizophrenia group predominately exhibited weaker strengths
of functional connectivity compared to the healthy group. In
the exploration of the different brain regions, it was revealed
that the serious dysconnectivities mainly appeared on the BG
and PFC, especially the decreased functional connectivity within
the PFC, which is consistent with previous studies (Zhou
et al., 2015). There are plenty of studies that have reported
the abnormal functional communication within the BG (Avram
et al., 2018) and thalamus with cortex (Byne et al., 2009),
although with less consistency. However, only a small number
of studies have reported an altered BG function (including the
midbrain) in schizophrenia. BG contains some of the most
important dopamine regulatory regions, and an in-depth review
(Chakravarthy et al., 2010) provided a comprehensive summary
about the BG’s function [for more details, see Chakravarthy et al.
(2010)]. Several studies have suggested that BG size can be a
candidate biomarker to evaluate the effectiveness of antipsychotic
response (Hutcheson et al., 2014). In patients with schizophrenia,
the increase of BG volume is also related to D2 blockage due to
antipsychotic administration (Zampieri et al., 2014). However,
most of previous studies focused on the structural size of this
area, and the brain connectivity has been scarcely investigated
(Yoon et al., 2013). In the present study, the dysfunction of
the communication between the PFC and BG is consistent with
the hypothesis that BG inputs to the PFC act as a “gate” that
typically mediates the behaviors. Although there are several
divergent abnormalities in the relatives and patients, there are
substantial overlapped alterations in functional connectives that
could serve as endophenotypes. It was found that both the
unaffected relatives and the patients exhibited weaker strengths
of the functional connectivity between the para-hippocampus
and PFC than healthy controls. A previous study revealed the
decrease in volume of the para-hippocampus (Seidman et al.,
2014) and PFC in the first-degree relatives of patients with

schizophrenia (Faraone et al., 2003), and a decreased functional
communication between the para-hippocampus and PFC was
also reported during both rest and task (Eryilmaz et al., 2016).
Contrary to the reduced functional connectivity between the
thalamus and PFC in patients suffering from schizophrenia, the
unaffected relatives showed an increase in functional connectivity
between the thalamus and middle frontal gyrus.

The Divergent Changes in Structural
Connections Between Patients Suffering
Schizophrenia and the First-Degree
Relatives
The diagnostic accuracy of the anatomical network (DTI) reached
as high as 89.71 and 91.59% for patients and for first-degree
relatives, respectively. All of the connections used in the SVM
were decreased in patients and most of them were decreased in
first-degree relatives, most of which were the connections within
the PFC and several were the connections between the subcortex
and cortex. In a recent study, the investigators collected 4,322
samples from 29 datasets, reporting that FA values were generally
lower among patients than among controls (Kelly et al., 2018).
Surprisingly, the first-degree relatives showed several increased
connections between the PFC with the thalamus and with the
BG. The increased anatomical connections identified from the
DTI were consistent with the increased functional connectivity
between similar brain regions. The decreased functional and
structural connections between the thalamus and PFC have been
consistently reported in patients suffering from schizophrenia
(Welsh et al., 2010; Marenco et al., 2012). The compensated
increased functional communication between the thalamus and
PFC may reflect protective brain features for the first-degree
relatives from transition to illness. Contrary to a recently
published study, the morphological networks resulted in the
worst performance when discriminating the patients and the
relatives from healthy controls. All of the connections used in this
study were elevated, both in patients and in first-degree relatives,
with the brain regions showing widespread distribution in the
brain, consisting of the para-hippocampus, inferior prefrontal
gyrus, and the thalamus. The covariant relationships between the
largely distributed brain regions provide evidence for the largely
affected brain regions.

So far, several studies have been conducted to investigate the
brain connectivity changes using a multimodal neuroimaging
method. A previous study combined the fractional amplitude
of low-frequency fluctuations, GM, and FA measures, which
suggested that the linked functional and structural deficits
in the distributed cortico-striato-thalamic circuits may be
closely related to cognitive impairments in schizophrenia
(Sui et al., 2015). Xu et al. (2009) also identified four
networks that were significantly associated with schizophrenia,
including the temporal brain regions with the corpus callosum,
frontal brain regions with the occipital fasciculus, the largely
distributed frontal/parietal/occipital/temporal brain regions with
the superior longitudinal fasciculus, and the parietal/frontal with
the thalamus, reflecting the widespread nature of the disease.
Despite the theoretical importance of investigating the brain
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abnormalities in unaffected first-degree relatives, few studies have
investigated this issue by combining multimodal MRI features
(Cooper et al., 2014). The present study focused on multimodal
brain features in patients suffering from schizophrenia and
in the unaffected first-degree relatives and found consistently
decreased connections within the PFC and between the BG and
cortex in relatives and patients compared to healthy controls.
In comparison, the unaffected first-degree relatives showed an
increase in structural and functional connectivity between the
thalamus and PFC. This study suggested that the similarity
between the unaffected relatives and patients suffering from
schizophrenia reflects genetic influences on brain functions,
which could serve as potential endophenotypes. In contrast, the
opposite brain changes in relatives may serve as protective factors
for the unaffected relatives.

Limitations
The present study has some limitations. Firstly, most
patients with schizophrenia enrolled in this study had taken
antipsychotics; the effects of medication on the brain changes
were not investigated here. Secondly, the age range is slightly
different across three groups as the first-degree relatives and the
enrolled patients were older than the healthy controls. However,
considering the relatively small age range, we did not conduct
further analysis to exclude the effect of age on out results.

CONCLUSION

Although the connections identified by each modality differed,
the convergent pattern is that all the brain connections identified
and used to identify patients and relatives from healthy controls
were mostly located within the para-hippocampus and the
basal ganglia–thalamus–cortex circuit. The substantial overlaps
between the patients and the unaffected first-degree relatives
constitute candidate psychosis endophenotypes. The present
study lends weight to previous suggestions that schizophrenia
arises from the dysfunction of neural connectivity, which is
sensitive to genetic influences.
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