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Gene Families With Stochastic
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Mikhail Iakovlev†, Simone Faravelli† and Attila Becskei*

Biozentrum, University of Basel, Basel, Switzerland

Exclusive stochastic gene choice combines precision with diversity. This regulation
enables most T-cells to express exactly one T-cell receptor isoform chosen from a
large repertoire, and to react precisely against diverse antigens. Some cells express two
receptor isoforms, revealing the stochastic nature of this process. A similar regulation
of odorant receptors and protocadherins enable cells to recognize odors and confer
individuality to cells in neuronal interaction networks, respectively. We explored whether
genes in other families are expressed exclusively by analyzing single-cell RNA-seq data
with a simple metric. This metric can detect exclusivity independently of the mean
value and the monoallelic nature of gene expression. Chromosomal segments and
gene families are more likely to express genes concurrently than exclusively, possibly
due to the evolutionary and biophysical aspects of shared regulation. Nonetheless,
gene families with exclusive gene choice were detected in multiple cell types, most
of them are membrane proteins involved in ion transport and cell adhesion, suggesting
the coordination of these two functions. Thus, stochastic exclusive expression extends
beyond the prototypical families, permitting precision in gene choice to be combined
with the diversity of intercellular interactions.

Keywords: allelic exclusion, carbonic anhydrase, cell identity, Poisson-binomial distribution, single-cell RNA-seq,
basigin, olfactory receptor, mouse

INTRODUCTION

The combinatorial principle plays an important role in the evolution of complex organisms.
A large proportion of the mammalian genomes encodes regulators, especially transcription factors
(Vaquerizas et al., 2009), which determine what combination of genes will be turned on and off.
Each cell type expresses a distinct set of genes, a form of phenotypic diversity that has been studied
by single cell expression profiling, such as single-cell RNA-seq, with an unprecedented throughput
(Baran-Gale et al., 2018). The study of the combinatorial expression patterns of genes belonging to
a gene family or gene array is of particular relevance, among which the exclusive gene choice of the
odorant and T-cell receptors has received widespread attention.

Each olfactory neuron expresses a single odorant receptor isoform randomly selected from more
than a thousand gene isoforms (Massah et al., 2015; Khamlichi and Feil, 2018) and triggers a signal
in response to a particular odor. Thus, precision of expression in a single cell is combined with
diversity in a cell population. A similar principle underlies the immune response: each lymphocyte
expresses a single antigen receptor randomly chosen from a large repertoire. The receptor isoforms
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are diversified, in part, due to the stochastic gene choice of
the variable domain. With the in-depth study of these systems,
it became apparent that a non-negligible proportion of cells
expresses more than one, typically two gene isoforms (Brady
et al., 2010). These cells with dual T cell receptors may
enhance the antiviral response but can also underlie autoimmune
disorders (Ji et al., 2010; Bradley et al., 2017). Thus, stochastic
gene choice has clear physiological implications.

A slightly different form of exclusivity was observed in
the protocadherin (Pcdh) array, which encodes multi-subunit
membrane proteins mediating cell-to-cell interactions between
neurons (Yagi, 2012). In this array, most cells express at least
two distinct variable α-isoforms from a repertoire of 12 genes,
one from the paternal, one from the maternal chromosome
(Esumi et al., 2005). These findings indicate that the strict
definition of exclusivity—one gene (isoform) per single cell—
needs extending to account for the observed distributions and for
averages greater than one.

These observations lead to the question about how to define
exclusive expression in terms of a probability distribution. Is
the expression of T-cell receptor isoforms exclusive if cells
with dual T-cell receptors constitute 1, 50, or 90% of the
population? What if three different receptor isoforms were to be
expressed in some of the cells (Vatakis et al., 2013)? Recently,
the degree of exclusivity in the stochastic gene choice of the
Pcdh gene array was quantified with a probabilistic approach
that defines exclusivity independently of the mean number of
expressed genes in an array (Wada et al., 2018). This definition of
stochastic exclusivity implies that the distribution of the number
of expressed gene isoforms is narrower than expected from
the purely random, independent expression of the genes in the
array. For example, gene choice is precise when the majority of
cells express three gene isoforms and only a few cells express
less or more than three isoforms. Thus, stochastic exclusivity
reflects simply the precision in gene choice irrespective of the
underlying mechanism, let it be chromosomal looping during
gene activation, negative feedback or allelic exclusion after
DNA recombination.

Here, we examined single-cell RNA-seq data and established
the exclusivity in the classic gene arrays and families, the odorant
receptors, the T-cell receptors and the Pcdh-α array in some cell
types, with a simple metric, regardless of whether gene expression
is monoallelic or has a mean value of one. After this validation of
our approach, we examined how the genome-wide organization
of the genes affects stochastic gene choice and detected gene
families (paralogs) with exclusive gene choice.

RESULTS

Single Cell RNA-Seq Datasets
We analyzed RNA-seq datasets consisting of at least 100 single
cell measurements of a well-defined cell type isolated from the
mouse Mus musculus. Neurons from various locations in the
nervous system were included, such as somatosensory neurons
from dorsal root ganglions (Li et al., 2016), dopaminergic
neurons (Hook et al., 2018) and corticostriatal neurons from

the visual cortex (Tasic et al., 2016). Non-neuronal cell types
encompassed nearly all organs: two types of lymphocytes,
CD8+ T-cells (Kakaradov et al., 2017) and type 17 helper cells
(Th17) (Gaublomme et al., 2015); dendritic cells from the bone
marrow (Schlitzer et al., 2015), cardiomyocytes (Nomura et al.,
2018), endothelial cells (Veerman et al., 2019), enterocytes (Haber
et al., 2017), fibroblasts (Reinius et al., 2016), kidney duct
cells (Chen et al., 2017), thymus epithelial cells (Sansom et al.,
2014), prostate stromal cells (Kwon et al., 2019), type I and
II alveolar cells from the lung (Guo et al., 2019); hepatoblasts
and hepatocytes from the liver (Yang et al., 2017), pancreatic
endocrine cells (Yu et al., 2019). Undifferentiated cell types
were represented by embryonic stem cells isolated from embryos
(Cheng et al., 2019) and embryonic stem cell (ESC) cultures
(Klein et al., 2015). The gene expression has UMI units in
two studies, while all other studies have FPKM/TPM units
(Supplementary Table 1). The libraries in most studies were
generated by Smart-Seq2 or its variants, which typically capture
more genes than other technologies (Baran-Gale et al., 2018).

Dichotomization of RNA-Seq Counts
The distribution of the RNA counts in a single-cell RNA-
seq dataset is determined by various factors, in particular, the
stochastic processes in gene expression and the methods for
amplifying and detecting the RNA molecules. Gene expression
is stochastic due to the low copy number of genes and mRNA
molecules, and due to the spatiotemporal nature of biochemical
processes in the cell (Battich et al., 2015; Baudrimont et al.,
2019; Finn and Misteli, 2019; Friedrich et al., 2019; Rodrigo,
2019). When the expression has two states (OFF and ON states),
the resulting distribution can be bimodal, often referred to as
stochastic gene choice. Many genes display bimodal expression
(Supplementary Figure 1A; Shalek et al., 2013).

