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Extracellular vesicles (EVs) have emerged as key players of intercellular communication

and mediate crosstalk between tissues. Metastatic tumors release tumorigenic EVs,

capable of pre-conditioning distal sites for organotropic metastasis. Growing evidence

identifies muscle cell-derived EVs and myokines as potent mediators of cellular

differentiation, proliferation, and metabolism. Muscle-derived EVs cargo myokines and

other biological modulators like microRNAs, cytokines, chemokines, and prostaglandins

hence, are likely to modulate the remodeling of niches in vital sites, such as liver and

adipose tissues. Despite the scarcity of evidence to support a direct relationship between

muscle-EVs and cancer metastasis, their indirect attribution to the regulation of niche

remodeling and the establishment of pre-metastatic homing niches can be put forward.

This hypothesis is supported by the role of muscle-derived EVs in findings gathered from

other pathologies like inflammation and metabolic disorders. In this review, we present

and discuss studies that evidently support the potential roles of muscle-derived EVs in the

events of niche pre-conditioning and remodeling of metastatic tumor microenvironment.

We highlight the potential contributions of the integrin-mediated interactions with an

emerging myokine, irisin, to the regulation of EV-driven microenvironment remodeling

in tumor metastasis. Further research into muscle-derived EVs and myokines in

cancer progression is imperative and may hold promising contributions to advance

our knowledge in the pathophysiology, progression and therapeutic management of

metastatic cancers.

Keywords: extracellular vesicles, muscle, integrins, myokines, tumor metastasis, tissue microenvironment,

homing niche, irisin

INTRODUCTION

Extracellular vesicles (EVs) are secreted by all cell types of the body, including tumor cells
and can be isolated from various biological fluids (Neven et al., 2017). Initially thought to be
cellular “trash bins” containing unwanted excretes, EVs in recent times have insightfully been
recognized as significant players in proximal and distal intercellular communication. A peculiar

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.634853
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.634853&domain=pdf&date_stamp=2021-02-05
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kwekuadarkwah@gmail.com
mailto:motomushimaoka@gmail.com
https://doi.org/10.3389/fcell.2021.634853
https://www.frontiersin.org/articles/10.3389/fcell.2021.634853/full


Darkwah et al. Muscle-EVs in Microenvironment Remodeling

characteristic of EVs is their ability to cargo several biologic
materials, capable of influencing physiological and pathological
processes (Frühbeis et al., 2013; Regev-Rudzki et al., 2013; Abels
and Breakefield, 2016) (Figures 1, 2). In recent times, rapid
progress is being made with regards to the implementation of
EVs in therapeutic interventions in the areas of inflammation,
metabolic disorders, vaccination and drug delivery (Viaud et al.,
2010; Lee et al., 2012; Hagiwara et al., 2014). Muscle-derived
EVs have gained attention owing to their beneficial function
in modulating metabolism, cell differentiation and regeneration
(Choi et al., 2016; Takafuji et al., 2020a). It remains yet to be
confirmed, the direct role of muscle-derived EVs in regulating
cancer progression and metastasis, however, the evidence of
regulatory properties of muscle EVs and myokines on other
cell types hold promising cues for their potential role in tumor
spread (Gannon et al., 2015; Zhang et al., 2018). In this review,
we summarize the biogenesis, characteristics and functions, as
well as recent findings on how muscle-derived EVs mitigate
or aggravate disease conditions. We also attempt to spotlight
the potential role of muscle EVs in remodeling metastatic pre-
conditioning events via irisin-triggered integrin signaling.

BIOGENESIS, CHARACTERISTICS, AND
FUNCTION OF EXTRACELLULAR
VESICLES

Extracellular vesicles (EVs) describe the heterogenous collection
of a highly conserved system for intercellular communication,
within which cells are able to exchange information in the form of
biologically functional components: nucleic acids, proteins, and
lipids (Stahl and Raposo, 2018; Wiklander et al., 2019). EVs are
released by all cell types as membrane-bound spherical structures
that originate from the endosome or plasma membrane, and are
present in many body fluids, such as blood, urine, semen, saliva,
and breast milk (Neven et al., 2017). The term, “extracellular
vesicles” is generic and hence specific properties, such as the
origin/source, physical characteristics and biochemical properties
are required to adequately define the various subtypes (Théry
et al., 2018).

Classically, EVs are broadly categorized into three vesicular
types depending on their biogenesis; outward budding or
fusion of multivesicular bodies (MVB) with plasma membrane.
This classification gives rise to three distinct vesicle types,
namely, Exosomes (EXOs), microvesicles (MVs), and apoptotic
bodies (Akers et al., 2013) (Figure 1). EVs are isolated from
biological samples via a myriad of isolation methods, such
as precipitation, filtration, centrifugation, and a combination
of different method. However, specificity and recovery of
EVs may greatly vary per the isolation methods used to
obtain them. Additionally, the presence of EVs in biological
samples are confirmed by specific protein and lipid markers
(present or absent) on the various subtypes. Well-documented
guidelines outlining the recommended protocols for EVs and
their documentation (provided by the International Society of
Extracellular Vesicles-ISEV) exist. These guidelines encompass
protocols and recommendations designed for the efficient

characterization, isolation, and functional studies of EVs (Théry
et al., 2018).

Exosomes
Exosomes, which are nano-sized vesicles ranging between small
diameters of about 30–150 nm, are derived from the endosomal
system. The formation and secretion of exosomes begin
with the invagination of the plasma membrane (endocytosis)
to form a cup-like structure harboring cell-surface proteins
and extracellular deposits (Kalluri and LeBleu, 2020). This
invagination forms an early endosome which then mature to
form late endosomes. Subsequently, intraluminal vesicles (ILVs)
are formed by the progressive, inward budding of the late
endosomal membrane. The accumulation of ILVs in the late
endosome generates multivesicular bodies (MVBs) (Kalluri and
LeBleu, 2020; Yue et al., 2020). At this stage, MVBs can fuse
with autophagosomes or lysosomes for the degradation of their
endosomal contents. Degraded components can then be recycled
by the cell. Alternatively, MVBs (containing mature or late
endosomes) that do not traffic to lysosomes move toward the
cytoplasmic side of the plasma membrane with the aid of
the cellular cytoskeletal and microtubule network (Kalluri and
LeBleu, 2020). Here, MVBs are able to dock via MVB-docking
proteins and fuse with the plasma membrane as exocytic MVBs.
Exocytic MVBs release their lipid bi-layered ILV contents to the
extracellular space as exosomes (Kalra et al., 2016) (Figure 1).

