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Several elements highlight the importance of the mechanistic target of rapamycin (mTOR)

in the biology of renal cell carcinoma (RCC). mTOR signaling pathway is indeed frequently

activated in RCC, inducing cancer cell proliferation and survival. In addition, mTOR

promotes tumor angiogenesis and regulates the expression of hypoxia-inducible factors

that play an important role in a subset of RCC. Despite mTOR protumorigenic effects,

mTOR inhibitors have failed to provide long-lasting anticancer benefits in RCC patients,

highlighting the need to readdress their role in the treatment of RCC. This review aims

to present the rationale and limitations of targeting mTOR in RCC. Future roles of

mTOR inhibitors in the treatment of RCC are also discussed, in particular in the context

of immunotherapies.
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INTRODUCTION

Renal cell carcinoma (RCC), which originates from the kidney epithelium, is the most frequent
form of kidney cancer (Hsieh et al., 2017b; Nabi et al., 2018; Kotecha et al., 2019). RCC comprises
several histological and molecular subtypes of which clear cell RCC is the most frequent (Moch
et al., 2016). Curative surgery is possible in patients with localized RCC (Ljungberg et al., 2015).
Unfortunately, many patients present in advanced, metastatic stages at diagnosis, and progression
of a localized to an advanced stage is frequent despite surgery. Since advanced RCC is associated
with highmortality, a strong need exists to develop appropriate systemic treatments. In this context,
major progress has been achieved recently, and today, several therapeutic options exist, including
immunotherapy and targeted therapies against vascular endothelial growth factor (VEGF) or
mechanistic target of rapamycin (mTOR) signaling pathway (Hsieh et al., 2017b; Kotecha et al.,
2019). Nevertheless, the efficacy of these therapies is limited, and disease progression is inevitable
in most patients. Therefore, it is important to gain further knowledge regarding the biology of RCC
in order to design successful therapies.

mTOR is a serine/threonine kinase that belongs to two distinct protein complexes, named
mTORC1 and mTORC2. mTORC1 controls several processes involved in cell growth and
proliferation including protein, lipid, and nucleotide synthesis (Saxton and Sabatini, 2017).
Inhibition of mTORC1 by allosteric inhibitors generally termed rapalogs results in decreased cell
proliferation and accordingly provides anticancer benefits (Waldner et al., 2016; Torii et al., 2020)
in different types of cancer, including advanced RCC (Tian et al., 2019). The anticancer effect is
however limited, and rapalogs are mostly prescribed as second- or third-line therapies. Although
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initially viewed as promising, mTORC1 inhibitors did not meet
the expectations in RCC, and their roles need therefore to be
readdressed. Here, the biologic rationale and limitations to use
mTOR inhibitors in advanced RCC are reviewed. In addition,
future roles that mTOR inhibitors might endorse in the treatment
of advanced RCC are discussed.

ACTIVATION OF MECHANISTIC TARGET
OF RAPAMYCIN IN RENAL CELL
CARCINOMA

Amajor reason to target mTOR in RCC relies on the observation
that, overall, mTOR contributes to cancer cell proliferation
and survival, and mTOR signaling pathway is often activated
in advanced RCC (Figure 1). In fact, genetic alterations of
components of mTOR signaling pathway are frequently observed
in RCC, underscoring the possible importance of mTOR in
RCC development. For instance, 28% of clear cell RCC presents
activatingmutations of PI3K/AKT/mTOR signaling pathway that
correlate with worse outcome (Cancer Genome Atlas Research,
2013). Similarly, 23% of chromophobe RCC displays genetic
modifications of mTOR signaling pathway (Davis et al., 2014).
Furthermore, expression of the activated forms of various
components of the PI3K/AKT/mTOR signaling pathway was
detected in a high percentage of RCC by immunohistochemistry
(Lin et al., 2006; Pantuck et al., 2007; Abou Youssif et al., 2011).

