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A subset of pediatric tumors affects very young children and are thought to arise
during fetal life. A common theme is that these embryonal tumors hijack developmental
programs, causing a block in differentiation and, as a consequence, unrestricted
proliferation. Embryonal tumors, therefore typically maintain an embryonic gene
signature not found in their differentiated progeny. Still, the processes underpinning
malignant transformation remain largely unknown, which is hampering therapeutic
innovation. To gain more insight into these processes, in vitro and in vivo research
models are indispensable. However, embryonic development is an extremely dynamic
process with continuously changing cellular identities, making it challenging to define
cells-of-origin. This is crucial for the development of representative models, as targeting
the wrong cell or targeting a cell within an incorrect developmental time window can
result in completely different phenotypes. Recent innovations in in vitro cell models may
provide more versatile platforms to study embryonal tumors in a scalable manner. In
this review, we outline different in vitro models that can be explored to study embryonal
tumorigenesis and for therapy development.
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INTRODUCTION

Cancer is the leading disease-related cause of death in children (Siegel et al., 2016; Cunningham
et al., 2018). A significant subset of pediatric tumors occurs in early childhood, suggestive of
an origin in prenatal life (Marshall et al., 2014). These so-called embryonal tumors are thought
to develop as a consequence of aberrant development. However, for many embryonal tumors
the processes driving tumorigenesis remain unknown. Whereas, adult cancers develop by a
progressive accumulation of mutations over many years (Stratton et al., 2009), embryonal tumors
are typically characterized by a relatively low mutational burden and only a few genetic events
to drive tumorigenesis (Vogelstein et al., 2013; Gröbner et al., 2018; Rahal et al., 2018; Kattner
et al., 2019). The few genetic alterations that do occur likely cause fetal cells to maintain a
progenitor-like state and prohibit differentiation. This maturation block has been suggested
to prime cells for malignant transformation (Chen et al., 2015; Puisieux et al., 2018; Rahal
et al., 2018; Jessa et al., 2019). To better understand the processes underpinning embryonal

Abbreviations: ASC, adult stem cell; DIPG, diffuse intrinsic pontine glioma; ESC, embryonic stem cell; GCT, germ cell
tumor; GEMM, genetically engineered mouse model; H3K27M, histone 3 methionine for lysine 27 substitution; iPSC,
induced pluripotent stem cell; MRT, malignant rhabdoid tumor; NPC, neural progenitor cell; NCC, neural crest cell; RPC,
retinal precursor cell; SWI/SNF, SWItch/Sucrose Non-Fermentable.
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tumorigenesis, a direct comparison between normal and tumor
development is key. Gene expression profiling of fetal tissues
with single cell resolution has provided more insights into the
developmental trajectories driving embryogenesis. Comparison
of such profiles with tumor gene expression signatures have
defined the cellular identity of several embryonal tumors, possibly
pointing to their cellular origin (Boeva et al., 2017; Young et al.,
2018, 2020; Hovestadt et al., 2019; Jessa et al., 2019; Vladoiu et al.,
2019). Yet, in many cases these studies are merely correlative and
lack subsequent functional validation. To do so, representative
in vitro and in vivo preclinical models are crucial.

Genetically engineered mouse models (GEMMs) have been
the golden standard for finding the cellular origin of cancers,
by introducing tumor driver events in putative tumor-initiating
cells (Visvader, 2011; Marshall et al., 2014). Although GEMMs
have provided important insights into tumorigenesis, several
drawbacks limit their potential as a representative model of
embryonal tumors. Embryonic development is an extremely
dynamic process with continuously changing cellular identities,
which makes it very challenging to target the right cell at the
right time. For instance, homozygous loss of the Wilms tumor
driver gene Wt1 was shown to be embryonically lethal in mice
(Kreidberg et al., 1993), whereas a specific Wt1 ablation at E11.5
in a small fraction of nephron progenitor cells resulted in Wilms
tumor formation (Hu et al., 2011; Berry et al., 2015; Huang
et al., 2016). Moreover, GEMM generation is time consuming
and mouse development does not fully recapitulate human
embryogenesis (Navin et al., 2010, 2011; Blakeley et al., 2015;
Theunissen and Jaenisch, 2017). The development of new
in vitro cell models increasingly recapitulating the complexity
of organogenesis will open new avenues for the development
of novel, relevant embryonal tumor models. In this review,
we discuss the currently available in vitro models to study
embryonal tumorigenesis as well as the discovery of new
therapeutic strategies.