It still remains to be completely understood, the processes that
govern the formation of ILVs in MVBs and their further release
as exosomes. However, a proposed mechanism implicated in
this process involves the Endosomal Sorting Complex Required
for Transport (ESCRT). ESCRTs comprise of several proteins
that assemble into four ESCRT complexes: namely ESCRT-
0, -I, -II, and -III, in association with others like ALIX and
vacuolar protein sorting-associated proteins (VPS4, VTA 1)
(Colombo et al., 2013). Initiating this process is the organization
of endosomal membranes into specialized units that are highly
enriched for the tetraspanin class of membrane proteins.
Tetraspanins (e.g., CD63, CD9, and CD81) function to cluster
the required proteins for ILV formation and are considered
common markers for the identification of exosomal vesicles
(Pols and Klumperman, 2009). ESCRTs are then recruited
to the site of ILV formation where ESCRT-0 recognizes and
binds to ubiquitinated proteins present on the outside of the
endosomal membrane. ESCRTs-I and -II are then assembled to
the cytosolic area to initiate and drive intraluminal membrane
budding. The assembling of ESCRT-I/II is reportedly stimulated
by some factors, such as the abundance of phosphatidylinositol
3-phosphate (PIP3) in the membrane early endosomes, ESCRT-
0 proteins (e.g., hepatocyte growth factor-regulated tyrosine
kinase substrate-HRS) and the ubiquitination of the cytosolic
tail of endocytosed proteins and/or their curved membrane
topology (Henne et al., 2013; Abels and Breakefield, 2016).
Upon activation of ESCRT-II, ESCRT-III is recruited through an
associated protein, ALIX. ALIX binds to the tumor susceptibility
gene 101 (TSG101) component of ESCRT-I complex and also
to the charged MVB protein 4A (CHMP4A) components of
ESCRT-III, thus, serving as an intermediate between ESCRT-III
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FIGURE 1 | Biogenesis of exosomes and microvesicles. Inward protrusions from the plasma membrane into the cytoplasm allows for the internalization of

extracellular and transmembrane proteins in the form of early endosomes. Multivesicular bodies (MVBs), as well as intraluminal vesicles originate from invaginated

early endosomes. Large MVBs fuse with the plasma membrane and release exosomes into extracellular space. Vesicles that arise from the outward budding and

fusion of plasma membrane make up ectosomes (microvesicles).

and ESCRT-I association (McCullough et al., 2008). ESCRT-III
in conjunction with deubiquitinating enzymes then finalize the
processes that involve vesicle closure and the detachment of ILVs
from the membrane. ESCRT-III forms structures that constrict
budding neck followed by scissoring of the membrane (driven by
accessory proteins, such as VPS4) and finally, the dissociation and
recycling of the ESCRTmachinery (Kalra et al., 2016; Schöneberg
et al., 2017).

Recent studies identify an alternate ESCRT-independent
pathway for ILV formation which involves clustering of
sphingomyelin in lipid rafts where it is converted to ceramide by
sphingomyelinases. The accumulation of ceramide subsequently
induces the merging of microdomain, thus, triggering ILV
formation (Stuffers et al., 2009; Kalra et al., 2016). As such,
exosomes presumed to be formed through this pathway may
lack the expression of common markers, such as ALIX and TSG
101 involved in the endosomal pathway. Small RAB GTPases
facilitate the docking, fusion and secretion of exosomes. For
example, RAB27A promotes docking of MVBs and fusion to the
plasma membrane, whiles RAB27B is involved in vesicle transfer
from the Golgi to MVBs, and mobilization of MVBs to the actin-
rich cortex under the plasma membrane (Ostrowski et al., 2010;
Kalra et al., 2016).

Microvesicles
Vesicles that arise through direct outward budding and
fission of the plasma membrane are known as microvesicles
(MVs) or ectosomes (Figure 1). These range between relatively

larger diameters of about 50–2,000 nm (Akers et al., 2013).
Ectosome biogenesis involves plasma membrane phospholipid
re-arrangements/redistribution, as well as, contractions of
cytoskeletal proteins.

Enzymes (collectively described as aminophospholipid
translocases) involved in the exchange of lipids between the
inner and outer leaflet of the cell membrane for asymmetric
maintenance are activated to induce changes within the bilayer
to allow for budding and membrane abscission. Flippases are
translocases required for the transfer of phospholipids from
the outer leaflet to the inner leaflet and floppases, on the
other hand, transfer phospholipids from within out. Following
this, actin and myosin interactions within the cytosol induce
the contraction of cytoskeletal structures; a mechanism that
underlies bud formation and subsequent release of ectosome
portions. Microvesicles, like exosomes, can be highly enriched
in sets of proteins and are particularly identified with markers,
such as vesicle-associated membrane protein 3 (VAMP3)
and ADP-ribosylation factor 6 (ARF6) (Hugel et al., 2005;
Muralidharan-Chari et al., 2009).

Apoptotic Bodies
During programmed cell death, apoptotic cells undergo several
stages. These stages begin with condensation of the nuclear
chromatin and then membrane blebbing. Cellular components
that undergo disintegration are then processed into distinct
membrane-enclosed vesicles. These vesicles comprise of a type
of EV known as apoptotic bodies that range in sizes between
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FIGURE 2 | Potential role of irisin-involved integrin signaling cascade in modulating tumor microenvironment remodeling. Irisin exerts anti-inflammatory and cancer

suppressing effects through the reduction in proinflammatory cytokines; via regulation of TLR4/MyD88 downstream signaling (Mazur-Bialy et al., 2017a,b). IL-6

induced EMT is regulated by irisin through STAT3/Snail signaling pathways in osteosarcoma (Kong et al., 2017). EMT inhibition is mediated by irisin signaling via the

inhibition of PI3K/AKT pathway in lung cancer cells (Shao et al., 2017). Activation of CD81/integrin-mediated FAK signaling in response to irisin regulate cell survival,

proliferation and migration (Oguri et al., 2020).

500 and 4,000 nm. Apoptotic bodies pack organelles or cytosolic
components and are capable of transferring genetic information
from cell to cell via their uptake (Bergsmedh et al., 2001; Cocucci
et al., 2009; Kalra et al., 2016).

CELLULAR MICROENVIRONMENTS
(NICHES) AND EXTRACELLULAR
VESICLES

Accumulating evidence has revealed that EVs are involved in
the inter-cellular communication of a wide range of physiology
and pathophysiology (Park et al., 2019a; Wortzel et al., 2019;
Kalluri and LeBleu, 2020). In the following sections, we
focus on an emerging topic (Myint et al., 2020): the roles
of EVs in the regulations of microenvironments supporting
the trafficking of normal (lymphocytes) and transformed (e.g.,
cancer) cells in sections ‘Cellular Microenvironments (Niches)
and Extracellular Vesicles’ and ‘EV-Mediated Remodeling of
Cancer Microenvironment’, respectively.

