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To preserve genome integrity when faced with DNA lesions, cells activate and
coordinate a multitude of DNA repair pathways to ensure timely error correction or
tolerance, collectively called the DNA damage response (DDR). These interconnecting
damage response pathways are molecular signal relays, with protein kinases (PKs)
at the pinnacle. Focused efforts in model eukaryotes have revealed intricate aspects
of DNA repair PK function, including how they direct DDR pathways and how
repair reactions connect to wider cellular processes, including DNA replication and
transcription. The Kinetoplastidae, including many parasites like Trypanosoma spp.
and Leishmania spp. (causative agents of debilitating, neglected tropical infections),
exhibit peculiarities in several core biological processes, including the predominance of
multigenic transcription and the streamlining or repurposing of DNA repair pathways,
such as the loss of non-homologous end joining and novel operation of nucleotide
excision repair (NER). Very recent studies have implicated ATR and ATM kinases in
the DDR of kinetoplastid parasites, whereas DNA-dependent protein kinase (DNA-
PKcs) displays uncertain conservation, questioning what functions it fulfills. The wide
range of genetic manipulation approaches in these organisms presents an opportunity
to investigate DNA repair kinase roles in kinetoplastids and to ask if further kinases
are involved. Furthermore, the availability of kinase inhibitory compounds, targeting
numerous eukaryotic PKs, could allow us to test the suitability of DNA repair PKs as
novel chemotherapeutic targets. Here, we will review recent advances in the study of
trypanosomatid DNA repair kinases.

Keywords: protein kinases, PIKK, DNA damage, DNA repair, kinetoplastids, trypanosomatids

INTRODUCTION

Numerous DNA lesions can form within a eukaryotic cell per day, each a potential threat to genome
stability (Tubbs and Nussenzweig, 2017). Genome damage can arise from a myriad of sources,
including exposure to mutagenic agents, such as radiation, and endogenous cellular processes such
as DNA replication and metabolism. Lesions can form primarily on a single DNA strand, such as by
the accumulation of unbase-paired single-stranded DNA (ssDNA), base adducts, oxidative damage,
and mismatched bases, or can affect both stands, such as through double-stranded breaks (DSBs)
and inter-strand cross-links. Ultimately, the persistence of all such damage can compromise high-
fidelity genome transmission to future offspring, resulting in genetic diseases, decreased fitness, or
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lethality (O’Driscoll, 2012; Ribezzo et al., 2016; Chatterjee and
Walker, 2017). Conserved across the Eukarya, a sophisticated
network of pathways, collectively known as the DNA damage
response (DDR), operate to safeguard the genome, acting
hierarchically from lesion detection to resolution. At the heart
of the DDR are evolutionarily conserved protein kinases (PKs)
that act to orchestrate the repair of genome damage by signaling
its presence and enacting the appropriate repair pathway via
post-translational phosphorylation modifications to the hydroxyl
groups of serine (S), threonine (T), or tyrosine (Y) residues on
downstream factors. Additionally, DDR PKs also perform a range
of non-catalytic functions, such as by the allosteric regulation of
other kinases (Kung and Jura, 2016).

The DDR and its associated PK compliment are well-
characterized in “model” eukaryotes, but in trypanosomatids,
less is known. Trypanosomatids are parasitic members of
the widespread and diverse Kinetoplastea class (Lukeš et al.,
2018; Butenko et al., 2020) and cause neglected tropical
diseases (NTDs) that disproportionally affect impoverished
populations in the tropics and subtropics of the world. Human
African Trypanosomiasis (Trypanosoma brucei), Leishmaniasis
(Leishmania spp.), and Chagas disease (Trypanosoma cruzi) are
three of 20 NTDs targeted by the World Health Organization
(WHO) for eradication by 2030 (World Health Organization,
2020). These dixenous parasites transmit from arthropod vectors
to mammalian hosts (for life cycles of each parasite, refer to Stuart
et al., 2008), where they cause debilitating but distinct diseases of
medical importance, which significantly impact the life quality of
the infected individual and at-risk populations, and, combined,
are responsible for ∼80,000 deaths each year (Torres-Guerrero
et al., 2017; Büscher et al., 2017; Pérez-Molina and Molina, 2018).

Trypanosomatids are early branching eukaryotes, having
emerged ∼500 million years ago, close to the time mammals
emerged from other eukaryotes (Lukeš et al., 2014). As such,
unusual aspects of the DDR, including during DNA repair,
have been reported. For instance, classical non-homologous end-
joining (c-NHEJ) activity required for DSB repair is lacking
in these organisms (Burton et al., 2007; Nenarokova et al.,
2019), with the result that DNA end-joining using regions of
micro-homology (MMEJ) (Glover et al., 2011; Laffitte et al.,
2016) or by single-strand annealing (SSA) (Glover and Horn,
2014; Zhang and Matlashewski, 2019) appears to assume greater
prominence than in many organisms. In addition, nucleotide
excision repair (NER) appears to have become functionally
streamlined (Machado et al., 2014), most likely due to the
ubiquity of multigenic transcription in kinetoplastids. Other
peculiarities have recently emerged, with components of the 9-
1-1 complex playing non-canonical roles in Leishmania genome
replication, as facilitators of genomic plasticity (Damasceno et al.,
2016, 2018). Moreover, DDR PK activity has been implicated in
developmental transitions between host and vector (Baker et al.,
2021) and as a driver of host immune evasion (Black et al.,
2020). Thus, the trypanosomatid DDR and its associated PKs
have potential for the discovery of novel biology and the prospect
of parasite-specific drug targets.