CELL LINES OF FETAL ORIGIN

A broad range of cell lines has been established over the
last decades. Cell lines are easy to maintain and typically
do not consume many resources, which allows for fast
and parallel modeling of multiple tumor driver events. This
is particularly useful to interrogate the complex genetics
underlying heterogeneous tumor phenotypes. One such tumor
is neuroblastoma, which is characterized by a variety of driver
events, including MYCN amplification and ALK mutations
(Johnsen et al., 2019). To study neuroblastoma initiation, models
of its embryonic origin, neural crest (Johnsen et al., 2019), are
required. In vitro murine neural crest models can be generated
by extraction of neural tubes from mouse embryos, which are
subsequently placed in a culture dish to initiate the migration of
neural crest cells onto the plate (Maurer et al., 2007; Olsen et al.,
2017). The neural crest cells lose their multipotency over time
in vitro (6–10 cell divisions) (Stemple and Anderson, 1992) and
are, therefore only suitable for short-term experiments. However,
multipotency can be maintained by exogenous c-Myc expression.
Accordingly, Maurer et al. (2007) generated the JoMa1 neural

crest cell line, which was established from mouse embryos
carrying the inducible c-MycER transgene, enabling tamoxifen-
inducible c-Myc expression and maintenance of multipotency. In
both the JoMa1 cell line (Schulte et al., 2013) and non-genetically
modified neural crest cells (Olsen et al., 2017), overexpression
of MycN was proven sufficient to generate neuroblastoma upon
transplantation in immune-deficient mice. Other murine neural
crest-derived neuroblastoma models accommodate oncogenic
variants of Alk or Phox2b, which was shown to impair neural
crest development and inhibit sympathoadrenal differentiation
processes (Reiff et al., 2010; Schulte et al., 2013; Montavon
et al., 2014). However, murine neural crest development has
been shown to be different from human in many aspects
(O’Rahilly and Müller, 2007; Betters et al., 2010). Cohen
et al. (2020), therefore developed a mouse-human chimera to
study neuroblastoma formation in a human setting. Human
iPSC-derived neural crest cells were injected in utero into
gastrulating mouse embryos to form a human neural crest
lineage in mice. For neuroblastoma modeling, the neural crest
cells were subsequently genetically engineered with inducible
expression constructs of MYCN and an oncogenic variant of
ALK. Upon induction, mice developed tumors characteristic
of patient neuroblastoma, and tumor transcriptomes resembled
neuroblastoma patients more closely than GEMMs. Interestingly,
injections subcutaneously lead to tumor formation but without
expression of neuroblastoma markers (Cohen et al., 2020).
These findings suggest that human neural crest cells serve
as a more representative model than mouse, but only when
generated in the appropriate developmental context and
orthotopic environment.

Another embryonal tumor entity where differences between
human and mouse models of tumorigenesis were observed is
retinoblastoma. The common driver event of retinoblastoma
is loss of RB1 during retinal development (Dimaras et al.,
2015). Retinoblastoma modeling using GEMMs has proven
challenging, as engineering of Rb1-deficient mice resulted in
embryonic lethality (Lee et al., 1992; Wikenheiser-Brokamp,
2006) and retina-specific depletion of Rb1 was required.
However, in contrast to human, mouse retinal cells were proven
insensitive to Rb1 depletion and required additional knock-
outs of tumor suppressors p107 or p130 for retinoblastoma
development (Robanus-Maandag et al., 1998; Dannenberg et al.,
2004; MacPherson et al., 2004). To generate human models
of retinal development, Xu et al. (2014) isolated human fetal
retinal cells post-fertilization retaining all retinal precursor cell
types (RPCs) at distinct maturation states. Depletion of RB1
within the different RPCs indicated post-mitotic cone-precursors
to be most prone to develop into retinoblastoma, based on its
ability to form tumors with expression of retinoblastoma markers
upon xenografting in mice (Xu et al., 2014). Furthermore, RB1
loss in matured retinal cells did not induce retinoblastoma,
validating that tumor initiation is restricted to a specific cell
within retinal development.