Efficient migration and retention of specific cell types in
various compartments of the body are supported by a special
microenvironment (homing niche). Such microenvironments
have the ability to maintain specific cell populations away from
apoptotic and differentiation signals, as well as provide an
ambience (cellular structures, extracellular proteins and soluble
factors) for proliferation (Moore and Lemischka, 2006).

EVs in Lymphocyte Homing
The regulated migration of lymphocytes is necessary for
their effective function. This regulation phenomenon termed,
“lymphocyte homing” enables for the trafficking of lymphocytes
to specific sites of the body. Lymphocyte homing has been
particularly demonstrated in gut immunology. Antigen-primed
naïve T lymphocytes in the gut lymph nodes are imprinted to
allow them home back into gut tissues as effector or memory T
lymphocytes: a necessity for efficient adaptive immunity in the
gut mucosa (Myint et al., 2020). High endothelial venules (HEV)
of the gut associated lymphoid tissues (GALT) highly express
mucosal addressin cell adhesion molecule-1 (MAdCAM-1) that
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engages the receptor integrin α4β7 expressed on activated
lymphocytes. This interaction enables for the homing of antigen-
specific B and T lymphocytes into gut tissues (Streeter et al., 1988;
Berlin et al., 1995). The inability of β7 integrin deficient mice to
mount antigen-mediated humoral responses in the gut affirms
the critical role of integrin α4β7 in gut mucosa B-cell immune
responses (Schippers et al., 2012). Additionally, HEVs in GALT
chemo-attract chemokine receptor 7 (CCR7)-bearing naïve and
central memory T lymphocytes via CCL21 (Okada et al.,
2002). Gut-tropic lymphocytes expressing chemokine receptor 9
(CCR9) are signaled by CCL25 and integrin α4β7/MADCAM-
1 expressing epithelial cells of HEV to facilitate their migration
and homing to the gut (Myint et al., 2020). Lymphocyte
homing niche in the gut is physiologically regulated. The
expression of MAdCAM-1 in the gut is stabilized in limited
levels to maintain homeostasis (Pabst et al., 2000). Elevated
signal from inflammatory mediators as seen in gut inflammatory
diseases upregulate MAdCAM-1 expression and promote the
accumulation of activated T lymphocytes that abundantly express
integrin α4β7 (Myint et al., 2020).

Remodeling of homing niches to regulate the tissue-specific
migration and recruitment of activated lymphocytes has been
demonstrated in recent studies. One mechanism by which
the homing niche is remodeled appears to be through gut-
tropic derived exosomal secretions, demonstrated by Park et al.
(2019b). Activated gut-tropic T lymphocytes secrete exosomes
that highly express functional integrin α4β7 with the ability
to bind MAdCAM-1 and preferentially home to the gut
mucosa. These α4β7 expressing exosomes function to suppress
MAdCAM-1 through the cargo and delivery of microRNA
milieu that target the transcriptional factor, Nirenberg-Kim
(NK) 2 homeobox 3 (NKX2.3) necessary for MAdCAM-1
regulation. Consequently, other homing niche factors, such as the
chemokines CCL25 and CCL28 were suppressed by gut-tropic
lymphocyte-derived exosomes (Park et al., 2019b). It is therefore
not far-fetched to consider exosomes of lymphocytes and other
host cells as key remodeling regulators of homing niches to
maintain homeostasis.

Other Homing Niches
EV-mediated regulation of homing niches (by modifying the
expression of adhesion molecules and chemokines) may operate
in stem cell trafficking, and warrants further research. Here we
explain the overview of how integrins and chemokines govern
stem cell trafficking. Physiologically, stem cells home to specific
tissue areas via chemoattraction. For example, hematopoietic
stem cell precursors home to the bone marrow after selectin-
mediated braking (E-selectins, P-selectins, and L-selectins)
that facilitates migration on adhesion ligands expressed by
vascular endothelium (Liesveld et al., 2020). Following braking,
intracellular signaling cascades are activated through chemokine-
chemokine receptor interactions (e.g., CXCL12/CXCR4) to
trigger the activation states of integrins like αLβ2 (LFA-1) and
α4β1 (VLA-4). This facilitates the arrest of cells and their
subsequent migration via integrin/cell adhesionmolecule (CAM)
interaction (Schweitzer et al., 1996; Huttenlocher and Horwitz,
2011; Sahin and Buitenhuis, 2012). Increased CXCL12/CXCR4

signaling is implicated in the retention of leukocytes, such
as mature neutrophils at inflammatory sites (demonstrated in
tissue-damaging inflammatory diseases) (Yamada et al., 2011;
Isles et al., 2019), or in the bone marrow (demonstrated in
Warts, Hypogammaglobulinemia, Infections, and Myelokathexis
(WHIM) syndrome-associated neutropenia) (Kawai andMalech,
2009). Additionally, FoxP3+regulatory T cells trafficking and
homing to hematopoietic stem cell niche in the bone marrow
involves the signaling of CXCR4 (Zou et al., 2004; Hirata
et al., 2018). It has been demonstrated that, loss of adhesion
molecules like integrins (e.g., β7-integrins: α4β7, αEβ7) and
selectins (e.g., P-selectin) influences stem cell and lymphocyte
trafficking (Frenette et al., 1996; Schön et al., 1999; Lucas, 2019).

The subventricular zone (SVZ) of the brain is another
example of a host site that serves as a niche for neural
stem cells (NSC), with inflammation playing a key role in
the homing and recruitment of NSC for CNS regeneration.
Increased expression of stromal derived factor 1α (SDF-1α
or CXCL12) by astrocytes and endothelial cells of ischemic
areas in the brain, as well as their constitutive expression
and activation of CXCR4 (receptor of CXCL12), facilitate
NSC migration toward ischemic brain explants (Imitola et al.,
2004). LeX-positive NSCs (denoting a subpopulation of SVZ
adult stem cells that express the extracellular matrix (ECM)-
associated carbohydrate, Lewis X) potentially differentiate into
cells with neuronal phenotypes following transplantation. These
cells acquire enhanced migratory and proliferative characteristics
upon exposure to SDF-1α (Corti et al., 2005). Other soluble
factors involved in the migration and recruitment of NSCs
include vascular endothelial growth factor (VEGF), interleukin-
6, hepatocyte growth factor (HGF) and platelet derived growth
factor (PDGF) (Garzón-Muvdi and Quiñones-Hinojosa, 2009).
Just as with the effect of soluble growth factors on NSC homing,
the expression of integrins, such as α6β1 in SVZ neurogenic niche
play a vital role in NSC recruitment, demonstrated in a rodent
model of cerebral ischemia (Prestoz et al., 2001).