Dysregulation of PK activity is commonly reported in
human disease (Cell Signaling Technology, 2020), with over 80

small-molecule inhibitors approved for clinical use (Carles et al.,
2018; MRC Protein Phosphorylation and Ubiquitylation Unit,
U. of D, 2020; Roskoski, 2020). Thus, rather than developing
novel compounds that target DDR PKs, an opportunity exists
for the repurposing of small-molecule inhibitors as novel anti-
parasitic treatments, particularly as the development of drugs
targeting NTDs is routinely limited due to safety, efficacy, and
funding, leaving many archaic and dangerous drugs at the
forefront of treatments for the foreseeable future (Field et al.,
2017; Bhattacharya et al., 2020). Additionally, using such small-
molecule PK inhibitors could provide opportunities to investigate
both the function and evolution of PKs, including those that
act in the trypanosomatid DDR. Such an approach may be
especially attractive for less genetically tractable trypanosomatids,
like T. cruzi and T. vivax. Here, we will focus on trypanosomatid
DNA damage-associated PKs and their reported functions, first
discussing the known roles of canonical DDR PKs and then
focusing on wider putative DDR PKs.

PKs at the DDR Apex
PKs are specialized enzymes accounting for up to 3% of the
encoded genes in a typical eukaryote (Hunter and Plowman,
1997; Manning et al., 2002; Zulawski et al., 2014). Two
superfamilies of PKs exist including eukaryotic PKs (ePKs) and
atypical PKs (aPKs), with nine subfamilies of ePKs described in
most eukaryotes. The ePK structure is largely conserved among
subfamilies, where an N-terminal lobe (composed primarily of
β-sheets) is joined by a hinge-like region to a predominantly
α-helical C-terminus, with the site of γ-phosphate transfer
(the active site) located between these extremities (Hanks and
Hunter, 1995) (for an extensive review on PK structure, refer
to Taylor and Kornev, 2011). aPKs typically lack the catalytic
region or domains characteristic of ePKs, yet among the aPKs,
members of the phosphatidyl inositol 3′ kinase-related kinase
(PIKK) family perform vital functions at the apex of the
DDR. DNA-dependent Protein Kinase catalytic subunit (DNA-
PKcs; absent from yeasts), ATR (Mec1 in budding yeast),
and ATM (Tel1 in budding yeast) are large enzymes (up
to 500 kDa in size) sharing structural similarities with lipid
kinases within their C-terminal kinase domains (Figure 1).
Flanking their kinase domains, they share several further
conserved domains, including the FAT domain (FRAP, ATM,
and TTRAP domain), a protein regulatory domain (PRD),
a LST8-binding element (LBE) domain, and FAT-C domain
downstream, all of which are required for kinase function
and activity regulation (as reviewed by Imseng et al., 2018).
The N-terminal regions of the PIKKs comprise much of their
sequence and are arranged as “superhelices” (or α-solenoids),
consisting of coiled Huntingtin, elongation factor 3, protein
phosphatase 2A, and TOR1 (HEAT) repeats, which can modulate
kinase activity (Mori et al., 2013; Luzwick et al., 2014; Chen
et al., 2021). PIKKs typically phosphorylate substrates carrying
an S/T motif followed downstream by a glutamate (Q) residue,
with canonical activation of each PK occurring in a substrate-
dependent manner. In addition, and as discussed below, each
PK interacts with a number of non-kinase proteins to effect and
modulate its activity.
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FIGURE 1 | Schematic illustration of the predicted domain locations in Trypanosomatid PIKKs compared with their human homologs. Putative domains were
identified using Pfam (http://pfam.xfam.org), Prosite (https://prosite.expasy.org), and Interpro (https://www.ebi.ac.uk/interpro/). Sequence similarity was determined
using BLAST (Altschul et al., 1997), and all sequences from trypanosomatids are compared to the corresponding human kinase sequence. Gene IDs, the
percentage identity, and the E value for each sequence are as follows: HsATM (AAB65827.1), TbATM (TbATM427_020008900; 31.47%, 2e-99), TcATM
(TcCLB.509395.20; 33.95%, 7e-108), and LmjATM (LmjF.02.0120; 31.73%, 9e-94). HsATR (NP_001175.2), TbATR (Tb427_110165100; 26.14%, 7e-119), TcATR
(TcBrA4_0103840; 27.17%, 2e-199), and LmjATR (LmjF.32.1460; 23.45%, 2e-97). HsDNA-PKcs (NP_008835.5), LmjDNA-PKcs (LmjF.36.2940; 27.58%, 4e-30).

At least two of these three PIKKs are encoded in the genomes
of T. brucei, T. cruzi, and Leishmania. In the following sections,
we will describe ATM, DNA-PKcs, and ATR, and discuss their
reported roles in trypanosomatids (Figure 2A shows a summary
of the pathways these kinases act within).