To determine the proportion of OFF and ON cells, the
RNA distribution must be dichotomized. For this purpose,
we compared two classes of methods. In the moment-based
methods, the averages or variances of the total distribution
or parts of it are calculated. The second class of methods
relies on the fitting of probability mass or density functions
(pdf). The moment-based methods are more robust but
lack a uniform mathematical framework (Supplementary
Figures 1B–D). Conversely, the pdfs have mathematically well-
defined dichotomization points but their fitting is less robust. In
order to combine the advantages of the two approaches, we aimed
at selecting the moment based approach that correlates the most
with the dichotomization using pdfs.

We tested three types of moment-based methods: the Variance
Reduction Score (VRS), Fraction of Maximal values (FM) and
Geometric Trimmed Mid-Extreme threshold (GTME) (section
“Materials and Methods”). The VRS quantifies the extent to
which a given threshold reduces the sum of the variances of the
two subpopulations relative to the unsplit population (Hellwig
et al., 2010). The threshold minimizing the VRS was selected for
the dichotomization. We devised two additional methods based
on biological control principles, the FM and GTME. The FM
is based on the assumption that a biological function can be
performed as long as a variable in the ON state does not deviate
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too much from an optimal level. Accordingly, we defined the FM-
threshold as the one tenth of the observed maximal values in the
distribution. The GTME threshold is the geometric mean of the
extreme values of the distribution; thus, it combines information
on both the minimal and maximal values of the distribution.

To find the appropriate distribution, the specific pdf was
selected in an unbiased way from a large number of known
probability mass and density functions according to the
Bayesian information criteria, and the parameters were fitted
simultaneously. Whenever a mixture distribution, the sum of two
or more probability functions, was selected, the antimode, the
minimum value between two modes of the pdf, was determined
(section “Materials and Methods”). The antimode was then used
as the threshold to dichotomize the cell population.

The dichotomization is illustrated using the Pcdhac2 RNA
counts from the somatosensory neuron dataset (Figure 1A). The
values of the four thresholds differed up to about ten times.
The corresponding ON cell frequencies differed less since few

cells have RNA counts between the two peaks of the distribution
where most of the thresholds are positioned (Figure 1A). Indeed,
when comparing ON cell frequencies, all methods were closely
correlated (Figures 1B,C); even the lowest correlation had a large
value (0.79). For comparison, we also show the dichotomization
with a constant threshold at 0.5 TPM. The dichotomization
with the antimode correlated most strongly with the GTME-
dichotomization (Spearman rank correlation = 0.86), followed
by the FM and constant thresholds and last by the VRS (0.79).
Therefore, we applied the GTME to all datasets with TPM/FPKM
units. It is important to note that GTME thresholds were
calculated also for those genes with high bimodality coefficient
that yielded unimodal probability density functions, which is
often the case, when there are few cells in the OFF or ON
expression states (Supplementary Figure 2, Supplementary
Table 2, and Supplementary Text 1).

Some datasets had UMI units (Supplementary Table 1). For
these distributions, the Bayesian selection and fitting typically

FIGURE 1 | Comparison of dichotomization methods. (A) The histogram of the Pcdhac2 transcript numbers in the somatosensory neurons. The dichotomization
yielded the following thresholds: 2.11 (GTME), 6.28 (FM), and 20.21 (VRS) TPM. The fitted probability density function (pdf) is a mixture of normal distributions, with
an antimode at 1.37. The pdf is integrated piecewise according to the logarithmic bins. The thumbnail plot is a version of the main plot with a linearly scaled x-axis.
(B) Pair-wise scatter plots showing the ON cell frequencies of each gene in the somatosensory neuron dataset with a bimodality coefficient greater than 0.55, after
dichotomization with different methods. (C) The Spearman rank correlation of the ON cell frequencies shown in (B).
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returned Poisson or Yule-Simon distributions, and rarely
mixture distributions, which precluded the determination of the
antimodes. Therefore, we compared the thresholds according
to their ability to dichotomize RNA counts of marker genes of
specific cell types (Supplementary Figure 3). This led to the
selection of the FM-threshold. For most genes, the threshold was
positioned between zero and one, simply equating the zero RNA
count with the OFF state.

Effect of Proximity on Stochastic Gene
Choice
All RNA distributions were converted into ON cell frequencies
with the dichotomization described above. We then examined
how proximity affects stochastic gene choice, as genes are often
located side by side in gene families with exclusivity. Proximity
can influence gene expression in many ways, by promoting the
interaction of genes with enhancers via looping, by modifying
epigenetic signatures, by relocating chromosomes into active or
inactive nuclear compartments, such as transcription factories
and heterochromatic compartments (Finn and Misteli, 2019;
Monahan et al., 2019).

If a chromosomal segment shuttles back and forth between
sufficiently large active and inactive nuclear compartments, all or
none of the genes in that segment will be expressed, which will
result in a large cell-to-cell variation in the number of expressed
genes in that segment. The all-or-none response is an example
of stochastic co-occurrence (a.k.a. concurrence, Figure 2A). In
contrast, although each gene is randomly chosen to be expressed,
the number of genes expressed in each cell may be the same
or similar (Figure 2A, exclusivity). While exclusivity is often
equated with the expression of a single gene isoform, this is not
necessary as long as the overlap among the chosen genes is small.
It is the constant number of expressed isoforms that matters,
which is particularly important for protein complexes with fixed
stoichiometry. Alternative chromosomal configurations in which
a fixed number of genes is located in active nuclear compartments
while preventing the remaining genes in the segment from being
activated can produce stochastic exclusive gene choice.

The all-or-none response and the fixed, constant number
of ON genes in each cell are extreme cases of stochastic co-
occurrence and exclusivity, respectively. In this work, we use the
terms co-occurrence or exclusivity in a probabilistic (stochastic)
sense, and in order to quantify the range of their values, we
calculated the interdependence coefficient (IC). IC is the ratio
of the cell-to-cell variance in the number of genes chosen to be
expressed to the variance of the Poisson-binomial distribution
expected from the ON state frequencies of each gene under
consideration (see “The Interdependence Coefficient (IC)” in
section “Materials and Methods”) (Wada et al., 2018). An IC
less than one indicates exclusivity, while an IC greater than
one indicates concurrence in stochastic gene choice. When IC
is one, the choice of the genes is unbiased, which can reflect
independent expression of these genes. Thus, IC enables the
detection of exclusive gene choice even when the mean number
of expressed genes is greater than one (as in Figure 2A). This
illustration shows that the mean number of the ON genes with

the exclusive expression can be greater than with concurrent
expression (3 versus 2.5), although the variance is significantly
lower (0 versus 12).

If a gene affects the probability of the ON and OFF states of
the genes in its vicinity, chromosomal segments with exclusive
or concurrent expression will be overrepresented. To test this
hypothesis, we calculated the IC for segments comprising 14
genes sampled along the chromosomes, which corresponds to
the number of genes in the Pcdh-α array. This calculation gives
the distribution of the IC values for the original genome. Next,
we reshuffled the genes in the genome and calculated the IC for
the segments, and by repeating the reshuffling, we obtained a
representative distribution of the IC values (Figures 2B,C). To
characterize the differences in the distributions, we compared
the location of 10th or 90th percentiles (i.e., 1st and 9th
decile) to assess the enrichment of the exclusive and concurrent
segments, respectively.