EV-MEDIATED REMODELING OF CANCER
MICROENVIRONMENT

Cancer cells secrete exosomes that remodel homing niches
to promote migration, retention and proliferation of tumor
cell and/or other cell types, thus, tumor exosomes form
a part of the tumor-derived factors necessary for pro-
tumor microenvironment formation and metastatic niche pre-
conditioning (Hoshino et al., 2015). Exosomes released by breast
cancer cells are delivered to distal cells of target organs, such
as the lung and liver, where they induce the expression of
proinflammatory genes through the activation of Src-kinase
signaling. Thus, the initiation of exosome-mediated chronic
inflammation contributes to the remodeling of distal tissues to
favor tumor metastasis. Concomitantly, breast cancer exosomes
highly expressing integrins αvβ5 and α6β4 distribute to the
fibronectin-enriched ECM of the liver and laminin-enriched
ECM of the lung, respectively. As a result, tissues within which
these integrin-directed exosomes are specifically distributed
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become prone to inflammatory-mediated remodeling to support
the cultivation of pre-metastatic niche and consequently,
predisposed to metastatic cancers (Hoshino et al., 2015; Myint
et al., 2020).

Alluring to the evidence that non-tumor cells and their
exosomes function to tightly regulate trafficking and homing
to specific niches for regeneration, repair and homeostasis
(Prestoz et al., 2001; Park et al., 2019b), cancer cells and cancer-
derived exosomes on the other hand play a contributory role
in remodeling niches to support cancer metastasis (via chronic
inflammation, angiogenesis, increased vascular permeability,
etc.) (Hoshino et al., 2015; Myint et al., 2020).

MUSCLE–DERIVED EVS AND MYOKINES
IN MICROENVIRONMENT REMODELING

Growing evidence suggests that major risk factors of cancer
development and progression include metabolic disorders that
facilitate chronic inflammation, thus, metabolic syndrome is
consistently associated with increased risk of common cancers
(Esposito et al., 2012). Although mechanisms underlying the
link between metabolic syndrome and cancer risk are not fully
understood, metabolic syndrome represents a proxy marker
for several risk factors, such as lack of physical activity, high
dietary fat intake and oxidative stress (Alberti et al., 2009).
Adipocytes and infiltrating immune cells induce a systemic low-
grade chronic state of inflammation by producing inflammatory
mediators/immune cell chemo-attractants (interleukin-1β [IL-
lβ], interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α], and
monocyte chemoattractant protein-1[MCP-1]) and increasing
the circulation of free fatty acids to promote the establishment
of tumorigenic microenvironment. This is evident in excess
adiposity, insulin resistance, aberrant glucose metabolism and
particularly, central obesity (visceral adiposity) (Harvey et al.,
2011). Hyperglycemia, a hallmark of metabolic syndrome, is
implicated in the dysregulation of growth factors and metabolic
hormones like insulin and Insulin-like growth factor (IGF-
1). Hyperglycemia-induced suppression of IGF-binding protein
synthesis and the promotion of IGF-1 synthesis increase the
amounts of bioavailable IGF-1 in circulation; an established
critical risk factor for several malignancies (Pollak, 2008).
Downstream signaling pathways of activated receptor tyrosine
kinases, such as IGF-1 receptor activate the Akt cascades which
are commonly altered in epithelial cancers. Typical in tumors and
tissues of diabetic rats, is the increased activation of downstream
mediators, such as mammalian target of rapamycin (mTOR)
(Wong et al., 2010; De Angel et al., 2013).

The association between obesity and physical inactivity has
been shown in several studies (Gustat et al., 2002; Golbidi
et al., 2012). Evidently, exercise and muscle training prove to
be beneficial in the prevention and management of obesity or
other related metabolic distress. Decreased daily physical activity
in healthy individuals is linked to undesired consequences in
metabolism, such as reduced insulin sensitivity and elevated
adiposity (Olsen et al., 2008). Exercise induces anti-inflammatory
effects, boosts antioxidant capacity, and regulates glucose/fat

metabolism. Skeletal muscle activity has been found to be
beneficial in regulating metabolism and inflammation within
several tissues, including adipose tissues. Contracting muscles
release myokines, such as interleukin 6 (IL-6) that positively
impact inflammation. IL-6 acts as a pro-inflammatory and an
anti-inflammatory mediator, however, studies have shown that
exercise-induced muscle-derived IL-6 exerts anti-inflammatory
effects. The anti-inflammatory property of IL-6 is shown by
way of an inhibitory effect on TNF-α, IL-10, and IL-1β, to
protect against TNF-induced insulin resistance (Festa et al., 2000;
Febbraio and Pedersen, 2005). Myokines secreted by muscle
tissues into the extracellular space are capable of modulating
homeostasis in the bone, pancreas and adipose tissues. Such
myokines like IL-6, irisin, myostatin, and interleukin-15 (IL-15)
play a key role in the crosstalk between muscle and adipose
tissues (Leal et al., 2018). Recent articles, such as that of Mika
et al., review the potential benefits of exercise-induced release
of myokines via the alterations in adipose tissue fatty acid
metabolism (e.g., increased lipolysis and reduced fatty acid
uptake). Chronic exercise impacts the profile of adipokines
released from adipose tissues, as well as promote the “beiging”
of adipocytes (Mika et al., 2019).

Intriguingly, the provision of beneficial myokines is not
confined to muscle cells. Muscle-derived extracellular vesicles
(EVs) cargo and distribute myokines, muscle specific microRNAs
(myomiRs) and other soluble factors to proximal and/or distal
tissues, thus, crosstalk between muscle and other tissues is at
least in part, mediated by EVs (Whitham et al., 2018), from
muscles. Exercise and physical activity have been demonstrated
to augment the release of muscle EVs into circulation.