The ATM Kinase
In humans, low expression or inactivation of ATM causes
ataxia-telangiectasia (A-T), a neurodegenerative syndrome
associated with growth retardation, cancer predisposition,
immune response deficiency, and genomic instability (Savitsky
et al., 1995; Rothblum-Oviatt et al., 2016). Surprisingly, whereas
murine ATM null mutants are viable (Barlow et al., 1996; Elson
et al., 1996; Xu et al., 1996), kinase-dead mutants fail to survive
past embryogenesis and show increased chromatid damage
associated with replication stress (Daniel et al., 2012; Yamamoto
et al., 2012, 2016). Thus, the inactive kinase likely inhibits other
repair factors from carrying out their repair functions. ATM is
activated by DSBs detected by the Mre11-Rad50-Nbs1 (MRN)
complex (Figure 2A). MRN unwinds the helix and performs
end-resection, exposing regions of ssDNA, which is pivotal for
ATM recruitment and optimal activation (Lee and Paull, 2005).
Full activation of ATM requires dissociation of the inactive
dimeric form of the PK, with subsequent phosphorylation
events triggering conformational changes that release one
dimer and activate the other (Bakkenist and Kastan, 2003).

Once active, ATM auto-phosphorylates and phosphorylates
downstream substrates, including the variant histone H2AX
(on serine-139) in higher eukaryotes to generate the genotoxic
stress marker yH2AX (Burma et al., 2001). However, for many
single-celled eukaryotes, for example, yeast (Downs et al.,
2000), trypanosomatids (Glover and Horn, 2012), and the
apicomplexan parasite Plasmodium falciparum (the etiological
agent of malaria) (Manish et al., 2021), the equivalent ATM
phosphorylation occurs on the core histone H2A. ATM can
also activate p53 (a tumor suppressor protein) and other PKs,
including the checkpoint kinase checkpoint 2 (CHK2), halting
cell cycle progression at G1/S and G2/M and promoting DSB
repair via NHEJ (an error-prone pathway) or homologous
recombination (HR; a high fidelity pathway) (Awasthi et al.,
2015). ATM also plays a role in telomere maintenance (Hande
et al., 2001; Lee et al., 2015; Tong et al., 2015). ATM-deficient
cells exhibit shortened telomeres linked to defective telomerase
recruitment (an enzyme that extends telomeric sequences)
(Ritchie et al., 1999; Lee and Paull, 2005; Tong et al., 2015). ATM
also acts upon dysfunctional telomeres, which are a source of
genomic instability, by eliciting a cell cycle checkpoint and cell
senescence (D’Adda Di Fagagna et al., 2003).

The N-terminal region of the trypanosomatid ATM kinase
is predicted to form an α-solenoid structure, accounting for
∼57% of the enzyme (Figure 1). A FATC regulatory domain
and a C-terminal kinase domain typical of the PIKK family can
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FIGURE 2 | The PIKK-driven DDR pathways in Trypanosomatid parasites and the canonical Eukaryotic pathways. (A) A schematic illustration of a simplified
eukaryotic DDR pathway (left) compared to known or predicted components of the trypanosomatid DDR pathway (right). Dark shaded factors indicate that functional
characterization has been performed in one or more organisms. Light shading indicates limited data availability. White indicates no data are available or the factor is
not present in the genome, as further illustrated by question marks. For more intricate details on eukaryotic DDR factors and pathways, we encourage the reader to
refer to recent reviews (Alexander and Orr-Weaver, 2016; Blackford and Jackson, 2017; Wright et al., 2018; Sun et al., 2020; Zhao et al., 2020; Ghosh and
Raghavan, 2021). DSB, double-stranded break; DDR, DNA damage response; ssDNA, single-stranded DNA. (B) Summary table of PKs and their associated
families in T. brucei, T. cruzi, and L. mexicana. Data collated from Parsons et al. (2005), Jones et al. (2014), and Baker et al. (2021). (*) = the pseudokinases in
T. brucei are included among the counts for the other families and their respective numbers have not been adjusted to remove pseudokinase family members.
N/A = no kinases have been identified as members of these kinase families.

also be detected. However, several domains are either absent or
diverged in several trypanosomatids: a discernable FAT domain is
absent in both T. cruzi and T. brucei, but present in Leishmania;
TAN domains (required for telomeric maintenance and DSB
repair activities in other eukaryotes; Seidel et al., 2008) and LBE
domains also appear to be lacking in all trypanosomatid ATMs.
When combined with the lack of identifiable phosphorylation
sites in phosphoproteomic studies in T. brucei (Urbaniak et al.,
2013), these domain variations suggest that the regulation of
trypanosomatid ATM by phosphorylation is unclear and may
even differ between related trypanosomatids.

RNA interference (RNAi)-mediated depletion of ATM in
mammal-infective T. brucei initially revealed a lethal phenotype
in vitro (Forsythe, 2012). However, more recent genetic screens
(Jones et al., 2014; Stortz et al., 2017) suggest that T. brucei ATM
may be non-essential in mammal-infective cells, though effects
of ATM loss in tsetse stage T. brucei are unknown. Moreover,
whereas in other eukaryotes ATM functions during DSB repair,
this functionality has not been directly tested in T. brucei. Thus,
how ATM operates in the context of the DDR across the T. brucei
life cycle is unclear.