In the somatosensory neurons and the prostate stromal cells,
the 10th percentile shifted to higher values after the reshuffling,
which indicates that the closeness of the genes promotes
exclusivity (Figures 2B,D and Supplementary Figure 4A). In
some cell types, there is no significant difference in the location
of the 10th percentiles (Figure 2C). In the majority of the cell
types, exclusivity is suppressed (Figure 2D, top panel). The 90th
percentile shifts to substantially lower values when the genome
is reshuffled, namely by more than 0.5 in some cells, revealing
that all cell types except the prostate stromal cells were enriched
in concurrent segments (Figures 2B–D and Supplementary
Figures 4A,B). In the original genomes of most cell types, the
IC values are more broadly distributed than in the reshuffled
genome, as reflected by the quantile ratio of the 9th decile to the
1st decile (Figure 2D, bottom panel), which is mostly due to the
overrepresentation of concurrence.

In summary, the permutation tests have shown that the
proximity of the genes shifts stochastic gene choice to co-
occurrence and suppresses exclusivity in most cell types.

Stochastic Gene Choice in the
Protocadherin Cluster
The effect of gene proximity can be specifically assessed for
the Pcdh family by comparing the Pcdh genes in the α-, β-
, and γ-arrays to the Pcdh genes scattered throughout the
genome. Most of the scattered isoforms belong to the [δ-
protocadherins (Pcdh-1, -7, 8, -9, -10, -11, -17, -18, and -19)]
(Redies et al., 2005; Harrison et al., 2020). Especially, the α-
array is relevant since the expression there is controlled by
chromosomal looping mediated by the CTCF (Jia et al., 2020).
The expression of the isoforms varies with the cell type. For
example, αC2, α11, and α5 are the most frequently expressed
isoforms in the somatosensory, dopaminergic, and corticostriatal
neurons, respectively (Figure 3A). The corticostriatal neurons
express relatively few α-isoforms with a pronounced exclusivity
(Figure 3B and Supplementary Data 1). On the other hand,
unbiased choice (or independence, IC not significantly different
from one) is observed in somatosensory neurons, and weak
concurrence in the corticostriatal neurons.
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FIGURE 2 | The effect of chromosomal adjacency on stochastic gene choice. (A) Schemes showing examples of how the two major forms of stochastic gene
choice, concurrence and exclusivity, can arise from alternative chromosomal configurations. (B,C) The IC distributions calculated from the original and the shuffled
genomes of the somatosensory neurons (B) and cardiomyocytes (C). Segmentation size: 14 genes. The blue star denotes a high bar in the histogram hidden by the
full line. The location of the 1st (full line), 5th (dashed line) and 9th (full line) deciles is given in the order of original and reshuffled distribution, followed by the P-values
for the differences: 1.00, 1.48, 2.02; 1.12, 1.44, 1.82; 0.001, 0.016, 0.001. (B) 1.10, 1.29, 1.52; 1.09, 1.26, 1.49; 0.217, 0.002, 0.137 (C). (D) Volcano plots
showing the difference of 1st decile, 9th decile and quantile ratio IC values between the original and the shuffled genomes, along with the corresponding P-values
(permutation test, segment size: 14 genes). The gray horizontal line at 0.025 corresponds to a two-tailed significance level of 0.05.

The α-array can be conveniently compared with the scattered
Pcdhs in the somatosensory neurons, as they have a similar
number of isoforms, 14 and 12, and the mean number of
expressed isoforms is also similar (3.2 and 3.0 genes, respectively).
The IC of the scattered isoforms is more than twice as large as the
IC of the α-array (Figure 3B). In both the somatosensory and
corticostriatal neurons, α-array belongs to the lowest decile of IC
distribution. Thus, the α-array in particular gains exclusivity due
to the gene adjacency and proximity.

To get a more detailed view of how stochastic gene choice
varies along the chromosomal region containing the Pcdh
cluster, we moved a 14-gene window along the chromosome
to calculate the IC (green horizontal rectangle in Figure 3C).

In somatosensory and corticostriatal neurons, the resulting
IC profiles are similar along the portion of the chromosome
comprising the α- and β-arrays and the region upstream of the
array, with the corticostriatal cells having lower IC. The lower IC
values in the arrays of the corticostriatal cells can be explained
by the lower IC values in the genome when compared to the
somatosensory cells, as indicated by the range delimited by the 2.5
and 97.5 percentiles of the genomic IC distribution (Figure 3C).

The above results suggest that IC profiles can be conserved
between different cell types. Interestingly, the conserved
exclusivity extends upstream of the Pcdh α-array involving the
Zmat2 and Vaultrc5 genes (Figure 3C), which suggests that they
may be also linked mechanistically and/or functionally to the
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FIGURE 3 | Chromosomal segments with stochastic exclusive gene choice in multiple cell types. (A) The expression of the Pcdh α-array and the scattered Pcdhs in
different neuronal types. The expression frequency indicates the proportion of cells expressing a particular gene isoform. The distribution of the number of expressed
gene isoforms per cell indicates the proportion of cells expressing 0, 1, 2 or more isoforms per cell at the RNA level. (B) The IC values calculated from the data
shown in (A). The error bars denote the 95% confidence intervals obtained by bootstrapping. (C) The IC of segments with 14 genes along the chromosome. The
symbols indicate the position of the most upstream gene in each segment. A full segment is denoted by the green horizontal rectangle, at the first gene of the
Pcdh-α cluster. The two genes upstream of the Pcdh α cluster (Vaultrc5 and Zmat2) are marked with a star and diamond. The rectangles located at the two
extremes of the plot indicate the 2.5 and 97.5 percentiles of the IC distribution calculated for the chromosomal segments in the genome. (D) The number of
chromosomal segments with exclusive gene choice (as shown in Supplementary Figure 5) in each chromosome for all cell types combined.

array. This effect is particularly strong in the somatosensory
neurons; in these cells, the segment starting with Zmat2, and
comprehending the Vaultrc5 and the 12 variable α isoforms has
the lowest IC value altogether in the relevant portion of the
chromosome (Figure 3C).

Chromosomal Segments With Stochastic
Exclusive Choice
The above findings suggest that segments with exclusive gene
choice can be longer or shorter than previously assumed. To
identify chromosomal segments of various lengths that conserve
stochastic exclusive expression in multiple cell types, we have
segmented the genome into segments comprising 7, 14, or 21
genes. In order to compare different cell types, it is important
to take into account that cells in different studies have IC
distributions with different mean values (see e.g., Figures 2B,C

and Supplementary Figures 4A,B). The difference persists even
after the reshuffling, suggesting that it originates from a systemic
intrinsic or extrinsic variable. For example, the procedure used
for the isolation of cells and RNA and for the RNA detection can
introduce positive correlations extrinsically, making the average
genomic IC appear larger.

To take into account the above differences, we selected all
segments that belong to the lowest 2.5 percentile of the IC
distribution in at least two different cell types (or cells cultured in
different conditions). We then combined all the segments having
7, 14, or 21 genes that belong to the lowest 2.5 percentile. The two
criteria above have been expanded to include a third, stating that
the IC must be significantly less than one in at least one of the cell
types, i.e., the 95% confidence interval must be below one.

Next, we analyzed the location of these segments.
Interestingly, the segments overlapping with the Pcdh array
represented the largest fraction (Figure 3D). Segments from
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the Pcdh array were identified in all analyzed types of neurons
(corticostriatal, dopaminergic, and somatosensory), and even
in non-neuronal cells, such as endothelial and the lung alveolar
cells (Supplementary Figure 5). The Pcdh beta isoforms play
a role in tumor suppression in lung cancer (Ting et al., 2019),
implying the possibility that exclusive Pcdh expression may
diversify cellular identity in non-neuronal cells, as well.