mTOR inhibitors exert their antitumor effects in part by
reducing cancer cell proliferation via blocking the G1-S cell cycle
transition (Dufour et al., 2011). Decreased expression of cyclin
D1 and upregulated levels of p27Kip1 have been observed in
cancer cells as molecular basis for cell cycle blockage. Consistent
with these findings, mTOR inhibitors induce G1 block in
RCC cell lines in vitro and reduce cancer cell proliferation in
RCC xenografts (Luan et al., 2003; Zhang et al., 2013; Zheng
et al., 2015). Despite promising preclinical experiments, mTOR
targeting agents have been less successful than expected in
RCC patients. An initial phase III study tested the rapalog
temsirolimus against interferon-α among patients with advanced
RCC and poor prognosis (Hudes et al., 2007). Median overall
survival was longer in the temsirolimus group compared with the
interferon-α group (10.9 vs. 7.3 months). Similarly, everolimus
was reported to increase progression-free survival compared
with placebo in advanced RCC patients that had progressed on
multi-targeted tyrosine kinase inhibitors (Motzer et al., 2008).
Therefore, despite extensive activation of the PI3K/AKT/mTOR
signaling pathway in advanced RCC, rapalogs display modest
anticancer activity, suggesting that tumors do not depend on
mTORC1 for growth and survival. This could be explained
by the fact that upstream activators of mTORC1 such as
PI3K or AKT activate several other downstream effectors that
possess protumorigenic effects besides mTORC1 (Faes and
Dormond, 2015). In addition, several resistance mechanisms
might explain the limited efficacy of rapalogs including rapalog-
resistant mutations of mTOR, activation of alternate proliferative
pathways following mTORC1 inhibition, or tumor heterogeneity
(Faes et al., 2017a). Finally, rapalogs only partially inhibit

FIGURE 1 | Rationale to target mechanistic target of rapamycin (mTOR) in

renal cell carcinoma (RCC). Components of mTOR signaling pathway are

frequently mutated in RCC resulting in mTORC1 overactivation. In turn,

mTORC1 promotes tumor cell growth and VEGF production either directly or

by upregulating expression levels of hypoxia-inducible factor (HIF)-α factors. In

addition mTORC1 promotes endothelial cell functions that are relevant to

tumor angiogenesis including endothelial cell proliferation, survival, and

migration.

mTORC1, and therefore, a complete mTORC1 inhibition might
be necessary to achieve better clinical outcome (Thoreen et al.,
2009). In this context, kinase inhibitors of mTOR that display
a complete inhibition of mTORC1 and that in contrast to
rapalogs also inhibit mTORC2 have been developed (Benjamin
et al., 2011). Preclinical studies have demonstrated that kinase
inhibitor of mTOR are superior to rapalogs in RCC models
(Cho et al., 2010; Ingels et al., 2014; Zheng et al., 2015).
Unfortunately, such results were not confirmed in clinical
settings. Two randomized phase 2 trials showed that the kinase
inhibitor of mTOR AZD2014 (Powles et al., 2016b) and the
dual PI3K/mTOR inhibitor GDC-0980 (Powles et al., 2016a)
were inferior to everolimus in RCC patients who had progressed
following exposure to VEGF pathway targeting therapies. Finally,
a third-generation inhibitor named rapalink-1 and composed of
rapamycin linked to the kinase inhibitor of mTOR MLN0128
provides improved anticancer efficacy in RCC models compared
with temsirolimus (Kuroshima et al., 2020).

Nevertheless, a small minority of RCC patients respond
to rapalogs, highlighting the need to identify biomarkers that
could predict patients benefiting from rapalogs. Conceptually,
cancers in which mTOR is a driving force with few heterogeneity
represent the ideal candidate (Rodriguez-Moreno et al., 2017).
In this context, the histologic subtype is not helpful in selecting
patients. It was indeed reported that temsirolimus was efficient
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in patients regardless of tumor histology (Dutcher et al.,
2009). Similar results were observed in a retrospective study
analyzing the effect of temsirolimus and everolimus in RCC
with sarcomatoid or non-clear cell histologies (Voss et al.,
2014a). Genetic analysis of mTOR pathway mutations has also
provided mitigated results so far (Table 1). In fact, two out
of five patients who showed exceptional response to rapalogs
lackedmTOR signaling pathway activatingmutations (Voss et al.,
2014b). Similarly, in another cohort of RCC patients treated with
rapalogs, 56% of responders had no genetic finding to explain
their response (Kwiatkowski et al., 2016). Epigenetic mechanisms
or direct effects of rapalogs on the tumor microenvironment
might be at play. Nevertheless, mutations in tuberous sclerosis
proteins TSC1 or TSC2, close upstream regulators of mTORC1,
and mTOR are more common among rapalog responders
(Kwiatkowski et al., 2016; Roldan-Romero et al., 2017).
More promisingly, loss of PTEN expression, and not loss-of-
function mutations, has recently been associated with everolimus
therapeutic response (Voss et al., 2019; Roldan-Romero et al.,
2020). Clearly, additional work is however required to identify
reliable and robust combinations of biomarkers of response
that can be used in clinic. Interestingly, a complete analysis
of exceptional responders to rapalogs (mean progression-free
survival of 28 months) revealed convergent mutations resulting
in mTOR pathway activation (Voss et al., 2014b). It was therefore
proposed that RCC development behaves rather like a braided
river than a branching tree (Hsieh and Cheng, 2016; Hsieh
et al., 2017a). This parallel convergent evolution of kidney cancer
would thus offer significant therapeutic opportunities despite
tumor heterogeneity.