In L. major, ATM function has been investigated in
promastigote (sandfly-infective) cells using the small molecule
KU-55933 (da Silva R. B. et al., 2018), which inhibits ATM activity
in human cells (Hickson et al., 2004). When promastigotes were

exposed to a range of KU-55933 concentrations, a moderate
slowing of parasite proliferation with little perturbation of the
cell cycle progression was observed, even at high concentrations
of the compound. Treatment with KU-55933 sensitized parasites
to H2O2, implicating ATM kinase activity in tackling oxidative
stress-derived lesions. Whether KU-55933 treatment induces
a more generalized sensitivity to genotoxins requires further
investigation, as we lack information about how selective this
inhibitor is for ATM in trypanosomatids. In a recent study, an
unexpected role for the ATM gene in L. mexicana was uncovered
(Baker et al., 2021). Deletion of ATM in promastigotes prevented
the establishment of infections in the sandfly vector, implicating
ATM (and perhaps the wider DDR directed by the PK) in a
previously unappreciated role in parasite transmission, though
the basis for this defect is unexplained. In fact, in both these
aspects of infectivity, the L. major ATM mutants are worthy
of further study, given the inhibition data. Leishmania are
intracellular parasites of mammals, developing within immune
cells such as neutrophils and macrophages, which generate
reactive oxygen species (ROS). One could speculate that loss
of ATM may increase sensitivity to ROSs generated during
development in the host cell, compromising parasite viability
and thus transmission potential. If so, ATM may be a candidate
target to block parasite transmission. To date, nothing has been
reported about ATM function in T. cruzi.
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As mentioned above, ATM phosphorylates histone H2A or
H2AX in response to DNA damage. In trypanosomatids, damage-
dependent phosphorylation occurs on the core histone H2A at
residue Thr130 (Glover and Horn, 2012). Following genotoxin
exposure, the yH2A signal can be detected either as a diffuse
nuclear signal or as foci depending on the damaging agent,
consistent with PK activity during the DDR. However, no work
has shown that yH2A contributes to DNA damage repair, and
it is unknown what PK is responsible for the phosphorylation,
although, mutation of MRE11 abrogates the reaction (Dattani
and Wilkinson, 2019). In addition, depletion of another DDR
PK (ATR, discussed in a later section) increases yH2A levels
(Black et al., 2020).

The principal downstream substrate of ATM is checkpoint
kinase 2 (CHK2), which can induce a G1/S-phase cell cycle
stall upon activation (Matsuoka et al., 2000). A CHK2-like
protein has been identified in trypanosomatids, but no work
has confirmed this PK as a bonafide CHK2 homolog (Genois
et al., 2014). Another key substrate of ATM is p53, which
is present in metazoans (Dos Santos et al., 2016) and some
unicellular organisms (Lu et al., 2009; Bartas et al., 2020), though
trypanosomatids appear to lack a p53 homolog. Thus, putative
events downstream of trypanosomatid ATM are unknown.
Loss of MRE11 or RAD50, the upstream recruiters of the PK
(Figure 2A), affect trypanosomatid proliferation and genomic
stability. In Leishmania, deletion of RAD50 can only be
achieved in an MRE11 null mutant, suggesting an unanticipated,
stoichiometric balance in activities provided by these two factors
(Laffitte et al., 2016). Both factors operate during Leishmania HR,
with MMEJ predominating in their absence, where chromosomal
translocations are seen (Laffitte et al., 2016). In T. brucei, null
mutants of either MRE11 or RAD50 are tolerated, with loss of the
former leading to instability in the large, transcriptionally silent
Variant Surface Glycoprotein (VSG) gene-rich subtelomeres
(Robinson et al., 2002; Mehnert et al., 2021). Loss of either
RAD50 or MRE11 results in increased levels of VSG activation
after induction of a DSB within the specialized site for VSG
transcription (termed the bloodstream expression site), whereas
MRE11 mutants do not display such elevation in the rate
of immune evasion without DSB induction (Robinson et al.,
2002). Taken together, these data raise questions about how
VSG-directed HR initiates during immune evasion (da Silva
M. S. et al., 2018), and analysis of ATM could be key to
understanding this reaction. Indeed, addressing ATM function
may be informative in understanding signaling of gene family
rearrangements (Weatherly et al., 2016) and gamma irradiation
resistance (Regis-da-Silva et al., 2006) in T. cruzi and, perhaps,
other trypanosomatids.