The chromosome 6 harbors a second prominent gene array,
the Trbv, which encodes the variable domains of the T-cell
receptor. The low IC values of the overlapping segments indicate
a strong exclusivity: it is significantly below one in one of Th17
cell variant and numerically less than one in another Th17 cell
variant (Supplementary Figure 5). It is important to note that the
list of identified arrays with exclusive gene choice is unlikely to be
exhaustive because some genes are not detected in a particular
cell type. For example, the RNA-seq data cover the expression of
Trbv in Th17 cells but not in CD8+ lymphocytes, even though
stochastic gene choice and allelic exclusion have been primarily
studied in CD8+ lymphocytes. The importance of the exclusivity
in T-cell receptor expression in Th17 lymphocytes is underscored
by the presence of IL-17 in the cytokine storms, which are
thought to contribute to the lethality of the coronavirus disease
Covid-19 (Wu and Yang, 2020). Dual reactive lymphocytes that
recognize endogenous, neurologically relevant, antigens as well
as the coronavirus have also been detected (Boucher et al., 2007).

Gene Families Shift the Stochastic Gene
Choice Toward Co-occurrence
The successful detection of Trbv and Pcdh arrays based on
their low IC values indicates that exclusive gene choice can

be identified solely based on RNA-seq counts without any
information on the alleles and sequence similarity. These gene
families have two characteristic features: they are encoded by
similar sequences and form an array along the chromosome.
The gene family aspect may be more important for the
odorant receptors since more than a thousand receptor
isoforms are encoded by multiple arrays scattered over a large
number of chromosomes. Therefore, after having explored the
effect of chromosomal proximity, we turned our attention
to gene families.

To dichotomize the RNA counts for the gene families, we have
not imposed the criterion based on the bimodality coefficient.
Instead, we combined the information on the RNA counts of all
genes to define the tails of the distribution to calculate a single
threshold for all genes in the family. A familywise threshold
was used also in a recent study examining how the olfactory
receptor expression changes during cell differentiation (Hanchate
et al., 2015). We have adapted the GTME to calculate the
familywise threshold (fGTME, section “Materials and Methods”).
The fGTME threshold resulted in an IC = 0.48 and the mean
number of ON genes was 1.0 (Figure 4A), evidencing a marked
exclusivity in the choice of olfactory receptors. For comparison,
a constant threshold at 0.5 resulted in IC = 3.33 and the mean
number of ON genes being around 2 (Supplementary Table 3).
Thus, the constant threshold fails to detect the well-established
single isoform expression per cell (Supplementary Text 1).

Next, we dichotomized gene expression in each family in
various cell types and reshuffled all the genes belonging to a
family encompassing at least five genes (Figure 4B). In the
somatosensory neurons, there were many gene families with an
IC larger than the 97.5 percentile of the IC distribution of the

FIGURE 4 | Stochastic interdependence in gene families. (A) The number of expressed genes per cell in the family of odorant receptor genes, dichotomized with the
familywise threshold (70.7 TPM). Number of cells is N = 27. (B) IC values of individual families in somatosensory neuron dataset, grouped by the family size. The
majority of the families with ICs exceeding either 2.5 or 97.5 IC percentiles of the shuffled genome (orange and green lines, respectively) are concurrent. (C) Volcano
plots showing the difference of 1st decile, 9th decile and quantile Ratio IC values between the original and the shuffled genomes, along with the corresponding
P-values (permutation test) calculated for the gene families consisting of 7 genes.
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reshuffled genome, but only a few with an IC less than the
2.5 percentile, suggesting that concurrence dominates also in
families. Indeed, the systematic examination revealed that the
IC at the 10th percentile displayed a significant change in four
cell types and the exclusivity was not promoted in any of the
cell types. On the other hand, co-occurrence was significantly
promoted in all but one cell type (Figure 4C), implying that
the shared regulation of the genes in a family shifts gene choice
toward co-occurrence.

The Relation Between Stochastic Gene
Choice and Allelic Exclusion
In addition to the shared regulation of the genes, allelic exclusion
may affect stochastic choice in a gene family. The families of the
olfactory and T-cell receptors display allelic exclusion, so that
only one of the two alleles is expressed, which is also termed
monoallellic expression. The molecular mechanisms underlying
allelic exclusion can stabilize the gene choice; thus, allelic
exclusion may promote stochastic exclusive gene choice. Allelic
exclusion takes place after the stochastic choice of the promoter of
a T-cell receptor isoform (Ryu et al., 2004). The expression of one
allele suppresses the expression of the other allele (Vatakis et al.,
2013), a process mediated by various molecular mechanisms.
However, allelic exclusion does not necessarily go hand in hand
with stochastic gene choice, as the following two examples
suggest. Allelic exclusion plays a major compensatory role in
the expression of sex chromosomes. In order to compensate
for the double dosage of the X chromosomes in females, one
of the X chromosomes is inactivated randomly in each cell.
Consequently, only one of the gene alleles, the maternal or
paternal, is expressed in each cell (Cheng et al., 2019; Zhang
et al., 2020); however, this allelic exclusion is not associated with
exclusive gene choice because all relevant genes are expressed
by one of the chromosomes (Figure 5A). In the protocadherin
array, the genes can be expressed monoallelically or biallelically
(Kaneko et al., 2006).

To assess whether allelic exclusion can contribute to the choice
of gene isoforms on a genomic scale, we analyzed RNA-seq data
obtained from heterozygous fibroblasts (Larsson et al., 2019),
in which the two alleles of most genes can be distinguished.
As a measure for allelic exclusion, we calculated the Spearman
correlation coefficient between the two alleles for each gene. The
overwhelming majority of the genes displayed positive interallelic
correlation. Only a small proportion of genes had negative
correlation, most of them are located on the X-chromosome,
confirming the predominance of this classical form of allelic
exclusion (Figures 5B,C). The allelic exclusion is evident for
genes with mean RNA count above 0.5 UMI (Figure 5C). 17
genes from the β- and γ-arrays of the protocadherin cluster are
also expressed; all of them have a positive interallelic correlation
with a mean value of 0.53 (Supplementary Figure 6A). Next, we
calculated two variables for each gene family: the mean value of
the interallelic correlations and the biallelic IC differential (see
section “Materials and Methods”). The biallelic IC differential is
negative if the IC is reduced upon combining the alleles from
the two haplotypes, implying that allelic exclusion contributes

to exclusivity in stochastic choice in the gene family. Nearly all
families have positive mean interallelic correlation, the degree
of which does not correlate positively with the biallelic IC
differential (Figure 5D). The only gene family with negative
mean interallelic correlation is the melanoma associated antigen
family. Interestingly, this family experiences the largest shift
toward exclusivity in the stochastic gene choice when the two
haplotypes are combined: IC = 2.47 and 2.67 for the haplotypes
and IC = 1.52 for the diplotype. Thus, this shift is substantial
but not sufficient to attain exclusivity in stochastic gene choice
(Supplementary Figure 6B). Most genes of the melanoma
associated antigen family are located on the X-chromosome, and
the rest of them at the Prader-Willi locus, which is also known
to be imprinted (Weon and Potts, 2015; Tacer and Potts, 2017),
and explains the marked allelic exclusion in this family. These
findings indicate that gene families with allelic exclusion are rare;
however, specific gene families can utilize it to enhance exclusivity
in stochastic gene choice. Importantly, families with IC less than
one have positive mean interallelic correlation (Supplementary
Figure 6B), suggesting that stochastic exclusive gene choice does
not necessarily imply allelic exclusion.