Skeletal Muscle EVs
Both myoblasts and non-proliferating myotube forms of skeletal
tissue are capable of secreting EVs, in vitro (Forterre et al.,
2014a; Choi et al., 2016). Skeletal muscle-derived EVs have
been demonstrated to be key players in muscle physiology
and systemic homeostasis via paracrine actions (Rome et al.,
2019). The release of small EVs into circulation is particularly
enhanced by physical exercise, inflammation/stress, and several
muscle-related conditions (Frühbeis et al., 2015; Barone et al.,
2016). Skeletal muscle is a major contributor of exercise-induced
secreted molecules. Some of these secreted molecules were
identified in EVs harvested from conditioned medium (CM) of
myotube cultures (Forterre et al., 2014b; Deshmukh et al., 2015).
Skeletal muscle-derived EVs play vital roles in the differentiation
and regeneration of muscle tissue by triggering cues for myogenic
processes and myofiber regeneration. Exosomes derived from
human skeletal myoblasts were found to contain various
myogenic factors, such as insulin-like growth factors (IGFs),
fibroblast growth factor-2 (FGF2), and hepatocyte growth factor
(HGF) that enhanced terminal myogenic differentiation of
stem cells, in vitro (Choi et al., 2016). Conversely, skeletal
muscle-derived exosomes may be implicated in suppressing
myogenic events. During inflammatory conditions or tissue
damage, inflammatory cells and the milieu of pro-inflammatory
mediators, such as chemokine ligand 2 (CCL2) induce the
production of muscle EVs which package more myostatin
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(negative regulator of myoblast proliferation and differentiation)
and less decorin (myostatin antagonist) (Tidball, 2017; Kim S.
et al., 2018).

Crosstalk between the skeletal system and the peripheral
nervous system have been demonstrated to be at least in
part, mediated by skeletal muscle-derived exosomes. Motor
neuron regeneration and survival has been found to be
positively impacted by EVs released from muscle cells, in
vitro (Madison et al., 2014). Additionally, skeletal muscle
denervation induced the release of muscle EVs that preferentially
support motor neuron regeneration accuracy. Muscle-derived
EVs (containing muscle specific markers, such as α-sarcoglycan)
were taken up by denervated, but not naïve nerve tissue
around the neuro-muscular junction and significantly induced
the exclusive projection of motor neurons to muscle branch,
thus, ensuring anatomically accurate motor neuron regeneration
in rats (Madison and Robinson, 2019). However, mechanisms
underlying exactly how muscle-derived EVs are taken up and
localized within the denervated nerve remain a knowledge gap
incompletely bridged.

MicroRNAs, carried by muscle EVs have been implicated
in the crosstalk between muscle and other cell types (Jalabert
et al., 2016; Nie et al., 2019), particularly between muscle
and bone in the events of bone remodeling. Skeletal muscle-
derived exosomes enriched in miR-27a-3p positively impacted
osteogenesis by delivering and increasing miR-27a-3p to target
adenomatous polyposis coli (APC), thereby, activating the
Wnt/β-catenin pathway to promote osteogenic differentiation
of MC3T3-E1 pre-osteoblasts (Xu Q. et al., 2018). Another
area of evidence for muscle-bone crosstalk mediated by muscle
EVs is osteoclast biogenesis in osteoporosis. Mouse muscle
cell line (C2C12 myoblasts)-derived EVs suppressed osteoclast
formation and mitochondrial energy metabolism in bone
marrow cells (Takafuji et al., 2020a). This group demonstrated
that Myo-EVs were successfully taken up by bone cells in
culture and suppressed the expression of RANKL-induced
osteogenic factors, such as cathepsin K (CTSK), nuclear factor
of activated T-cells 1 (NFATc1) and dendrocyte expressed
seven transmembrane protein (DCSTAMP). Evidently, Myo-EVs
suppressed the oxygen consumption rate and expressions of
peroxisome proliferator-activated receptor co-activator 1 beta
(PGC1β), NADH-ubiquinone oxidoreductase chain 4 (ND4) and
cytochrome c inmouse bone cells (Takafuji et al., 2020a), possibly
by an miRNA-mediated inhibition of CREB/PGC1β pathway in
osteoclast precursors (Takafuji et al., 2020b). Oxidative stress
has been shown to modify miRNA contents of Myo-EVs; miR-
34a is elevated in C2C12 derived EVs following oxidative stress.
Muscle EVs enriched in miR-34a home to the bone and induce
senescence of bone marrow-derived stem cells by decreasing
Sirtuin1 expression on primary bone marrow cells (Fulzele et al.,
2019).

Inmetabolic abnormalities like diabetes and insulin resistance,
paracrine and/or endocrine effects of Myo-EVs have been
reported. A study revealed that the pancreas takes up muscle
EVs in vivo. Such EVs transferred muscle specific miRNAs
to pancreatic beta cells and islets, thereby, modulating gene
expression and proliferation (demonstrated in vitro with

MIN6B1 pancreatic cell line). In this study, muscle EVs derived
from insulin resistant skeletal muscle were particularly enriched
in miR-16 cargo that could be transferred to pancreatic cells and
regulate PTCH1, potentially contributing to the pathogenesis of
type-2 diabetes (Jalabert et al., 2016).

As positive regulators of metabolic function, exercise-induced
skeletal muscle exosomes potentially promote adipocyte lipolysis.
IL-15 is known to be highly expressed in skeletal muscle, and
acts to decrease fat depots in adipose tissue (Quinn et al.,
2005). Additionally, myonectin, a recently established myokine
involved in lipid metabolism has been identified as a link
between skeletal muscle and systemic lipid metabolism (Seldin
and Wong, 2012). Considering the abundance of IL-15 mRNA
in the contracting skeletal muscle (Nielsen et al., 2007) and the
exercise-induced release of muscle IL-6 in vesicular structures
(Lauritzen et al., 2013), it is not far-fetched to speculate the
packaging and cargo of this lipolysis-influencing myokine in
skeletal muscle derived exosomes. Alterations in skeletal muscle
(e.g., muscle activity and injury) have been shown to influence
the release of key microRNAs (e.g., miR-21, miR-148b, and
miR-486 in tissues, plasma and exosomes) that regulate insulin
responsiveness (D’Souza et al., 2018).

Cardiomyocyte Derived EVs
Although not classically described as typical secretory cells,
cardiacmuscle cells can be induced to release EVs, in vitro (Gupta
and Knowlton, 2007; Chistiakov et al., 2016). Cardiomyocytes,
which constitute the prime contractile cell type in cardiac tissue,
display augmented secretions of EVs under several cellular stress
conditions like inflammation, injury, hypoxia, alcohol exposure
and glucose starvation (Garcia et al., 2015; Yu and Wang, 2019).
Similar to skeletal muscles, cardiac muscle EVs cargo nucleic
acids, including miRNAs that can regulate gene expression in
recipient cells (Waldenström et al., 2012).