DNA-PKcs: A Leishmania-Specific DDR
PK?
Active DNA-PK is a holoenzyme complex consisting of DNA-
PKcs and the Ku heterodimer (subunits Ku70 and Ku80 Gottlieb
and Jackson, 1993). Together, this complex initiates DSB repair
via cNHEJ. DNA-PK also shares partial functional redundancy
with ATM; DNA-PK is capable of phosphorylating downstream

ATM substrates, including H2AX, in cells lacking ATM (Stiff
et al., 2004). DNA-PK can also orchestrate metabolic pathways
like fatty acid synthesis (Chung, 2018). When a DSB forms, the
Ku heterodimer recognizes the lesion and can recruit DNA-PKcs,
which, in turn, is activated by autophosphorylation, forming
the holoenzyme complex. DNA-PK phosphorylates and recruits
downstream substrates to effect repair. First, mismatched ends of
the DSB are resected by nucleases, followed by gap filling by DNA
polymerases (mainly Pol µ and Pol ε), which act in a template-
independent manner. Lastly, DNA ligase IV, in conjunction with
the x-ray repair cross-complementing protein 4 (XRCC4) and the
XRCC4-like factor (XLF), seals the break (reviewed by Chung,
2018; Mohiuddin and Kang, 2019; Menolfi and Zha, 2020). In
recent years, a plethora of additional accessory NHEJ factors,
such as the Paralog of XRCC4 and XLF (PAXX; previously
known as C9orf142), have been discovered, though we are yet
to comprehend the range of activities relating to NHEJ they
perform (as reviewed by Ghosh and Raghavan, 2021). Insertions
and deletions of the DNA template are frequent consequences
of cNHEJ-directed repair. In some cases, such mutagenic repair
is beneficial, such as when DNA-PK acts to generate antigen
receptor diversity by coordinating Variable, Diverse, and Joining
V(D)J recombination (Kienker et al., 2000). Thus, mutations in
the DNA-PKcs gene in mice result in severe combined immune-
deficiency (SCID) syndrome, manifesting as profound defects
in T- and B-cell development. In humans, aberrant DNA-PK
activity correlates with the development of a range of cancers
(Mohiuddin and Kang, 2019).

Most kinetoplastids, including T. brucei and T. cruzi, appear
to lack DNA-PKcs, whereas across Leishmania spp., a potential
DNA-PKcs homolog has been identified (Figure 1). Putative
DNA-PKcs homologs have also been found in the genomes
of other Leishmaniiae, such as Endotrypanun monterogeii (a
parasite of two-toed sloths) and Crithidia spp. (a monoxenous
insect pathogen), but little is known about DNA repair in
these organisms. The putative Leishmania DNA-PKcs shows
most sequence conservation relative to other eukaryotic DNA-
PKcs proteins within its C-terminal kinase domain. Additionally,
a conserved NUC194 domain, whose function is unknown,
has been identified in Leishmania DNA-PKcs, supporting this
putative PK as a homolog of human DNA-PKcs (Lees-Miller
et al., 2020). Functional analysis of this putative repair enzyme
awaits and it is unknown if its loss alters the parasite’s
response to genotoxic stress. The putative presence of DNA-
PKcs in Leishmania, and other Leishmaniiae, unlike in related
trypanosomatids, is especially intriguing because it is unlikely
to direct cNHEJ since repair of CRISPR-Cas9-generated DSBs
in Leishmania has never been shown to occur by this repair
pathway, but instead only by MMEJ (Zhang and Matlashewski,
2015) or SSA (Zhang and Matlashewski, 2019).

Why Leishmania potentially possess DNA-PKcs poses another
intriguing question since the Ku complex is present in T. brucei
and T. cruzi, which have no ortholog of the putative DNA-PKcs
gene. Addressing this complex pattern of presence or absence of
components of the DNA-PK holoenzyme is further complicated
by lack of clarity regarding what role Ku performs in the absence
of cNHEJ, with the best evidence being a role inT. brucei telomere
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maintenance (Conway et al., 2002; Janzen et al., 2004), suggesting
that this part of DNA-PK operates outside DSB repair in these
parasites. The nature of this critical role remains unclear, given
that the natural absence of both Ku proteins in Blastocrithidia
spp. does not appear to have a noticeable impact on telomere
length (Poláková et al., 2021). One possible explanation could be
linked to the extensive genome plasticity observed in Leishmania,
with aneuploidy (Sterkers et al., 2011) and copy number
variations (CNVs) readily detected during growth (Ubeda et al.,
2008; Leprohon et al., 2009; Rogers et al., 2011; Restrepo et al.,
2019). Furthermore, the use of repair machinery for DNA
replication (Damasceno et al., 2016, 2018, 2020) suggests that
DNA repair processes are required for genome duplication. Thus,
the presence of a putative complete DNA-PK in Leishmania
but not in T. brucei or T. cruzi could play roles in genome
maintenance and transmission that aid plasticity. For instance,
the interaction between DNA-PKcs and Ku occurring at DSBs
within unstable regions could activate a divergent DNA-PK
pathway, perhaps amplifying repair by MMEJ or other more
mutagenic pathways. Though T. brucei and T. cruzi also exhibit
genomic instability, unstable regions in T. brucei appear limited
to multicopy VSG gene families with functions in host immune
evasion (Glover et al., 2013; Horn, 2014; Black et al., 2020).
More widespread aneuploidy and CNVs have been reported in
T. cruzi (Minning et al., 2011; Reis-Cunha et al., 2015; Callejas-
Hernández et al., 2018), though the underlying mechanics
are largely uncharacterized. Thus, Leishmania DNA-PKcs may
perform genus-specific functions pertaining to plasticity, though
further work is needed to demonstrate the presence and activity
of the DNA-PK holoenzyme.