Overall, in vitro modeling of retinoblastoma and
neuroblastoma in human and mouse fetal cell cultures
uncovered that fundamental differences between mice and
human development can impede representative modeling of
embryonal tumors.
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PLURIPOTENT STEM CELL-DERIVED
CELL LINES

Classical cell lines are typically composed of a single type
of progenitor-like cell representing a specific germ layer
(i.e., endoderm, ectoderm, mesoderm, neural crest). Culture
models still capable of generating the different germ layers
give the opportunity to model embryonal tumors of which
it is not yet clear from which lineage they arise, or which
seem to arise across the boundaries of the different germ
layers. Current in vitro models capable of recapitulating these
different developmental trajectories include pluripotent stem
cells (PSCs) such as embryonic stem cells (ESCs) and induced
PSCs (iPSCs), which can self-renew and be subjected to
differentiation protocols that enforce all germ layers (Liu G.
et al., 2020). PSCs can be stably maintained in culture and
are permissive for genetic manipulation (Liu G. et al., 2020).
With the development of effective differentiation protocols, PSCs
can mirror embryonic development and therefore serve as a
valuable model to study tumorigenesis. iPSCs are generated
through the forced dedifferentiation of somatic cells, which
thereby regain pluripotency. The molecular mechanisms that
underly this reprogramming show significant similarities with the
processes driving a subset of the embryonal germ cell tumors
(GCTs) (Oosterhuis and Looijenga, 2019), including yolk sac
tumors, embryonal carcinomas, and teratomas. GCTs encompass
a diverse group of cancer entities that arise from cells of the
early embryo or germ line (Oosterhuis and Looijenga, 2019).
Interestingly, somatic mutations play a minor role as drivers of
GCT development. Tumors are thought to arise by epigenetic
deregulation of the cell-of-origin or aberrant stem cell niche
factors (Oosterhuis and Looijenga, 2019). The developmental
potency of the cell-of-origin can be reprogrammed through
increased expression of well-known pluripotency factors, such
as NANOG and OCT4 (De Jong and Looijenga, 2006; Thomas
et al., 2011). Xenograft studies have shown that iPSCs and ESCs
are intrinsically tumorigenic (Ben-David and Benvenisty, 2011).
Upon xenografting, iPSCs develop into a benign GCT referred to
as teratoma or in some cases more malignant GCTs, dependent
on the reprogramming method applied (Lee et al., 2013). These
findings indicate that maintaining an early embryonic cellular
context is, by itself, sufficient for tumor initiation. Although
PSC tumorigenicity is a limitation for its potential application in
regenerative medicine, iPSCs and ESCs can on the other hand
serve as in vitro models of GCTs.

A major class of genes mutated in childhood as well
as adult cancers are subunits of the SWItch/Sucrose Non-
Fermentable (SWI/SNF) chromatin remodeling complex
(Wilson and Roberts, 2011; Shain and Pollack, 2013).
The role of this complex in embryonal tumors is clearly
exemplified in malignant rhabdoid tumors (MRT), which
are characterized by the complete loss of SWI/SNF subunit
SMARCB1 (95% of cases) or SMARCA4 (5% of cases) (Lee
et al., 2012; Hasselblatt et al., 2014). To study MRT initiation,
SMARCB1 was knocked down in hESCs using RNA interference
(Langer et al., 2019). The differentiation capacity of hESCs
was subsequently assessed, demonstrating that SMARCB1