Oxygen and nutrient supply are imperative for the efficient
function of the myocardium. As such, blood vessels feeding
the myocardium play a key role in cardiac function. The
crosstalk between cardiac myocytes and intra-cardiac endothelial
cells has been established. This crosstalk is vital to meet the
metabolic needs for efficient heart function (Garcia et al.,
2016) and has been found to be mediated by paracrine signal
molecules, direct cell-cell communication, and EVs (Colliva
et al., 2020). In the light of cardiomyocyte-endothelial cell
communication, cardiomyocyte-derived EVs effect both anti-
angiogenic and pro-angiogenic regulatory functions (Ribeiro
et al., 2013; Wang et al., 2014; Chistiakov et al., 2016). Heat
shock proteins (Hsps) well-known to protect cardiomyocytes
from stresses (Willis and Patterson, 2010; Edwards et al., 2011;
Yu and Wang, 2019; Yu et al., 2019) are highly expressed in
muscle cells and secreted from cardiomyocytes via exosomes.
Particularly, cardiomyocyte Hsp20 released through exosomes
by the non-classical endoplasmic pathway promote angiogenesis;
enhanced proliferation, migration, and tube formation of
endothelial cells by Hsp20 via the activation of vascular
endothelial growth factor receptor (VEGFR) signaling cascade
(Zhang et al., 2012). The crucial role of cardiac microvascular
endothelial (CME) cells in protecting against myocardial injury
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by way of activating endothelial nitric oxide synthase (eNOS)
has been evidently linked to signals from cardiomyocytes.
A study reported that, cardiomyocytes regulated CME cells
via EV transfer of long intergenic non-protein coding RNA,
Regulator of Reprogramming (Linc-ROR) to target miR-145-
5p, ultimately resulting in the activation of eNOS pathway
(Chen et al., 2020). Conversely, anti-angiogenic pathways are
mediated by cardiomyocyte-derived EVs and contribute to
endothelial dysfunction, insufficient myocardial angiogenesis
and cardiovascular complications (Wang et al., 2014). Myocyte-
derived exosomes from type-2 diabetic rats but not wild type
inhibited proliferation, migration, and tube formation of cardiac
endothelial cells in culture through miRNA regulation. It was
observed that diabetes induced the release and transfer of
exosomes harboring high levels of miR-320 (while being less
enriched in miR-126) that target angiogenic factors (Hsp20
and insulin-like growth factor-1) in endothelial cells (Wang
et al., 2009, 2014), potentially contributing to diabetes-related
vascular dysfunction.

Cardiac remodeling is crucial in the pathophysiology of
cardiac injury and hence, should be appropriately regulated to
prevent irreversible changes to the structure and function of the
myocardium (Tracy et al., 2020). Cardiac muscle exosomes play
a key role in regulating myocardial remodeling by the transfer
of encapsulated miRNAs to target fibrotic factors (Chaturvedi
et al., 2015; Chistiakov et al., 2016). A study revealed that miR-
133a from cardiomyocyte exosomes targeted type IA1 collagen
(Col1A1) and connective tissue growth factor, resulting in
decreased myocardial fibrosis in hypertensive rats (Castoldi et al.,
2012). Other cardiomyocyte-derived exosome miRNAs that have
been identified to promote fibrosis and fibroblast differentiation
in animal models include miR-208a (Yang et al., 2018), miR-
92a (Wang et al., 2020) and miR-195 (Morelli et al., 2019).
While a number of exosome-derived miRNAs contribute to
myocardial fibrosis, others, such as miR-378 tend to exhibit a
protective effect by targeting mitogen-activated protein kinase
kinase 6 (MKK6) to suppress p38 mitogen-activated protein
kinase phosphorylation in cardiac fibroblasts (Yuan et al., 2018).
Other miRNAs implicated in regulating the fibrotic cascades
in this regard include miR-29b (Chaturvedi et al., 2015) and
miR-373 (Xuan et al., 2019).

Recently, the roles of cardiomyocyte-derived exosomes have
expanded to encompass a role in mechanisms that underlie the
therapeutic efficacy of stem cells in myocardial infarction (Hu
et al., 2018). Cardiomyocyte exosomes obtained from culture
conditioned medium under stress microenvironment (peroxide-
induced oxidative stress) hastened stress-induced injury of bone
marrow-derived stem cells (Hu et al., 2018).

Smooth Muscle–Derived EVs
Vascular smooth muscles in a synthetic or proliferative, non-
contractile state exhibit an increased production of extracellular
vesicles (Kapustin and Shanahan, 2016; Schurgers et al., 2018),
demonstrated by the inverse relationship between the expression
of contractile vascular smooth muscle cell markers and exosome
secretion (Kapustin et al., 2015). Inflammatory cytokines and
growth factors like tumor necrosis factor-α (TNF-α) and

platelet-derived growth factor (PDGF), respectively stimulate the
phenotypic transition and exosome secretion by vascular smooth
muscle cells (Kapustin and Shanahan, 2016). The activation
of vascular smooth muscle cells (SMC) form one of the key
events in atherogenesis and the onset of vascular complications,
such as stroke and myocardial infarction (Bennett et al., 2016).
Overexpression of Krüppel-like factor 5 (KLF5), a transcription
factor requisite formediating SMC proliferation andmigration in
vascular remodeling events, mediates the secretion of exosomes
enriched on miR-155 from human smooth muscle cells. The
transfer and uptake of SMC-derived exosomal miR-155 by
endothelial cells have been shown to impair endothelial integrity
by suppressing their proliferation, migration, tube formation
(angiogenesis), and expression of tight junction proteins (Zheng
et al., 2017).

Recently, smooth muscles of the pulmonary vasculature have
been shown to release EVs that package a myriad of RNA
transcripts transferrable to pulmonary arterial endothelial cells
(de la Cuesta et al., 2019). Migration and apoptosis of pulmonary
arterial smooth muscle cells account for the modulation of miR-
143. As a result, exosomes derived from these cells selectively
pack abundant miR-143-3p that exhibit pro-angiogenic and pro-
migratory effects on recipient pulmonary arterial epithelial cells
(Deng et al., 2015). In another recent finding, pulmonary arterial
epithelial cells cultured with exosomes derived from platelet-
derived growth factor-stimulated smooth muscle cells showed an
enhanced migratory but not proliferative ability via the effect of
exosomal miRNAs. It was observed that exosomes from PDGF-
stimulated smooth muscle cells were deficient in miR-182, miR-
1246, and miR-486 and this alteration proved critical for the
enhanced migratory phenotype of endothelial cells in pathologic
states (Heo et al., 2020).