Since rapalogs alone provide little benefits, several trials
have explored mTOR inhibitors in combination therapies.
In particular, combinations of rapalogs with anti-angiogenic
drugs including, sorafenib, sunitinib, and bevacizumab have
been tested (Ravaud et al., 2013). Most trials were however
discontinued or required dose modification due to drug toxicity.
In fact mTOR inhibitors are associated with substantial side
effects such as mucositis, rash, myelosuppression, hyperglycemia,
hypophosphatemia, hypercholesterolemia, and pneumonitis,
limiting their application in cancer patients (Rodriguez-Pascual
et al., 2010; Pallet and Legendre, 2013). Nevertheless, combining
lenvatinib with everolimus resulted in an acceptable safety profile
and has been approved for RCC patients who had received prior
antiangiogenic treatments (Motzer et al., 2015).

ANTI-ANGIOGENIC EFFECTS OF
MECHANISTIC TARGET OF RAPAMYCIN
INHIBITORS IN RENAL CELL CARCINOMA

RCCs are highly vascularized tumors, and the therapeutic
benefits of anti-VEGF signaling therapies underline the role
of angiogenesis in RCC development (Hsieh et al., 2017b). In
this context, targeting mTOR represents a treatment strategy,
as mTOR controls several processes implicated in tumor
angiogenesis (Faes et al., 2017b). In fact, mTOR is an important
signaling intermediary that regulates endothelial functions
relevant to angiogenesis such as proliferation, survival, and
migration (Akselband et al., 1991; Bruns et al., 2004; Dormond
et al., 2007). Furthermore, mTOR modulates tumor angiogenesis

TABLE 1 | RCC genetic analysis and response to rapalogs.

Patients Genetic alterations Results References

79 selected RCC patients treated

with rapalogs

Mutation

TSC1 or TSC2 or mTOR

No mTOR pathway mutation

Respondersa

28%

56%

Non-respondersb

11%

78%

Kwiatkowski et al., 2016

45 RCC patients treated with

rapalogs (five harboring mTOR related

mutations)

Mutation

mTOR early event

mTOR

mTOR

TSC1

TSC2

Response

PR

SD

SD

PR

PD

PFS (months)

89

9

3

11

Roldan-Romero et al., 2017

Exceptional responder Mutation

mTOR early event

Disease free after 8 years’

temsirolimus treatment

Rodriguez-Moreno et al.,

2017

184 everolimus treated RCC patients IHC staining

PTEN negative

PTEN positive

PFS (months)

10.5

5.3

No correlation with TSC1, TSC2 or

mTOR mutations

Voss et al., 2019

105 rapalogs treated RCC patients IHC staining

PTEN negative

PTEN positive

Respondersc

48%

18%

Non-respondersd

52%

82%

Roldan-Romero et al., 2020

PR, partial response; SD, stable disease; PD, progressive disease; PFS, progression-free survival; IHC, immunohistochemistry; RCC, renal cell carcinoma.
aResponders: PR or SD with any tumor shrinkage for 6 months.
bNon-responders: PD during the first 3 months of therapy.
cResponders: PR or SD and at least 6 months PFS.
dNon-responders: PD or SD of <6 months PFS.
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by regulating the production of pro-angiogenic factors in
particular VEGF (Guba et al., 2002). Accordingly, mTOR
inhibitors decrease tumor angiogenesis in a variety of preclinical
models (Faes et al., 2017b). However, the contribution of the
anti-angiogenic effects of rapalogs in RCC patients remains to be
demonstrated. Of note, combining the anti-VEGF bevacizumab
to temsirolimus did not provide better results than bevacizumab
with interferon-α, suggesting that bevacizumab and temsirolimus
share inhibition of angiogenesis as a common anticancer effect
(Rini et al., 2014). Nevertheless, the limited efficacy of rapalogs
in advanced RCC challenges the anti-angiogenic efficacy of
mTOR inhibitors. In fact, mTOR inhibitors had no impact on
microvessel density of RCC xenografts, suggesting that in certain
circumstances, tumor blood vessels are not sensitive to mTOR
inhibitors, or the anti-angiogenic effects might only be transient
(Cho et al., 2010; Ellis et al., 2012).