inhibition specifically repressed neural induction, whereas
mesodermal and endodermal lineage induction was not affected
(Langer et al., 2019). In culture conditions inducing neural
differentiation, SMARCB1 was shown to be essential for
increased chromatin accessibility at neural differentiation genes
and silencing of pluripotency-related super-enhancers (Wang
et al., 2017; Langer et al., 2019). Furthermore, SMARCB1-
null iPSCs that were transplanted into mice were able to
generate MRT (Terada et al., 2019). Interestingly, iPSCs that
had further progressed to neural progenitor cells (NPCs)
generated tumors without rhabdoid features. These results
show a lineage-specific role for SMARCB1 in vitro, validating
recently developed MRT GEMMs wherein Smarcb1 loss-induced
rhabdoid tumor development was demonstrated to be limited
to a specific developmental time and lineage (Han et al., 2016;
Vitte et al., 2017).

A different layer of epigenetic regulation affected in embryonal
tumors is the post-translational modification of histone tails,
which enables a rapid switch between active or repressive
histone marks to dynamically regulate gene expression during
development. Mutations in histones are specifically characterized
in a subset of pediatric gliomas. In diffuse intrinsic pontine
glioma (DIPG), nearly 80% of cases have a missense mutation
in the histone 3.3 gene (H3F3A), causing a substitution of
methionine for lysine 27 (H3K27M) (Khuong-Quang et al.,
2012; Schwartzentruber et al., 2012; Wu et al., 2012). The
origin of DIPG was indicated to lie in early neural development
(Filbin et al., 2018; Sun et al., 2019), presumably making
NPCs derived from ESCs a suitable model for tumor initiation.
In line with this, overexpression of the H3K27M mutant
in NPCs resulted in increased proliferation (Funato et al.,
2014). Interestingly, introduction of the mutation was ineffective
in uninduced ESCs or mature astrocytes. For a majority of
DIPG cases, H3K27M mutations are typically co-occurring with
amplification of PDGFRA and loss of TP53 (Khuong-Quang et al.,
2012). Combined introduction of these three genetic events in
NPCs induced more extensive neoplastic features, generating
DIPG when transplanted in mice (Funato et al., 2014). This
combination of mutations prohibited early NPCs to differentiate
to astrocytes (Funato et al., 2014), explaining the observed
maturation block in DIPG.

MRT and DIPG modeling approaches using ESCs and iPSCs
have demonstrated that a specific cellular context is required
for malignant transformation, meaning that tumorigenesis is
restricted to a specific developmental time and fetal cell type.

PLURIPOTENT STEM CELL-DERIVED
ORGANOIDS

Recent innovations in three-dimensional (3D) culture
technology, such as organoids, has opened new opportunities
for generating additional representative models of embryonal
tumors. Organoids can be derived from adult (ASC) or
pluripotent stem cells. They typically capture the cellular
and genetic heterogeneity of native tissue and recapitulate
cellular hierarchy and dynamics to a large extent, which is most
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likely a consequence of their 3D architecture (Clevers, 2016).
Therefore, 3D organoid cultures seem to better recapitulate
organ morphogenesis (Clevers, 2016).

Following that rationale, 3D retinal organoids were established
from hESCs or iPSCs, allowing for more comprehensive studies
of retinoblastoma initiation in human cells (Zhong et al., 2014;
Kuwahara et al., 2015). Loss of RB1 in retinal organoids showed
a dysregulation of retinal maturation processes, impairing
differentiation toward photoreceptors, ganglion, and bipolar cells
(Zheng et al., 2020). However, the depletion of RB1 was not
sufficient for retinoblastoma initiation as the organoids did not
fully recapitulate the retinoblastoma cell phenotype. In addition,
transplantation of RB1-null organoids into immune-deficient
mice did not result in retinoblastoma formation (Zheng et al.,
2020). In contrast, Liu H. et al. (2020) utilized an alternative
hESC-derived retinal organoid model, in which RB1 depletion
did successfully generate tumors upon xenografting and better
resembled patient retinoblastoma. These findings illustrate that
the finetuning of retinal organoid establishment can affect the
outcome of RB1 depletion, possibly due to differences in cellular
composition and the presence or absence of the cell-of-origin.
These studies further highlight the specific cellular context
required for retinoblastoma initiation and point out a possible
limitation of PSC-derived models, as they may not be able to
generate the full extent of cell-types found in vivo.