The ATR Kinase
In most eukaryotes ATR is essential for cellular proliferation.
For instance, during embryogenesis in mammals, loss of ATR
results in mitotic catastrophe in the developing blastocyst (Brown
and Baltimore, 2000). In adult mice, ATR depletion causes a
premature aging-like syndrome that has been attributed to stem
cell loss (Ruzankina et al., 2007) and appears akin to Seckel
syndrome, a complex form of microcephalic primordial dwarfism
that occurs in humans with ATR gene mutations (O’Driscoll
et al., 2003). Interestingly, loss of ATR does not predispose
such individuals to cancer, like loss of ATM (Chanan-Khan
et al., 2003; Qvist et al., 2011). ATR is activated in response
to ssDNA accumulation at stalled DNA replication forks, at
resected DSBs, or following deoxyribonucleotide triphosphate
(dNTP) depletion. Transcription-derived RNA-DNA hybrids (R-
loops) and shortened telomeres are also prominent activators of
ATR (reviewed by Saldivar et al., 2017). Briefly, ssDNA, coated
with the heterotrimeric replication protein A (RPA) complex,
acts as a recruitment platform for the obligatory interaction
partner of ATR, ATR Interacting Protein (ATRIP; Figure 2A).
ATRIP recruits and activates ATR, resulting in a hetero-
tetrameric complex composed of two molecules each of ATR
and ATRIP. Additionally, ATR activation requires the activities
of the Rad9-Rad1-Hus1 (9-1-1) complex, topoisomerase II
binding protein 1 (TOPBP1), and, in vertebrates, the Ewing
tumor-associated antigen 1 (ETAA1; the latter two regulate

the activity of ATR). Once activated, ATR phosphorylates the
effector kinase checkpoint kinase 1 (CHK1), which initiates
checkpoint activation and cell cycle arrest, suppressing global
origin firing, promoting dormant origin firing, and initiating
DNA repair pathways. Outside these DDR functions, ATR acts
on centromeric R-loops to promote chromosome segregation
during mitosis (Kabeche et al., 2018), on genome-wide R-loops
to prevent instability (Matos et al., 2020), aids the replication
of repetitive and fragile genomic regions (Casper et al., 2002),
responds to mechanical stresses including nuclear and nucleolar
deformation (Kidiyoor et al., 2016), and acts in telomere
maintenance (McNees et al., 2010).

Like ATM, trypanosomatid ATR shares most sequence
homology within the C-terminal kinase-containing region
(Figure 1), and ∼70% of the enzymes are composed of an
α-solenoid-like domain, which is typical of the PIKK family.
Across all three trypanosomatids, FAT and FATC domains are
present, in addition to an UME domain (NUC010; Pfam), which
is characteristic of FAT and FATC domain-harboring proteins
(the function of the UME domain is unknown). Intriguingly,
trypanosomatid ATR appears to lack a PRD domain typical of
PIKK kinases. This absence may be mechanistically important
since the PRD domain is required for ATR activation by TOPBP1
(Mordes et al., 2008). Though a putative trypanosomatid
homolog of TOPBP1 has been identified, its function remains
uninvestigated (Genois et al., 2014) and no interactions between
parasitic ATR and this putative TOPBP1 homolog have been
reported. In mammalian-infective T. brucei, depletion of ATR
produces an accumulation of cells in the S-phase accompanied
by growth arrest, indicating that PK is essential even in vitro
(Jones et al., 2014; Black et al., 2020). Depletion of ATR also
resulted in widespread accumulation of genotoxic stress markers,
including increased levels of yH2A and formation of RAD51 and
RPA foci, and increased sensitivity to a range of DNA mutagens
(Black et al., 2020) implicating ATR in the trypanosomatid DDR.
Nonetheless, what aspect of ATR function results in T. brucei
death after the loss of the PK is unknown. In this regard,
recent work in insect stage T. brucei revealed that depletion
of ATR only moderately affects parasite proliferation and cell
cycle progression, despite playing an important role during HR
and damage signaling in this life cycle stage in response to
ionizing radiation (IR) (Marin et al., 2020). This dichotomy likely
reflects alternative demands on repair and replication in distinct
life cycle stages.

A parasite-specific and life cycle stage-specific role of ATR
has been uncovered in mammalian-infective T. brucei. To evade
immune clearance, stochastic switching of the VSG surface
antigen occurs. On any cell, at any given time, a single
VSG variant is expressed out of the predicted 2,000 VSGs
available in the genome, the majority of which comprise a
subtelomeric library (Müller et al., 2018). VSGs are transcribed
by polymerase I (Navarro and Gull, 2001; Hertz-Fowler et al.,
2008) from a specialized subtelomeric expression site known
as the Bloodstream Expression Site (BES), of which ∼15
have been reported in the laboratory-adapted Lister 427 strain
(Müller et al., 2018). Upon ATR depletion, downregulation of
the actively transcribed BES occurs, correlating with increased
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transcription from previously silent BESs, indicating that loss
of ATR undermines BES transcriptional control. Furthermore,
transcripts from VSGs located in the subtelomeric library became
upregulated, suggesting increased levels of recombination events
moving these VSGs into BESs. Perhaps explaining both these
effects on VSG expression, increased damage was detected across
the majority of BESs and in close proximity to the VSG-associated
70-bp repeats, implying that ATR may play a role in the resolution
of lesions that accumulate within the BES. One possible form of
BES lesion is an R-loop since these structures have been shown to
accumulate in BESs after the loss of RNase H enzymes, leading to
the same changes in VSG expression (Briggs et al., 2018a, 2019).
Nonetheless, how ATR (and potentially R-loops) acts in VSG
transcriptional control and VSG recombination remains unclear
(Black et al., 2020).