Gene Families With Stochastic Exclusive
Gene Choice
After having analyzed the mechanisms that affect stochastic
choice in gene families, we examined exclusivity and co-
occurrence in all cell types. The T-cell receptor beta-chain family
in the Th17 cells was the most exclusive among all families, with
an IC between 0.49 and 0.62 (Figure 6A), comparable to the
odorant receptors (Figure 4A). On the other extreme of the scale,
the histone 2A family is one of the families with the largest IC
values (IC = 4.80 in Th17 and 2.38 in liver cells). The histone
family nicely illustrates the functional relevance of concurrence:
some cells enter the S-phase of the cell-cycle and express the
histones to support the ongoing DNA replication, while the cells
in the other phases of the cell cycle do not express and/or are
degraded (Marzluff and Koreski, 2017), which results in a large
coherent cell-to-cell variation in the number of expressed gene
isoforms (Figure 6B).

Thus, our analysis with appropriate dichotomization and
a simple metric confirmed the exclusive choice in all three
prototypic families and gene arrays (T-cell receptor, odorant
receptor, Pcdh), so they serve as the positive control for the
identification of other gene families. To identify families with
stochastic exclusive gene choice, we used the robust approach
developed for the chromosomal segments, which combined
relative and absolute criteria for exclusivity. The relative criterion
ensures that families are selected from the lowest 2.5 percentile of
the IC distribution of each cell type. The second criterion states
that a family is only considered exclusive if it belongs to the lowest
2.5 percentile in at least two cell types. The last, absolute selection
criterion states that the IC must be significantly smaller than one
in at least one of the cell types.

The clustered Pcdh family is exclusive in corticostriatal
neurons and endothelial cells, and also in the somatosensory
neurons. However, in the latter cell type it does not belong to the
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FIGURE 5 | Allelic exclusion and exclusivity in stochastic gene choice. (A) Schematic representation of different combinations of exclusivity in allelic and gene choice
in an array of four genes. The black and gray lines represent the maternal and paternal chromosomes. The rectangles with no or black filling represent the OFF and
ON expression states, respectively (B) The interallelic correlation in fibroblasts (Larsson et al., 2019). Negative correlations indicate the allelic exclusion. (C) The
relation between RNA count and interallelic correlation. The genes on the chromosome X are shown in red. (D) The melanoma-associated antigen gene family is
highlighted in orange among the gene families. It is the only family with negative mean interallelic correlation.

bottom 2.5 percentile of the IC distribution and consequently, it
is not indicated as a hit in Figure 7.

The majority of the retrieved families encode membrane
proteins (Figure 7) like the three prototypic families. Many of
them are associated, directly or indirectly, with two processes:
transmembrane ion transport and intercellular adhesion
(Figure 8A), These include well-known families involved in
cell adhesion such as the basigin related (Bsg, Ccdc141, Cntn5,
Cntn6, Dscam, Dscaml1, Emb, Myot, Mypn, Nexn, Nptn, Nrcam,
Prtg, Vstm2l) and the synaptic adhesion-like molecule families
(Igsf10, Lrfn1, Lrfn2, Lrfn3, Lrfn4, Lrfn5, Lrit1, Lrit2, Lrit3).
There are also families primarily involved in ion transport but
many of the genes are also involved in cell adhesion, exemplified
by the sodium/potassium transporting ATPase subunit gamma
and the carbonic anhydrase and anion exchange proteins
(Figures 7, 8B).

The Fxyd1-7 gene isoforms encode the gamma subunit
of the Na+/K+ ATPase, which is the regulatory subunit of
this ion pump. While these ATPases are primarily involved
in ion homeostasis, they can also trans-dimerize and thus
mediate cell-to-cell interaction (Tokhtaeva et al., 2016).
The stochastic exclusivity of the basigin related genes can
be observed in somatosensory and corticostriatal neurons
(Figure 7). The members of this family are named after
the immunoglobulin−superfamily molecule basigin and are
well known mediators of intercellular adhesion (Muramatsu,
2016), comprising genes such as Contactin 6 (Cntn6), Down
syndrome cell adhesion molecule (Dscam) and Neuronal cell
adhesion molecule (Nrcam). The basigins often interact with

monocarboxylic acid transporters, which catalyze the transport
of lactate, pyruvate, etc. (Payen et al., 2020); thus, they indirectly
affect the ion transport.

The carbonic anhydrase family displays a similar duality of
functions related to ion homeostasis and intercellular adhesion,
and have a pronounced exclusivity (IC between 0.76 and 0.87;
Figures 6C, 7). The primary role of carbonic anhydrases is the
catalysis of the reversible conversion of CO2 to carbonic acid.
However, some isoforms have lost their catalytic activity (Car8,
10, and 11) and they play a role in promoting the diversification
in neuronal adhesion and interactions (Sterky et al., 2017).

The analysis of an RNA-seq dataset, which does not meet
the inclusion criteria (cells > 100) (Ho et al., 2018), reveals a
further gene family involved in cell adhesion, the collagen alpha
family, expressed exclusively in corticostriatal and medium spiny
neurons (Supplementary Data 2).

The Efficiency of RNA Detection by
Single Cell RNA-seq and Stochastic
Exclusivity
The efficiency of RNA detection by RNA-seq is less than 100%
and is not uniform in a cell population (Baran-Gale et al., 2018).
One may assume that cells with a low number of captured genes
mimic exclusivity since only a few genes or gene isoforms are
detected in these cells. To assess how such a cellular heterogeneity
affects the quantification of stochastic gene choice, we removed
10 percent of the cells with the lowest number of detected
genes and calculated the IC from the truncated population
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FIGURE 6 | The distribution of the number of expressed gene isoforms (ON genes) per cell in gene families with exclusive and concurrent expression. (A) The T-cell
receptor beta chain family shows a clear exclusivity in Th17 cells (IC = 0.49). The left plot shows the dichotomized expression states. Each column represents a
single cell. The gene isoforms are ordered according to expression frequency (highest on the top) and the cells are ordered according to number of expressed
isoforms per cell (lowest on the left side). (B) The histone 2A family shows co-occurrence in Th17 and liver HB/HC cells, with an IC value of 4.8 and 2.38, respectively.
(C) The number of expressed carbonic anhydrase genes per cell in Th17 cells, somatosensory neurons, and liver HB/HC (IC = 0.87, 0.76 and 0.78, respectively).

(Figure 9A). If the removed cells were accountable for exclusivity,
the truncation would have increased the IC. However, the mean
IC did not increase; in fact, it decreased slightly in the truncated
population of the somatosensory neuron dataset and also in
all other datasets (Figure 9B and Supplementary Table 4).
Figure 9C shows the exclusive gene families with the lowest IC in
the prostate stromal cells and the somatosensory neuron datasets,
which have the lowest and highest numbers of detected genes per
cell, respectively. The amiloride-sensitive sodium channel family
(PTHR11690) has the lowest IC in the somatosensory neurons,
whereas the PTHR33589 in the prostate stromal cells, which
includes Jacalin-like lectin domain-containing proteins. The
exclusive families detected in two cell types are also displayed.
After truncation, the mean number of ON genes increases in
most of these families, as expected, since cells with a low number
of genes are removed. Importantly, the IC remained less than one
in all of the families, and in several cases the IC even decreased
after the truncation. Similarly, the IC remained less than one in
all but two exclusive families shown in Figure 7.