A frequent source of embryonal tumors is the embryonic
brain. Human brain development can be mimicked by
differentiation of PSCs to neural progenitor cells. In culture, they
can self-organize into cerebral or cerebellar organoids containing
different cell types in a polarized structure (Muguruma et al.,
2015; Luo et al., 2016). Embryonic cerebellar organoids have
been successfully used to model pediatric brain tumors,
including medulloblastoma and rhabdoid tumors (Ballabio
et al., 2020; Parisian et al., 2020). Organoid cultures can be
utilized to introduce tumorigenic mutations in a systematic
manner, as shown for cerebral organoids (Bian et al., 2018),
demonstrating the potential for high-throughput in vitro tumor
modeling. Furthermore, cerebellar organoids can be exploited
to decipher tumor subtype-specific processes. Medulloblastoma,
among other embryonal tumor entities, is classified into
subtypes based on the oncogenic activation of specific signaling
pathways (Cavalli et al., 2017). The medulloblastoma subgroup
3 (MYC amplified subgroup) was successfully modeled in
cerebellar organoids by combination of MYC and OTX2 or GFI1
overexpression (Ballabio et al., 2020). The genetically modified
cerebellar organoids showed increased proliferation and
enrichment for progenitor cells, indicative of a differentiation
block. Upon transplantation into mice, medulloblastomas
developed resembling subgroup 3 tumors based on marker
genes and DNA methylation patterns. Other medulloblastoma
subtypes, likely arising from distinct neural differentiation
trajectories, have not been modeled in vitro up to date (Gibson
et al., 2010; Grammel et al., 2012; Hovestadt et al., 2019). To do
so, tumor initiation models composed of different neural lineages
may be required.

Overall, the development of embryonic organoid cultures
has provided relevant models of embryonal tumorigenesis.

By approaching in vivo physiology, human organoids may
serve as a promising alternative for time- and labor-intensive
in vivo studies.

REVERSE TUMOR MODELING AND
DIFFERENTIATION THERAPY

Relieving the differentiation block underpinning embryonal
tumor development could potentially serve as a therapeutic
approach (i.e., maturation therapy). To develop such therapies,
the differentiation block must first be defined, which can be
achieved through reverse tumor modeling by, for instance,
reverting the oncogenic driver in cultured tumor cells. Following
this principle, inhibition of N-MYC in MYCN-amplified
neuroblastoma cell lines induced a differentiation morphology
as well as upregulation of neural differentiation genes (Kang
et al., 2006; Henriksen et al., 2011; Jiang et al., 2011; Westermark
et al., 2011; Hossain et al., 2013). Differentiation phenotypes were
also observed upon genetic manipulation of medulloblastoma
models (Liu et al., 2017; Cheng et al., 2020; Zagozewski et al.,
2020), and MRT models (Betz et al., 2002; Nakayama et al.,
2017; Wang et al., 2017). These studies show that reversal
of the genetic driver can transform tumor cells to a more
mature cell state, possibly reflecting the matured cell type it
would have become, had it not become cancerous. Genetic
repair of driver genes is not feasible at present (Dunbar
et al., 2018). An alternative strategy is to induce differentiation
pharmacologically. For instance, experiments performed in MRT
models with SMARCB1 re-expression identified EZH2 and BRD9
as promising therapeutic targets (Erkek et al., 2019; Wang
et al., 2019). Moreover, aberrant epigenetic regulation is often
causal of the malignant embryonic state of pediatric cancer cells
(Lawlor and Thiele, 2012), potentially explaining the sensitivity
of different embryonal tumors to drugs targeting epigenetic
modifiers (Table 1). Treatment of in vitro pediatric tumor models
with differentiation agents can recapitulate the effects achieved
by driver reversal. However, a durable effect of differentiation
therapy can only be acquired through induction of an irreversible
growth arrest. As in vivo studies have shown, single agent
treatment may not suffice to induce terminal differentiation and
that combination therapy is required to do so (Hahn et al., 2008;
Botrugno et al., 2009; Westerlund et al., 2017; Chen et al., 2018).
A powerful tool to identify new (combinations of) drugs are high-
throughput drug screens performed on in vitro tumor models.
Organoids directly derived from patient tumor tissue could
provide such models, as they have been shown to closely resemble
its parental tissue (Drost and Clevers, 2018). Confirming their
potential, an increasing number of reports described that tumor
organoids are predictive for patient drug response (Tiriac et al.,
2018; Vlachogiannis et al., 2018; Ganesh et al., 2019; Ooft et al.,
2019; Yao et al., 2020). Recently, the organoid technology was
also successfully applied to several pediatric cancers, including
embryonal tumors such as MRT and Wilms tumors (Schutgens
et al., 2019; Calandrini et al., 2020). The efficient establishment
and cryopreservation of tumor organoid models from primary
patient tissue allows for the generation of large patient cohorts
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TABLE 1 | In vitro embryonic tumor initiation models and differentiation therapies.