The microenvironment or matrix of the vasculature is
to a large extent regulated by microvesicles secreted from
muscle cells, endothelial cells, and infiltrating immune cells
of blood vessels (Reynolds et al., 2004; New et al., 2013).
Small EVs secreted by vascular smooth muscle cells normally
cargo various factors like the high affinity calcium ion-binding
matrix Gla protein (MGP) and fetuin-A that function to inhibit
calcification, thus protecting against vascular mineralization
and the formation of atherosclerotic plagues (Reynolds
et al., 2005). However, inflammation and mineral imbalance
influence this protective role by inducing the release of EVs
enriched in calcification promoters and depleted of inhibitors,
thus, conditioning an environment conducive for vascular
mineralization and stiffening (Reynolds et al., 2005; Kapustin
et al., 2011).

EMERGENCE OF IRISIN SIGNALING AND
POTENTIAL IMPLICATIONS FOR
MICROENVIRONMENT REMODELING

Irisin, a recent discovery to the family of adipomyokines (exerting
its effect on both adipose and muscle tissues) is a thermogenic
protein thought to be vital in energy metabolism (Boström
et al., 2012; Rodríguez et al., 2017). Irisin has been proposed
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to bridge the communication between the muscle and other
tissues of the body, and therefore has gained much attention
in research relating to metabolism and tissue crosstalk (Pukajło
et al., 2015). Irisin is a fragment of the fibronectin type III
domain-containing protein 5 (FNDC5) on the cell membrane of
myocytes, adipocytes, and other cell types (liver, brain, stomach,
etc.) (Aydin et al., 2014). The FNDC5 protein has a cytoplasmic
C-terminal portion and an N-terminal extracellular portion that
is proteolytically cleaved and released into circulation as irisin
(Panati et al., 2018). Physical activity, especially high intensity
exercise and resistance training have been shown to increase
the levels of irisin in circulation (Tsuchiya et al., 2014, 2015).
Although the specific receptor for irisin was yet to be identified
until recently, the pivotal study by Spiegelman and colleagues
has demonstrated that irisin binds to integrins (Kim H. et al.,
2018). Integrin-ligand interactions activate several downstream
signaling pathways that regulate cellular processes (Figures 2, 3).
We have previously reviewed and discussed the emergence of
irisin and integrin-ligand interactions in the context of cancer,
metabolic disorders, and inflammation (Park et al., 2020). Irisin
binds to several integrins, such as αVβ5 and α5β1 on bone and
fat cells, however, binding affinity seems to be higher with the
αV family of integrins (Kim H. et al., 2018). Irisin increases
the expression of thermogenin (UPC-1, a mitochondrial protein
in adipose tissue lipid droplets) in matured fat cells and
facilitates browning of white adipose tissue (WAT), leading to
the formation of beige-adipose tissue. Although not directly
inducing browning, irisin inhibits the formation of new adipose
cells, and thus, negatively regulates adipogenesis via irisin-
induced phosphorylation of mitogen-activated protein kinases
(Zhang et al., 2014; Korta et al., 2019). In vitro studies
suggest that irisin plays a protective anti-inflammatory role by
suppressing the production of pro-inflammatory cytokines in fat
cells and immune cells, and therefore alleviates obesity-induced
inflammation. Adipocytes are sensitive to irisin and tend to
release relatively low levels of IL-6, IL-1β, monocyte chemotactic
protein 1 (MCP 1), and TNF-α under the effect of irisin in
vitro, potentially via the regulation of downstream signaling of
Toll-like receptor 4/myeloid differentiation primary response 88
(TLR4/MyD88) (Mazur-Bialy et al., 2017a,b) (Figure 2).

Aside adipocytes, bone cells (osteocytes) have been identified
to be sensitive to irisin, and thus, irisin partly plays a role in bone
remodeling. Upon irisin treatment, osteocytes under oxidative
stress conditions show a reduced ratio of apoptotic cells in culture
(Kim H. et al., 2018). Irisin directly regulates osteoclast function
and differentiation by stimulating the release of osteoclastogenic
promoters like RANKL and sclerostin, even at normal circulatory
concentrations (Estell et al., 2020). Earlier studies had also
identified osteoblasts as direct targets of irisin; an enhancer
of osteoblast differentiation (Colaianni et al., 2014). Although
irisin dually targets osteocytes and osteoblasts, the effect of irisin
on different bone cell types greatly depends on the circulatory
concentrations of the protein, since varying concentrations of
irisin treatment have demonstrated contrasting effects in in vitro
studies (Colaianni et al., 2014; Estell et al., 2020). Further studies
in this area are needed to clearly understand the mechanisms by
which irisin mediates bone metabolism.

Recently, the involvement of irisin in inflammatory
disease has been demonstrated, particularly with intestinal
inflammation. Binding of irisin to αVβ5 integrin units on
intestinal epithelial cells have been shown to alleviate epithelial
barrier dysfunction during gut injury. Irisin restored epithelial
barrier function via the activation of αVβ5/AMPK-UCP 2
signaling pathway, while reducing oxidative stress and apoptosis
in enterocytes (Bi et al., 2020). Taken together, irisin is a
physiologically beneficial adipomyokine that possess properties
contributing to oxidative stress alleviation (Bi et al., 2020),
anti-inflammation (Mazur-Bialy et al., 2017a,b; Xiong et al.,
2018), and anti-metastatic effects (Rabiee et al., 2020). It is
worth mentioning that, there are a few conditions in which
irisin has been demonstrated to promote inflammation. This
is particularly shown in hepatocellular carcinoma (HCC)
whereby, the increased hepatic mRNA levels of FNDC5/irisin
in HCC patients correlated with increased expression of
proinflammatory markers, such as IL-6 and TNF-α. However,
mechanisms underlying the irisin-induced inflammation
in hepatic carcinoma remains to be completely understood
(Gaggini et al., 2017).

EXOSOMAL INTEGRIN-IRISIN SIGNALING
(POTENTIAL IMPLICATION FOR CANCER
METASTASIS)

The discovery of integrins belonging to the αV family as
receptors for irisin signaling (Kim H. et al., 2018) has been
a great leap toward understanding how irisin could regulate
metabolism of both host and tumor cells, considering that,
integrins are ubiquitously expressed. Although irisin has not
yet been identified as a cargo content of exosomes released by
muscle and adipose cells, circulating irisin may engage integrin
receptors on exosomes tomediate various niche pre-conditioning
(Figure 3). Taking into consideration that exosomes express
and transport integrins (identified receptor for irisin) on their
surfaces, the potential “cargoing” of irisin in muscle-derived
exosomes can be proposed in a few ways. One of such possibilities
lies in the endocytosis of surface proteins on muscle cells during
EV biogenesis, leading to the formation of MVBs that may
package membrane-bound integrin-irisin complexes (Figure 1).
This mechanism has been proposed for the exosomal packaging
of ECM proteins, such as fibronectin (Sung et al., 2015).