Six datasets with TPM units having the largest gene coverage
(above 8,000, see Supplementary Table 4) yield 34 hits while the
remaining 11 TPM datasets yield only 27 hits. Thus, lower gene

coverage in these datasets does not seem to lead to spurious hits,
but rather reduces the success rate of the detection of exclusive
families. Accordingly, the development of newer single cell RNA-
seq technologies with higher capture efficiency may enable the
detection of more families with exclusive gene choice.

DISCUSSION

Determinants of Exclusivity in Gene
Families and Chromosomal Segments
Our results show that stochastic exclusivity is rare in both
gene families and segments and concurrence is overrepresented.
Multiple mechanisms are likely to underlie this phenomenon.
Evolving from a single gene, paralogs have common regulatory
sequences. Consequently, a shift from concurrence toward
exclusivity is expected only after a sufficient evolutionary
divergence in the family. Chromosomal proximity can also
promote concurrence when a transcription factor affects
multiple genes in a chromosomal segment (Wada et al., 2019).
For example, two copies of the same gene at the same
chromosomal position experience more correlated fluctuations if
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FIGURE 7 | Gene families with exclusive gene choice. Gene families with stochastic exclusive gene choice in two or more cell types; further details of selection as in
Supplementary Figure 5 (see also Supplementary Data 1). For the families labeled with star, descriptive names were given instead of the Panther names. The
Panther numbers of the families are indicated in parenthesis. The white circle denotes segments with an IC numerically less than 1 without reaching significance. The
white empty squares indicates the families that lose exclusivity after truncation of the cell population at the 10th percentile of the total number of detected genes per
cell.

they are positioned on linked chromosomes than on physically
separated, but homologous, chromosomes (Becskei et al.,
2005). Furthermore, the positive correlation in stochastic gene
expression has gradient-like features along the mammalian
chromosomes (Sun and Zhang, 2019). Thus, the predominance of
concurrence in the genome can be viewed as a direct consequence
of evolutionary-genetic and biophysical-chemical processes.

Despite the dominance of concurrence in chromosomal
segments, chromosomal proximity may promote exclusivity in
the appropriate context. A single gene in the Pcdh α-genes
can be chosen to be expressed upon the formation of a
CTCF-mediated chromosomal loop between the chosen gene
and a downstream enhancer (Wu Q. et al., 2020; Wu Y.
et al., 2020). This looping mediated gene proximity may
promote exclusivity and may explain the much higher exclusivity
of the Pcdh α-array in comparison to the scattered Pcdhs.
Recent findings indicate that the arrangement of CTCF binding
sites as tandems play an important role since they insulate
gene expression and thus effect stochastic promoter choice
(Jia et al., 2020).

Exclusivity has no general molecular marker for all three
classical exclusive gene families. Variations even exist among
the Pcdh arrays. CTCF controls the expression of the Pcdh
β-isoforms, as well (Hirayama et al., 2012; Sams et al., 2016) but
the β-array has a larger IC than the α-array (Supplementary
Data 1). Furthermore, cell-specific mechanisms are likely to
explain why the expression in the Pcdh-α array is exclusive
in some neuronal types but unbiased in others (Figure 3B).
It is also possible that the interactions of the neurons during
development determine whether or not stochastic gene choice is
exclusive, which means that gene expression and cell adhesion are
under mutual control.

The calculation of and analysis with IC has multiple
advantages. It can help to define the range of chromosomal
segments subject to exclusive gene choice, especially when the
genes do not belong to a family. For example, the exclusivity
in the α-Pcdh array extends beyond the array and affects two
upstream genes, Zmat2 and Vaultrc5. Zmat2 has been shown to
regulate the splicing of genes involved in cell adhesion (Tanis
et al., 2018). Thus, Zmat2 may directly affect the Pcdh-mediated
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FIGURE 8 | Cellular individuality and cell adhesion. (A) Enrichment analysis of the genes belonging to exclusive and concurrent gene families. The P-values are
indicated on the top of the bars. The exclusive families were selected with the criteria described in Figures 4B, 7. The concurrent families (IC belonging to top 2.5
percentile) were constrained with the following criteria: mean number of expressed genes per cell higher than 0.03, IC significantly higher than 1 and at least 5
non-zero genes per family. We considered all the genes expressed at least in one cell type belonging to the selected families. The enrichment analysis was
performed though an enrichment analysis tool (http://geneontology.org/). The figure shows two selected functions: Cell adhesion (GO: 0007155) and Ion transport
(GO: 0006811). The ratio of the fold-enrichment in the exclusive to that in concurrent families is shown. (B) Schematic representation highlighting the dual role of
three gene families (Fxyd, basigin, and carbonic anhydrase genes). On the left side, the cis interaction of the corresponding proteins with channels and pumps is
denoted by orange shades. These functions are related to metabolic and ion homeostasis. On the right side, the trans-interaction with ligands on the adjacent cells
is labeled with red shades. The glycosylation of the Fxyd protein affects the transdimerization of the Na+/K+ ATPase. The carbonic anhydrase interacts with the
anion exchange protein, which transports HCO3

-. (C) Schematic representation of cells showing that the exclusive expression of four gene isoforms (colors) is
sufficient to confer cellular individuality in a two dimensional tissue.

cell adhesion. Furthermore, Vaultrc5 is a vault RNA, which
controls autophagy, and several Pcdh proteins are known to
associate with autophagy related proteins (Buscher et al., 2020).

Similarly, the IC formalism does not require predefined sets of
genes for the assessment of exclusivity. For example, the αC1 and
αC2 isoforms are usually excluded from the analysis when the
number of expressed gene isoforms is quantified in the α-array
due to their constitutive expression in Purkinje cells (Esumi
et al., 2005). However, their expression is not constitutive in
other cell types: the αC1 and αC2 isoforms are expressed at a
lower frequency than some of the variable isoforms (α1-12) in
corticostriatal neurons (Figure 3A). Since the IC formalism does
not assume a single gene to be expressed in order to be exclusive,
it permits the detection of exclusivity in all these cell types with
different mean number of expressed genes.

IC has another important aspect, the absolute value. The T-cell
receptor family with IC values as low as 0.5 has an unmatched

degree of exclusivity in comparison to the other detected
exclusive families. This may reflect the fact that multiple different
molecular mechanisms cooperate to stabilize exclusive stochastic
gene expression: the promoter choice through chromosomal
looping is followed by DNA recombination and allelic exclusion
(Massah et al., 2015). DNA recombination is unlikely to
contribute to the exclusivity in the families involved in cell
adhesion. The exact mechanism underlying exclusivity, looping
or covalent epigenetic modifications or other processes, remains
to be determined (Magklara and Lomvardas, 2013; Almenar-
Queralt et al., 2019).