REGULATION OF HYPOXIA-INDUCIBLE
FACTORS BY MECHANISTIC TARGET OF
RAPAMYCIN

Clear cell RCC frequently harbors loss-of-function mutations
of the tumor suppressor gene Von Hippel–Lindau (VHL).
Consequently, hypoxia-inducible factors (HIF-1α and HIF-2α)
accumulate, leading to a constant hypoxic tumor response that
promotes tumor growth and angiogenesis despite the presence
of oxygen (Patel et al., 2006; Shen and Kaelin, 2013). Therefore,
targeting HIFs might influence RCC progression (Schodel et al.,
2016). Interestingly, in contrast to initial thoughts, emerging
evidence has now demonstrated a divergent role for HIF-α factors
in RCC biology where HIF-1α reduces and HIF-2α promotes
RCC growth (Kondo et al., 2002, 2003; Shen et al., 2011; Gudas
et al., 2014; Hoefflin et al., 2020).

Several reports have evidenced that mTOR decreases
expression of HIF-α factors and therefore might influence RCC
growth (Faes et al., 2017b). Consistent with this hypothesis,
it was demonstrated that VHL mutation determines RCC
sensitivity to temsirolimus in a mouse model of RCC (Thomas
et al., 2006). Rapalogs decrease HIF-1α expression via different
mechanisms including HIF-1α mRNA transcription, mRNA
translation, protein stabilization, and transcriptional activity
(Faes et al., 2017b). In contrast, HIF-2α expression depends on
mTORC2 activity and is accordingly not affected by rapalogs
(Toschi et al., 2008). In the context of RCC, opposing results
have been reported regarding the effect of mTOR inhibitors
on HIF-α factor expression. It was shown that temsirolimus
reduces both HIF-1α and HIF-2α expression in RCC in vitro
(Thomas et al., 2006). In contrast, whereas the dual PI3K/mTOR
inhibitor NVP-BEZ235 decreased HIF-2α expression in 786-0,
A498, Caki-1, and Caki-2 RCC cell lines, rapamycin had no
significant effects (Cho et al., 2010). Taken together, these studies
highlight the complex interrelationship between mTOR and
HIF-α factors and suggest that preferential inhibition of HIF-1α
expression over HIF-2α by rapalogs might provide detrimental
protumorigenic signals. Nevertheless, a complete understanding

of the role of HIF-α factors in RCC and the consequences of
mTOR inhibition on their activities is necessary.

FUTURE DIRECTION: COMBINING
MECHANISTIC TARGET OF RAPAMYCIN
INHIBITORS WITH IMMUNOTHERAPIES

Following major therapeutic success by immunotherapy in
melanoma, lot of efforts are deployed to design immunotherapy-
based protocols in RCC. Interleukin-2 and interferon-α were
initially used in patients with advanced RCC, suggesting
that RCC might be particularly sensitive to immunotherapies.
Accordingly, numerous clinical trials are currently exploring
the effects of immunotherapy alone or in combination with
various targeted therapies (Garje et al., 2020). Since rapalogs
are mainly used to prevent rejection of transplanted organs,
their use with immunotherapies seems aberrant at first
look. However, emerging studies have demonstrated that
mTOR inhibitors display immunostimulatory effects. Rapamycin
increases memory CD8+ T cell differentiation following viral
infection (Araki et al., 2009). Rapamycin treatment also induces
stem-cell like memory T cells during activation of human naïve
T cells (Scholz et al., 2016). In cancer, preclinical studies have
shown that rapalogs enhance the tumor response to different
types of immunotherapies including vaccines, adoptive T cell
therapy, and checkpoint inhibitors (Thomas et al., 2011; Wang
et al., 2011; Amiel et al., 2012; Li et al., 2012; Diken et al.,
2013; Mineharu et al., 2014; Moore et al., 2016). Therefore,
additional studies are needed to fully characterize the conditions
in which mTOR inhibition results in immune stimulation or
inhibition. Interestingly, the immune modulatory properties of
rapalogs were assessed in RCC patients, and results confirmed
that mTOR inhibitors provide opposing effects on the antitumor
immune response (Beziaud et al., 2016; Huijts et al., 2017).
In most patients, the rapalog everolimus promoted expansion
of FoxP+3 regulatory T cells (Tregs) and increased spontaneous
tumor-specific TH1 response. Importantly, in a subset of patients,
everolimus decreased Tregs levels while increasing TH1 response,
which was associated with a longer progression-free survival.
This suggests that the antitumor effects of rapalogs occur in
part via modulation of the antitumor immune response and
provide an additional rationale to combine mTOR inhibitors
with immunotherapies.