The expression of αV integrins is highly upregulated in several
cancers and tends to augment the metastatic phenotype of tumor
cells, thus promoting their migration (Teti et al., 2002; McCabe
et al., 2007; Haeger et al., 2020). Expression of integrins is not
confined to cancer cells only; exosomes obtained from tumors
contain a myriad of functional tumor-derived integrins that
precondition microenvironments for organ-specific metastasis
(Hoshino et al., 2015). Tumor-derived exosomes are capable
of transferring exosomal integrins to tumorigenic and non-
tumorigenic cells. For example, Fedele et al. demonstrated that
αVβ6 which is highly expressed on prostate cancer cells was
transferable among different subsets of prostate cancer cell lines
via their exosomes. Prostate cancer cell-derived exosomes which
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FIGURE 3 | A graphical illustration proposed for the interaction between muscle EV irisin and integrin, and its role in pre-metastatic tumor environment remodeling.

Circulatory or EV-bound irisin derived from muscle cells can potentially bind to integrin receptors expressed on several tumor cells or tumor-derived EVs. EVs and irisin

released by muscles into circulation, upon reaching pre-metastatic microenvironment, may engage tumor-derived EVs via EV-bound irisin/EV integrin and/or

free-irisin/EV integrin interactions. Signaling from integrin-irisin interaction in tumor microenvironment could mediate functional regulation of tumor-derived exosomes in

the remodeling of pre-metastatic microenvironment.

expressed functional integrin αVβ6 were taken up by recipient
prostate cancer cells that subsequently re-expressed the integrin
on their surfaces (Fedele et al., 2015). This group also showed that
another member of the αV integrin family, αVβ3, was transferred
from tumorigenic to non-tumorigenic prostate epithelial cells
via exosomes and induced functional changes like enhanced
migration and adhesion in recipient cells (Singh et al., 2016).
Other studies confirm the in vitro transfer of exosomal αVβ3
integrin to β3-negative cells resulting in the acquisition of ligand
binding activity (Krishn et al., 2019). Indeed, integrins expressed
on the surface of exosomes are able to bind and adhere to cell
surface, or ECM proteins, such as collagen and fibronectin, thus,
support integrin binding-mediated cell adhesion (Park et al.,
2019b; Altei et al., 2020).

Although the particular role of irisin in cancer progression
still remains to be elucidated, serum levels of irisin is markedly
altered in several cancers (Zhang et al., 2018). However, there
are contrasting reports on the effects of irisin in association with
cells. For example, irisin was found to suppress the viability,
proliferation andmigration of somemalignant breast cancer cells
(MCF-7 and MDA-MB-231, by way of induced apoptosis) but
not others like MCF-10A breast epithelial cells (Gannon et al.,
2015). Additionally, irisin signaling has been found to inhibit the

proliferation, migration, and invasion of lung cancer (Shao et al.,
2017). This effect results from the irisin-induced inhibition of
Snail transcription factors via the PI3K/AKT pathway, resulting
in the reduced expression of epithelial-mesenchymal transition
(EMT) markers (Shao et al., 2017) (Figure 2). Nonetheless, these
findings point to the potentially protective and organ specific
role played by irisin in cancer progression and metastasis (Zhang
et al., 2018).

Taken together, the evidence supporting exosomal carriage
of functional and transferable integrin proteins, such as those
belonging to the αV family (Fedele et al., 2015; Singh et al.,
2016; Krishn et al., 2019), and the identification of integrins as
signaling receptors (Kim H. et al., 2018) propose irisin-exosome
interactions as potential players in niche regulation especially
in cancer metastasis (Figures 1–3). Irisin may negatively impact
cancer progression and metastasis indirectly via their interaction
with tumor-derived exosomes. Extracellular vesicles designed
to precondition distant microenvironment for organotropic
metastasis could potentially be altered by the activation of
integrin-irisin signaling cascades (Figures 2, 3). Further studies
in the area of irisin-exosomal integrin interaction is warranted
to ascertain molecular mechanisms that underlie the remodeling
of microenvironment and tumor metastasis. Muscle-derived
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myokines and EVs may hold promising contributions toward
therapeutic breakthroughs in cancer management.

PERSPECTIVE

With the growing evidence of their involvement in the
autocrine/paracrine/endocrine regulation of metabolic pathways
(Seldin and Wong, 2012) and inflammation (Febbraio and
Pedersen, 2005), muscle cells and muscle cell-derived EVs
deserve attention in our quest to demystify pathophysiological
processes underlying various health condition, including cancers.
Muscle-derived EVs that cargo myokines and other biologic
modulators (nucleic acids, growth factors, etc.) could potentially
modulate the remodeling of niches in vital sites, such as liver and
adipose tissues. The anti-inflammatory effect of skeletal muscle
activity mediated by myokines (e.g., IL-6) could negatively
contribute to the establishment of favorable inflammatory niche
conditions, necessary for cancer metastasis. Although more
studies to support exosomal packaging and release of important
myokines like irisin, IL-6, andmyonectin are desired, the growing
evidence of muscle EV secretion and remarkable encapsulation
of muscle-specific biologic contents (transferable to various cell
types and also implicated in cancer progression) (Singh et al.,
2016; Wang et al., 2016; Li et al., 2018; Xu X. et al., 2018; Krishn
et al., 2019) provide substantial cues for further investigations.
Metabolic syndrome (including obesity, hyperlipidemia and
diabetes) burden organs with pro-tumorigenic and metastatic
cascades associated with chronic inflammation, increased
oxidative stress, and deregulated cellular signals (Harvey et al.,
2011), and therefore, potentially render tissues niche-ready for

cancer metastasis. On one end, because muscle and muscle-
derived EVs pack mediators that restitute the effects of metabolic

dysregulation, their indirect attribution to the regulation of
microenvironment remodeling and the establishment of pre-
metastatic homing niches can be hypothesized. Little evidence
exists to explain the relationship between muscle-derived EVs
and tumor metastasis, however, findings from other pathologies,
such as inflammation and metabolic disorders discussed in this
review point out a plausible connection that may potentially
benefit homeostatic regulation of homing niches against tumor
progression metastasis. Further studies are imperative to better
understand the role of muscle-derived exosomes in regulating
the events of pre-metastatic niches and cancer progression. This
may provide novel insights to the development of therapeutic
interventions for the management of cancers.
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