Functional Relevance of Stochastic
Exclusive Gene Choice
We have used relatively stringent criteria to identify families
with exclusive choice since they had to be detected in at
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FIGURE 9 | The effect of cells with low number of detected genes on the IC. (A) The distribution of the total number of detected genes per cell (dgpc) in the
somatosensory neuron dataset. The black line indicates the dgpc below which the cells were removed to obtain the truncated distribution. (B) The distribution of IC
values of gene families calculated from the original and truncated cell populations shown in (A). (C) The IC and the mean number of ON genes calculated with the
original (full) and the truncated (empty) datasets. The prostate stromal cell and the somatosensory neuron datasets were used.

least two different cell types. Despite the overrepresentation of
concurrence in most genomes, the exclusive gene choice is not
restricted to the T-cell receptor, odorant receptor and Pcdh
families. Ten other families were identified with pronounced
exclusivity, with IC less than 0.8: the anion-exchange and
basigin related proteins, the carbonic anhydrases, intercellular
adhesion molecule, interleukin-1 receptor family, phospholipase
C, the sodium/potassium transporting ATPase gamma subunit,
the hexokinases and the non-muscle myosin heavy-chain. Most
of them directly affect cell adhesion (Figure 7), but even
hexokinases can affect motor or cytoskeletal proteins, and thus
regulate cellular adhesion (Hsu et al., 2010; Ghosh et al., 2016).
Ion transport is the second most overrepresented function in the
detected families. Ions have been long known to modulate cell
adhesion (Arcangeli and Becchetti, 2006). In addition to calcium,
magnesium and pH are of major physiological relevance in cell
adhesion (Takeichi and Okada, 1972).

Ion transport and cell adhesion can be regulated by the same
protein (Figure 8B). For example, the ratio of the Fxyd5 isoform
to the α1–β1 heterodimer determines whether the Na+/K+
ATPase acts as a positive or negative regulator of intercellular
adhesion (Tokhtaeva et al., 2016). This is highly reminiscent of
the Pcdh proteins, in which the ratio of the expressed isoforms
determined intercellular adhesion (Yagi, 2012; Thu et al., 2014).
Interestingly, basigin can also bind the β2−subunit of Na+/K+
ATPase (Heller et al., 2003).

The carbonic anhydrase isoforms Car10 and Car11 are
secreted glycoproteins that are predominantly expressed in the
brain. Car10 was shown to be a conserved pan-neurexin ligand
(Sterky et al., 2017). Neurexins, like protocadherins, mediate
interneuronal interactions, but the isoform diversity is generated
primarily through alternative splicing (Mauger and Scheiffele,
2017) and not by stochastic gene choice. Overexpression of
Car10 in neurons creates a shift in neurexin isoforms in
mouse and human neurons, which may explain how the
stochastic choice of Car isoforms generates diversity. Even
catalytic Cars affect intercellular adhesion. For example, Car9, a
cancer associated transmembrane isoform of carbonic anhydrase,
reduces E-cadherin mediated adhesion (Svastova et al., 2003).
The Cars can interact with the anion exchange proteins, Slc4a,
which transport bicarbonate (Morgan et al., 2007), which is
thought to accelerate CO2 transport. Thus, two families with
exclusive expression can interact physically. It remains to be
determined how gene families involved in glucose transport and
metabolism profit from exclusive expression. Recent advances in
the description of the spatial variations in metabolism across a
cell-population (Ben-Moshe and Itzkovitz, 2019; Polyzos et al.,
2019) do suggest that not only cell adhesion but also ion
homeostasis may profit from stochastic exclusive gene choice.
The transmembrane serine proteases (Tmprss) may also affect
cell adhesion by regulated proteolysis, which can help cancer cells
to spread (Qiu et al., 2007; Tanabe and List, 2017).
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Cells interact through homophilic or heterophilic interactions
(Ahrens et al., 2002; Thu et al., 2014; Brasch et al., 2018).
The affinity of the interaction can depend on the particular
combination of the respective protein isoforms (Yagi, 2012).
Thus, diversity through gene choice can have functional
consequences. For example, choosing two isoforms from a
repertoire of five genes permits 10 combinations, and thus 10
cellular identities. It is important to note that cells in a plane
can become fully distinguishable with the exclusive expression of
four different gene isoforms, according to the four color theorem
(Figure 8C; Wu et al., 2015). Somewhat higher numbers are
needed for cells arranged in 3-dimensional interaction networks.
Thus, the detected families with 5 or more members are in
principle capable of supporting sufficient diversity to enable each
cell to distinguish itself from its neighbors.

The combinatorial diversity due to the random choice
of multiple gene isoforms is translated into a diversity of
cell-to-cell interactions, while the exclusivity guarantees the
precise stoichiometry within the membrane protein complexes.
This principle is a conserved property of many gene families
involved in cell adhesion and ion transport beyond the
protocadherins, suggesting that stochastic exclusive gene choice
is an ideal mechanism to link diversity with precision in cell
adhesion.

MATERIALS AND METHODS

Data Sources
To define the chromosomal segments, the Genome Reference
Consortium Mouse Build 38 patch release 6 (GRCm38.p6) was
used1. The genes marked as predicted were excluded, and only the
genes sourced from Best-placed RefSeq (BestRefSeq) and Curated
Genomic were considered.

PANTHER15.0 was used to map genes to their corresponding
gene families2 (Mi et al., 2019).

The single cell RNA-seq datasets are described in
Supplementary Table 1.

Interconversion of RNA-Seq
Quantification Units
TPM (Transcripts Per Million) units were analyzed without
conversion. The RPKM (Reads Per Kilobase Million) and FPKM
(Fragments Per Kilobase Million) can differ between samples,
causing biases for the statistical interpretation of the data
(Wagner et al., 2012). Therefore, they were converted into TPM
units (Kim et al., 2018):

TPMg =
FPKMg∑
j FPKMg

106

FPKMg represents the FPKM values of a given gene. The gene
counts are summed over the population of j cells.

1https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.26
2ftp://ftp.pantherdb.org/sequence_classifications/current_release/PANTHER_
Sequence_Classification_files/PTHR15.0_mouse

Datasets with Unique Molecular Identifier (UMI) counts were
used without further normalization.

Dichotomization of Expression Into ON
and OFF States for the Genes in the
Chromosomal Segments
To exclude the genes with unimodal expression, the bimodality
coefficient was calculated for each gene:

b =
g2

k+ 3(n−1)2

(n−2)(n−3)

where k is the sample excess kurtosis, g is the sample
skewness, n is number of samples (i.e. cells) (Knapp, 2007).
Only the genes with b > 0.55 were kept since a value
of 5/9 or less corresponds to a unimodal distribution. This
filtering was applied to data in TPM units for the analyses of
chromosomal segments.

Three methods were compared to dichotomize the expression
of individual genes: VRS, FM and GTME. The minimum
threshold was set to be 0.5 TPM, which is widely used as threshold
for a gene considered to be expressed. Thus, when a procedure
resulted in a threshold with a value less than 0.5 TPM, it was
replaced by 0.5 TPM. Upon determining the threshold, the genes
are dichotomized. If the expression value is greater than or equal
to a threshold, the gene is marked as expressed in this cell (i.e.,
with 1), otherwise it is marked as not expressed (i.e., with 0).

Variance Reduction Score (VRS)
VRS is a measure of bimodality, in that it reflects how much the
variance of the original distribution is reduced in comparison to
the sum of the variances of the two distributions obtained by
the splitting of the original distribution with a threshold (Hellwig
et al., 2010).

VRS =
∑

x∈Xbelow
(x−x̄below)2

+
∑

x∈Xabove
(x−x̄above)2∑

x∈X (x−x̄)2

where X is a total set of expression values of a gene, Xbelow and
Xabove are sets of expression values lower than and greater than or
equal to a threshold, respectively. x̄, x̄below and x̄above are the mean
expression values for the three sets, respectively.