In Leishmania, ATR function has been investigated in
promastigote cells using the small-molecule inhibitor VE-821 (da
Silva R. B. et al., 2018), a selective inhibitor of the ATR kinase
in humans (Charrier et al., 2011; Reaper et al., 2011). VE-821
treatment was associated with a modest decrease in proliferation,
though no cell cycle alteration was reported, as seen following
ATR depletion inT. brucei. However, as for ATM, VE-821-treated
cells were significantly more sensitive to H2O2, suggesting that
ATR may act during the response to oxidative stress, similar to
ATM, though work is needed to validate ATR as the target of
VE-821 and to assess whether inhibiting ATR also sensitizes cells
to other genotoxins. Unlike in T. brucei, and perhaps consistent
with the VE-821 inhibition data, ATR has been reported to be
dispensable for L. mexicana survival in vitro, though effects of
ATR loss were not investigated further (Baker et al., 2021).

A major deficit in our understanding of the trypanosomatid
ATR pathway is the initial activation of ATR itself. Other factors
operating within the ATR pathway include the 9-1-1 complex,
which has been functionally characterized in L. major, revealing
connections between DNA signaling pathways with genome
plasticity (Damasceno et al., 2018). How ATR interacts with 9-1-1
in these organisms is unknown. Given that Rad9 likely operates
as part of an alternative complex to 9-1-1, and Hus1 is capable of
persisting in a monomeric form (Damasceno et al., 2016), such
interactions may be divergent and parasite-specific. Does ATR
interact with both complexes? Does ATR modulate their behavior
or do they modulate the behavior of ATR?

The genomes of all trypanosomatids also appear to lack any
putative homologs of the obligatory ATR interaction partner
ATRIP (or ETAA1), which is required for kinase activation in
other eukaryotes. We also lack information on the roles of
the putative TopBP1 homolog (Genois et al., 2014), which is
a critical ATR activation factor (Kumagai et al., 2006) and a
recruiter of the 9-1-1 complex, via Rad9 (Yan and Michael,
2009). TopBP1 in other eukaryotes interacts with ATR via a
small domain, the PIKK regulatory domain (PRD), upstream
of the FATC domain; PRD deletion prevents ATR activation
by TopBP1. The PRD domain of trypanosomatid ATR is less
well defined and, when combined with poor conservation of the
ATR activation domain (AAD) in the trypanosomatid TopBP1
homologs, this raises questions as to whether TopBP1 plays a
role in ATR kinase activation. Functions of the RPA complex

also raise questions about the activation of trypanosomatid ATR.
Trypanosomatid RPA1 can bind to the ends of telomeres and
may regulate telomere homeostasis (Pavani et al., 2016, 2018;
Fernandes et al., 2020). In other eukaryotes, ATR functions to
stabilize telomeres (McNees et al., 2010): ATR loss associated
with R-loop and G4 structure accumulation destabilizes these
structures, resulting in telomere dysfunction (Rhodes and Lipps,
2015; Graf et al., 2017). Given RPA activates ATR, it is possible
that the kinase acts directly at the telomeres of trypanosomatids.
In support of this, loss of ATR is linked to damage accumulation
within subtelomeric regions in T. brucei correlating with regions
of R-loop formation (Briggs et al., 2018a,b; Black et al., 2020). The
functions of ATR in T. cruzi are unknown.

DDR Effector Kinases: What Goes on
Downstream?
ATR, ATM, and DNA-PKcs, and their direct downstream
substrates (discussed above), are key DDR players, coordinating
much of the initial response to a DNA lesion. However, a plethora
of other PKs also act in a wider response to restore cellular
homeostasis after damage. In humans, up to 160 PKs (out of
∼550 PKs encoded in the genome; Eid et al., 2017; Kanev et al.,
2019) have been linked to neoplastic cellular transformation
or disease development due to mutations causing a loss or
gain of function (Cell Signaling Technology, 2020). Assessing
wider damage response functionality has been made possible
through the use of systematic high-throughput screening using
siRNAs, small-molecule inhibitors, or CRISPR/Cas9 technology
to identify novel DDR factors and map damage response
pathways across several eukaryotic organisms. Indeed, a recent
genome-wide screen performed in the presence or absence of a
panel of genotoxins has revealed ∼890 genes that may function
during DNA repair in human cells, including ∼40 PKs (based
on GO term analysis of hits on protein serine/threonine kinase
activity; Olivieri et al., 2020).