Tumor Origin In vitro models Differentiation therapy

Neuroblastoma Neural crest cells
(NCCs)

MYCN overexpression in mouse primary NCCs (Olsen
et al., 2017)
MYCN/ALK-F1174L overexpression in a mouse NC cell-line
(Schulte et al., 2013)
Mouse-human chimeras with MYCN overexpression in
iPSC-derived hNCCs (Cohen et al., 2020)
Engineering human 1p36 deletions in mouse NCCs
(García-López et al., 2020)

Retinoic acid treatment (Lone et al., 2016; Westerlund
et al., 2017)
HDAC inhibitors (Hahn et al., 2008; Frumm et al., 2013)
EZH2 inhibitors (Chen et al., 2018)

MRT Neural crest cells
(NCCs)

SMARCB1 knockout in iPSCs (Terada et al., 2019)
SMARCB1 knockdown in ESCs (Langer et al., 2019)
SMARCB1 knockout in cerebellar organoids (Parisian et al.,
2020)

HDAC inhibitors (Muscat et al., 2016)
EZH2 inhibitors (Knutson et al., 2013)

Medulloblastoma Neural progenitor
cells

c-MYC overexpression in cerebellar organoids (Ballabio
et al., 2020)
MYCN overexpression in neuroepithelial stem cells (Huang
et al., 2019)

Retinoic acid treatment (Patties et al., 2016)
EZH2 inhibitors (Cheng et al., 2020)
SHH inhibitors (Ocasio et al., 2019)
BET-bromodomain inhibitors (Bandopadhayay et al., 2019)

DIPG Oligodendrocyte
precursor cells

H3K27M mutations in hESC derived NPCs (Funato et al.,
2014)
ACVR1 mutations in neurospheres (Hoeman et al., 2019)

HDAC inhibitors (Anastas et al., 2019)
BET-bromodomain inhibitors (Mohammad et al., 2017)

Retinoblastoma Cone precursor
cells

RB1 depletion in fetal retinal cell cultures (Xu et al., 2014)
RB1 depletion in hESC derived retinal organoids (Liu H.
et al., 2020; Zheng et al., 2020)