In order to find the threshold with the minimal VRS, a range
of threshold values were tested for each gene. This range is a list
of geometrically progressing series with the step of 1.2 starting
at 0.025 quantile of non-zero expression values up to the 0.975
quantile to get a more granular view of VRS at lower thresholds.
The threshold that yields the minimum VRS is chosen as a
dichotomization threshold.

Fraction of Maximal Values (FM)
The FM is a biochemically motivated threshold and assumes that
the expression of a gene does not vary too much around its
activity specific to the ON state. For this purpose, the 1/10th of
the TPM value at the 97.5 percentile was chosen. If the number of
cells with non-zero expression values (N) is less than 120, then the
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1/10th value of the average (arithmetic mean) of the three largest
values was calculated.

FM =


x0.975

10
, N ≥ 120∑N

i=N−2xi
10

, N < 120

where xp is the pth quantile of non-zero expression values, xi is
the ith element of the sorted non-zero expression value list, N is
the number of non-zero expression values,

Geometric Trimmed Mid-Extreme (GTME)
The GTME is motivated by the predictions of transition rates in
bistable systems: the threshold between the two states is defined as
the geometric mean of the low and high states (Hsu et al., 2016).
Bistable systems can underlie bimodal distribution but there is no
simple relation between them because of the transiency (Pajaro
et al., 2019). In order to define the threshold without knowing
the exact values of ON and OFF states, the geometric mean of
the non-zero TPM values at the bottom and top 2.5 percentiles
(40-quantiles) of the distribution were taken. If the number of
non-zero TPM values is less than 120, the average (arithmetic
mean) of the three least and largest values were used to calculate
the geometric mean.

GTME =

{ √
x0.025 · x0.975, N ≥ 120√∑3

i=1 xi ·
∑N

i=N−2 xi, N < 120

Analogous thresholds allow for the precise calculation of the
transition rates in a bistable cell population (Hsu et al., 2016).

Familywise Thresholds
Assuming that the expression values of genes within a family
are similar, a common threshold can be defined for all genes
within a family. The familywise FM (fFM) and GTME (fGTME)
were calculated as follows. The RNA counts larger than 0.5 were
considered instead of the x > 0 condition. When the respective
cell number N was larger than 120, the xg, 0.025 and xg, 0.975
were calculated for each gene. The fFM was calculated from
the maximum of the set of xg, 0.975, g ∈ GF, representing each
gene in a gene family (GF). Thus, a single gene in the family
determines the threshold for all the genes in the family. Similarly,
the two genes corresponding to the minimum of the xg, 0.025
and the maximum of the xg, 0.975 g ∈ GF, set determine the
fGTME. Analogous calculation were performed forN < 120, with
mean averages of the three largest and smallest expression values,
instead of the values at the percentiles.

Fitting of Distributions
Probability density (or mass) functions, ϕ(x), were fitted with
the FindDistribution of Wolfram Mathematica, which combines
the Bayesian information criterion with priors over distributions
to select both the best distribution and the best parameters
for it. Commonly fitted distributions were the Binomial,
Cauchy, Exponential, Gamma, Geometric, Normal, Laplace,
Logistic, Lognormal, Poisson, Negative Binomial, Yule-Simmons
distribution and their mixtures. Whenever a mixture distribution

was obtained by the FindDistribution, the antimodes were
calculated. The antimodes were determined analytically based on
the first and second derivatives of ϕ(x). The smallest antimode
in the range x > 0.5 was used as thresholds for dichotomization
for each gene. As opposed to other methods, the ϕ(x) based
thresholds were not used for calculation of IC across the genome,
since they were obtained for a smaller number of genes in
comparison to the other methods. This is because the fitting of
ϕ(x) is less robust, especially when there are few cells in the OFF
or ON expression states or when the measurement error is larger.

The Interdependence Coefficient (IC)
The IC is the ratio of the observed variance in the number of
expressed genes in a cell population to the variance of the Poisson
binomial distribution expected from the expression frequencies
(Wada et al., 2018). The variance of the generalized binomial
(Poisson-binomial) distribution is a function of the probability
of each isoforms i to be expressed (pi):

IC =
σ2
OBS
σ2
PB

, where σ2
PB =

Nα∑
i=1

(1− pi)pi

pi is equal to the ON cell frequency. IC = 1 indicates an
unbiased (independent) stochastic gene choice according to
the Poisson-binomial distribution, akin to a relation Fano-
factor= 1, which indicates a Poisson distribution for a single gene
(Ozbudak et al., 2002).

The 95% confidence interval (CI) of the IC was calculated
by bootstrapping. After resampling the cell population, the
observed variance and the expected Poisson-binomial variance
were calculated for each resampling, and IC was calculated. When
the 95% CI was below one, exclusivity was considered significant.

Permutation Tests
Permutation tests were used to assess the effect of
chromosomal adjacency and family membership on stochastic
interdependence. The expression values of the genes are shuffled
among all genes but for those that were not measured in a
particular dataset or were not bimodal. The shuffling was
performed 1000 times. Similarly, the assignment of genes (i.e.,
their respective expression values) to gene families is shuffled.
Only the genes that are present in both the families and the
RNA-seq datasets are reassigned in a way that the sizes and
number of families are preserved. The distribution of IC values
were obtained for each re-shuffling.

The 10th and 90th percentiles and their ratio were calculated
as representative quantiles for the exclusivity and concurrence.
Therefore, the P-values for the changes in the quantiles were
calculated based on the permutation tests (Ernst, 2004). The
P-value was calculated as follows

P value =
1+

∑N
i=1 I(|x̂− x̄| ≥ |xi − x̄|)

1+ N

where x̂ is the original statistic, x̄ is the mean of the shuffled
statistic, xi is the statistic of the ith permutation, and N is the
number of permutations. The pseudocount is added to avoid
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P-values of 0. Since 1,000 permutations were performed, the
smallest P-value is 0.001.

A two-tailed P-value of 0.05 was selected for a statistic to
be considered significantly higher or lower than the statistic of
the shuffled distributions. Exclusivity is promoted when the 10th
percentile of the original distribution is significantly smaller.
Similarly, co-occurrence is promoted when the 90th percentile
is significantly greater. These tests were applied for each
chromosomal segment size separately. Families were grouped
according to their size, and the same tests were performed as for
the chromosomal adjacency. Only family sizes that have 30 or
more gene families were taken for the permutation tests.

Identification of Genes Subject to
Concurrent or Exclusive Gene Choice in
Multiple Cell Types
To assess which sets of genes conserve their mode of
interdependence across multiple cell types, the pairwise overlap
of gene segments or gene families that are within the bottom
or top 2.5 percentiles of their respective IC distributions was
determined. In other words, a segment or a family is considered
a hit, if it appears in two datasets in the respective tails of
IC distributions. The chromosomal segments were overlapped
separately for each segment size, whereas all families were
considered together (Supplementary Data 1). Further conditions
to filter the selected genes are described in the relevant context.

Examination of the Relations Between
Allelic Exclusion and Stochastic Gene
Choice
The mean interallelic correlation was calculated by averaging
the Fisher transform of the Spearman correlation coefficient
calculated for the two alleles, followed by a back transformation
(Alexander, 1990):

ρS = Tanh[
1
N

n∑
i=1

Arctanh[ρSi]]

To calculate the biallelic IC differential between the diplotypes
and haplotypes, the following formula was used:

Biallelic IC differential = Log

[
ICDiplotype√

ICHaplotype_1ICHaplotype_2

]
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