T. brucei, T. cruzi, and Leishmania encode for 190 (Jones et al.,
2014), 190 (Parsons et al., 2005), and 206 (Baker et al., 2021)
PKs, respectively, with several aPKs identified and members
of all ePK groups represented, except for tyrosine-like and
tyrosine kinases (Figure 2B). Over the last decade, with the
implementation of genome-wide and kinome-focused screens
in T. brucei, the roles of PKs have been investigated during
drug resistance (Alsford et al., 2012), cell cycle control (Jones
et al., 2014), and in vivo survival (Fernandez-Cortes et al., 2017).
However, only one screen to date has been performed to examine
the parasite’s response to DNA damage. Both genome-wide and
kinome-focused RNAi screening identified a cohort of 30 PKs
(∼15% of the kinome), whose downregulation was associated
with increased sensitivity to MMS. Among these 30 PKs, and
in addition to ATR, ATM, and the related kinase TOR4, eight
novel putative DDR PKs were validated. Within this cohort was
AUK2 (Stortz et al., 2017), a member of the aurora kinase family,
and homologous to AURKA in human cells (the function of
aurora kinases is reviewed here; Tang et al., 2017; Willems et al.,
2018). Deletion of AUK2 in T. brucei resulted in increased DNA
damage sensitivity, cell cycle defects, spindle formation defects,
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yH2A phosphorylation, and RAD51 foci formation, indicating
the accumulation of DNA lesions and highlighting AUK2 as a
DDR kinase. AUK2 is also required for the survival of in vivo
murine infections (Fernandez-Cortes et al., 2017). Dysregulation
of aurora kinase family members is associated with the formation
of cancer, and the PKs play prominent roles during mitosis (Tang
et al., 2017). The function of AUK2 is unknown in Leishmania,
but null mutants could not be recovered in promastigote cells,
suggesting that it is essential (Baker et al., 2021). In T. cruzi, only
AUK1 (homologous to AURKB) function has been assessed, with
evidence suggesting it acts canonically during mitosis and nuclear
division, alongside being required during kinetoplast duplication
(Fassolari and Alonso, 2018). Though the role of AUK2 was
not directly investigated in T. cruzi, the authors reported two
independent forms of the protein, suggesting that this kinase
may functionally diverge from AURKA, and indeed may display
variation in AUK2 functions in T. brucei.

From the genome-wide screen (Stortz et al., 2017), the tousled-
like kinases 1 and 2 (TLK1/2) were identified as causing increased
MMS sensitivity following their simultaneous depletion by RNAi.
RNAi depletion resulted in a loss of proliferation, an S-phase
stall, increasing numbers of cells lacking nuclear DNA (indicating
nuclear segregation defects), and increased phosphorylation of
yH2A (Stortz et al., 2017). Indeed, earlier RNAi implicated
TLK1 as the perpetrator of these defects, with TLK1 localizing
to the nucleus of the parasites (Li et al., 2007). In metazoans,
TLKs can act during genome maintenance, in keeping with
the role of TLK1 reported for T. brucei. TLK is an essential
gene in Leishmania, likely controlling aspects of the cell cycle,
though DDR-related roles have not been described (Baker et al.,
2021). Across both screens, further investigation of candidate
DDR PKs, in addition to AUK2, revealed a further four whose
loss causes increased sensitivity to MMS, but no proliferative
defects were detected upon RNAi in vitro, suggesting that these
kinases are required for parasite survival specifically following
genotoxic stress exposure. These four PKs belong to diverse
PK families, including calmodulin-dependent protein kinases
(CAMK), which act to regulate intracellular calcium stores
including during apoptosis, and the CMGC family, which include
regulators of cell cycle progression. In Leishmania, these four PKs
are non-essential, as CRISPR/Cas9-mediated null mutants are
viable in vitro (Baker et al., 2021). Further work will be needed
to investigate the role of these enzymes in the DDR, including
asking how they map onto the pathways elicited by ATM, ATR,
and, perhaps, DNA-PKcs. In L. mexicana, the recently developed
CRISPR/Cas9 bar-seq library could be used to perform the type
of DDR screen performed in T. brucei. In addition, single-cell

transcriptomics may be a key strategy to examine the timing
of PK expression during parasite growth, as well as to map the
interacting PK signaling activities. In T. cruzi, no genome-wide
libraries are currently available but the recent introduction of the
CRISPR/Cas9 system in this parasite (Lander et al., 2015; Peng
et al., 2015) could mean such screens are on the horizon.

CONCLUSION AND FUTURE
PERSPECTIVES

Genome integrity must be preserved to prevent loss of
information across generations. PKs are key facilitators of
this process and their integral roles across a multitude of
DDR pathways make them opportune candidates for drug
development pipelines. For trypanosomatids, where many
aspects of core biology are diverged, focused and broad
approaches to study DDR PK functions have revealed novelty,
such as the participation of ATR in host immune evasion
in T. brucei, and the proposed role for ATM in Leishmania
development in the insect vector. In contrast, we lack information
about the DDR PK function in T. cruzi. Continued forays
into trypanosomatid PK function provide the prospect of new
drug targets, by re-purposing available small-molecule inhibitors,
and could offer tantalizing glimpses into the evolution of core
biological processes in these peculiar eukaryotes.
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