The endothelial barrier is an important obstacle to
recognize when considering combining anticancer agents
with immunotherapies (Schmittnaegel and De Palma, 2017;
Uldry et al., 2017). In fact, tumor blood perfusion is frequently
reduced due to abnormal blood vessels, resulting in hypoxia
and decreased delivery of anticancer agents and immune cells
to tumors (Martin et al., 2019). Accordingly, tumor blood vessel
normalization with anti-angiogenic drugs improves cancer
immunotherapy by in part augmenting T cell extravasation
(Allen et al., 2017; Schmittnaegel et al., 2017; Mpekris et al.,
2020). Preclinical studies demonstrated contrasting results
regarding the effects of mTOR inhibitors on tumor blood vessel
normalization. On the one hand, reduction of vessel permeability
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and increased tumor perfusion by mTOR inhibitors were
observed in different cancer models (Schnell et al., 2008; Zhang
et al., 2011; Myers et al., 2012). On the other hand, absence
of effects was also noted (Lane et al., 2009; Ellis et al., 2012).
Therefore, applying mTOR inhibitors in conditions where they
induce vessel normalization might be particularly beneficial with
immunotherapies. Tumor blood vessels also actively participate
to the recruitment of leukocytes into tumors by expressing
adhesion molecules such as intercellular adhesion molecule-1
(ICAM-1) or vascular cell adhesion molecule-1 (VCAM-1). In
addition, they modulate T cell activity by expressing MHC class I
and class II as well as co-stimulatory and co-inhibitory molecules
(Choi et al., 2004). Of note, it was reported that mTOR inhibitors
upregulate PD-L1 and PD-L2 and reduce VCAM-1 expression
on endothelial cells (Wang et al., 2013, 2014). Consequently,
rapamycin pretreatment of human arterial allografts decreased
infiltration of artery intima by effector T cells. Although these
findings need to be investigated in tumor models, they suggest
that mTOR inhibitors might reinforce the tumor endothelial
barrier and therefore counteract their benefits in the context
of immunotherapy.

CONCLUSIONS

Despite clear implications of mTOR signaling pathway in RCC
development and progression, inhibition of mTOR through
rapalogs did not provide major and long-lasting anticancer
benefits in patients. Whereas, mTOR is frequently activated in
RCC and participates in tumor growth, RCC harbors major
genetic heterogeneity, implying that many driving forces, not
limited to mTOR, participate in tumor growth. Combination

therapies might therefore provide additional antitumor effects,
albeit increased toxicity. Although several preclinical studies
have demonstrated that mTOR inhibitors decrease tumor
angiogenesis, this specific mechanism in the context of RCC
has not been thoroughly investigated. More importantly, some
investigations in RCC mouse models did not find any inhibitory
effect of rapalogs on the tumor vasculature. Finally, in a subset
of RCC that presents VHL mutation, the preferential inhibition
of HIF-1α over HIF-2α by rapalogs might decrease the tumor-
suppressing effects of HIF-1α, counteracting the anticancer
efficacy of rapalogs. Given the success of immunotherapies,
future investigations addressing the role of mTOR inhibitors in
RCC will certainly focus on their immunostimulatory effects.
Accordingly, dissecting the conditions where mTOR inhibitors
exert immunostimulatory instead of immunosuppressing
activities will be key. Interestingly, a study demonstrated that
some RCC patients preferentially presented increased antitumor
response under rapalog treatment, highlighting their therapeutic
potential in combination with immunotherapy.
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