FIGURE 1 | Overview of embryonal tumor modeling techniques. Illustration that summarizes the different in vitro approaches used to model embryonal tumors
(MRT = malignant rhabdoid tumor; DIPG = diffuse intrinsic pontine glioma, GCT = germ cell tumor). In vitro tumor models are grouped by their source: cell lines of
fetal origin, 2D embryonic stem cell (ESC) derived or induced pluripotent stem cell derived (iPSC) cell lines and 3D ESC/iPSC derived organoids. The gene-editing of
tumor driver events is indicated (red = loss of function/deletions; green = gain of function/overexpression). Permission to reuse and Copyright: Medical illustrations
used in in this figure were modified from Servier Medical Art, licensed under a Creative Commons Attribution 3.0 Generic License.
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stored in organoid biobanks. This is seemingly of particular
interest for rare tumors, such as embryonal tumors, for which
research material is scarce. In conclusion, the generation of novel
and more representative in vitro embryonal tumor models is key
for the improvement of differentiation therapeutics.

DISCUSSION

In this review, we have attempted to outline the rapidly
developing field of in vitro embryonal tumor models and
discussed their added value to embryonal tumor research
(Figure 1 and Table 1). Still, each model has its intrinsic
limitations. For instance, fetal cells can be extracted and cultured
from fetal tissues (Xu et al., 2014), but in many cases they
do not represent the continuously changing cellular identities
found during embryonic development. Alternatively, iPSCs or
ESCs cell lines can be deployed to recapitulate these dynamics.
Still, even though the spectrum of differentiation protocols is
rapidly expanding, many embryonic cell types found in vivo
cannot yet be captured in vitro. Additionally, in vitro cultures
of ESCs or iPSCs have been shown to be susceptible to
“spontaneous” malignant transformation, which can complicate
the interpretation of modeling experiments (Ben-David and
Benvenisty, 2011). Furthermore, 2D cultures do not capture 3D
tissue architecture (Pampaloni et al., 2007). These limitations
have been to some extent improved in 3D organoid cultures,
which better capture the cell-cell interactions found during
embryonic organogenesis (Clevers, 2016). The development
of mouse-human chimeras has highlighted the role of the
microenvironment in tumor progression (Cohen et al., 2020)
and reveals a promising opportunity to bridge the gap of
in vitro and in vivo tumor modeling, as mouse-human chimeras
have the advantage of having human cells combined with an
in vivo murine microenvironment. A good representation of
patient tumor evolution remains challenging in in vitro models.
In patients, tumors originate from a single tumor-initiating
cell, wherein a genetic driver event induces aberrant signaling
pathways that provide a cell with competitive advantages.
Continuous selection of such cells (clonal selection) is thought to
form the basis of tumor initiation, progression, and heterogeneity
(Navin et al., 2010, 2011). In vitro models typically do not reflect
the environmental conditions causing clonal selection, as culture

conditions are only a simplified version of in vivo signaling
complexity. Embryonal tumors maintain a fetal identity, which
is no longer present in matured tissues (Orbach et al., 2013;
Marshall et al., 2014). The characterization of developmental
programs in embryonal tumors can therefore give crucial insights
into the processes underpinning malignant growth. Single cell
transcriptome profiling of tumors and developing tissues has
proven to be a promising tool to reveal such processes, which
could potentially serve as therapeutic targets (Filbin et al., 2018;
Zhang et al., 2019). Similar methods can also be applied to in vitro
models recapitulating embryonal tumorigenesis, as demonstrated
for the retinoblastoma organoid model generated by Liu H.
et al. (2020), which has the advantage that it allows for a direct
comparison of normal and tumor development.

Although many in vitro embryonic cell-derived tumor models
have been established over the years, the spectrum is biased
toward ectoderm-derived tumors. It seems a matter of time
before mesoderm- or endoderm-derived in vitro tumor models
(e.g., Wilms tumor and hepatoblastoma) will be developed, as the
number of culture systems for fetal tissues is rapidly expanding
(Low et al., 2019; Ooms et al., 2020; Hendriks et al., 2021).

We are only just beginning to understand the complexity
of embryonal tumor development. Although capturing this
complexity in a single in vitro model might not be feasible, further
development of representative in vitro cell models recapitulating
at least part of it is crucial to gain further insight into the
fundamental processes underpinning malignant growth and the
development of new therapeutic strategies.
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