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Background: Mesenchymal stem cells (MSCs) treatment showed promising results in
inflammatory bowel disease in both rodent models and patients. Nevertheless, previous
studies conducted conflicting results on preclinical tumor models treated with MSCs
concerning their influence on tumor initiation and progression. This study is designed
to demonstrate the role of bone marrow-derived MSCs and the potential mechanism in
the colitis-associated colon cancer (CAC) model.

Methods: Bone marrow-derived MSCs were isolated from green fluorescent protein-
transgenic mice, cultured, and identified by flow cytometry. Azoxymethane and dextran
sulfate sodium were administrated to establish the CAC mouse model, and MSCs
were infused intraperitoneally once per week. The mice were weighed weekly, and
colon length, tumor number, and average tumor size were assessed after the mice
were killed. MSC localization was detected by immunofluorescence staining; tumor cell
proliferation and apoptosis were measured by immunohistochemistry staining of Ki-67
and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling
assay, respectively. The colonic tumor tissues were isolated for RNA-seq, and fecal
samples were collected for 16S ribosomal RNA sequencing of the microbiome.

Results: After injection intraperitoneally, MSCs migrated to the intestine and inhibited
the initiation of colitis-associated colorectal cancer. This inhibition effect was marked
by less weight loss, longer colon length, and reduced tumor numbers. Moreover,
MSCs reduced tumor cell proliferation and induced tumor cell apoptosis. Furthermore,
MSCs could inhibit chronic inflammation assessed by RNA-sequencing and promote
gut microbiome normalization detected by 16S ribosomal RNA sequencing.

Conclusion: The results proved that MSCs could migrate to the colon, inhibit
chronic inflammation, and regulate gut microbiome dysbiosis to suppress the
development of CAC.

Keywords: Mesenchymal stem cells, gut microbiota, inflammatory bowel disease, colitis-associated colorectal
cancer, RNA sequencing
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INTRODUCTION

Colorectal cancer (CRC) is the third leading cause of cancer
and the second-highest cause of cancer mortality globally (Bray
et al., 2018). A key driver of the progression of CRC is chronic
inflammation (Keum and Giovannucci, 2019). Patients with
inflammatory bowel disease (IBD), referred to as a chronic
inflammatory disease, have an increased risk for a type of CRC
known as colitis-associated colon cancer (CAC) (Chumanevich
et al., 2010; Jess et al., 2012). The risk of developing CAC
can be effectively reduced by anti-inflammatory medications
(Van Staa et al., 2005; Vendramini-Costa and Carvalho, 2012);
however, long-term use is limited because of their life-threatening
adverse effects (Wang and DuBois, 2013); therefore, there is
an urgent need to explore new anti-inflammatory therapeutic
approaches to cancer.

Mesenchymal stem cells (MSCs), which are multipotent
stem cells, possess the capacity for long-term self-renewal and
multidirectional differentiation (Sekiya et al., 2002). Moreover,
MSCs can migrate to an inflammatory or tumor site and display
profound immune-modulatory (Bouffi et al., 2010; Chiossone
et al., 2016; Gao et al., 2016; Chow et al., 2017; Wheat et al., 2017).
It has been reported that intravenous or intraperitoneal injection
of MSCs could significantly reduce colonic inflammation in both
colitis rodent and IBD patients (Liang et al., 2011; Anderson
et al., 2013; Park et al., 2015; Lee et al., 2016; Cao et al., 2017).
However, there have been conflicting results on preclinical tumor
models treated with MSCs concerning their influence on tumor
development. We summarized all the studies relating to MSCs
and colon cancer (Table 1; Shinagawa et al., 2010; Liu et al.,
2011; Tsai et al., 2011; De Boeck et al., 2013; Huang et al., 2013;
Chen et al., 2014; Mele et al., 2014; Nasuno et al., 2014; Rhyu
et al., 2015; Tang et al., 2015; Wang et al., 2015; Widder et al.,
2016) and found that studies demonstrating that MSCs promote
tumors were based on the subcutaneous implantation of human
cancer cell lines into an immunodeficient nude mouse model,
which is not representative of the clinicopathology. Regarding
this, the azoxymethane (AOM)/dextran sulfate sodium (DSS)
mouse model, which closely mimics the mechanisms of human
CAC, is an appropriate animal model for studying preclinical
insights on the impact of molecular markers (De Robertis et al.,
2011). Although several studies had already demonstrated that
MSCs could be therapeutically effective in this CAC mouse
model (Chen et al., 2014; Nasuno et al., 2014; Tang et al., 2015),
Chen et al. (2014) found that MSCs inhibited tumor number
through IL-6-STAT3 signaling; Tang et al. (2015) showed that
MSCs suppressed the development of CAC through regulating
the differentiation of Treg cells via Smad2, whereas Nasuno et al.
(2014) demonstrated that MSCs inhibited tumor initiation by
affecting tumor cell-cycle machinery; however, the protective
mechanisms have not been fully defined.

Gut microbes are involved in the intestinal defense function
and the immune system maturation, whereas gut microbiome
dysbiosis participates in the pathogenesis of IBD and CRC
(Jostins et al., 2012; Flemer et al., 2018). Soontararak et al. (2018)
demonstrated that MSCs could ameliorate colonic inflammation
and gut microbiome dysbiosis in mouse IBD models. So,

we hypothesized that MSCs could ameliorate CAC through
modulating both immunity and the gut microbiome.

In this experiment, we aimed to elucidate the cancer-
preventive role and mechanisms of MSCs in a CAC mouse model
induced with AOM and DSS. We found MSC administration
attenuated adenoma initiation, decreased chronic inflammation,
and regulate gut microbiota dysbiosis.

MATERIALS AND METHODS

Mice
Male C57BL/6 mice (6 weeks old) were purchased from
Beijing Huafukang Biotechnology Co., Ltd. (Beijing, China).
The animals were kept in specific pathogen-free conditions at
room temperature 22 ± 2◦C and 55 ± 5% relative humidity
under a light/dark cycle for 12 h. Water and feed were supplied
ad libitum during the whole experiment. The current experiment
was approved by the Animal Care and Use Committee of
Tongji Medical College of Huazhong University of Science and
Technology (permission number: 2016-0057). All procedures
were conducted in concordance with the Declaration of Helsinki
and the Chinese Ministry of Health (document no. 55, 2001).

Animal Treatment
Mice were kept for 1 week without any procedure and randomly
assigned to three groups (n = 10/group): (1) control group
(Con), (2) AOM/DSS group (AD), and (3) MSC group [AME,
AOM/DSS treatment, and MSC injection (2 × 106 per mice,
intraperitoneal)]. To establish AOM- and DSS-induced CAC
mouse model (Vendramini-Costa and Carvalho, 2012), 10 mg/kg
AOM (Sigma-Aldrich, St. Louis, MO, United States) were
intraperitoneally injected at the beginning of week 0, and 2.5%
DSS (molecular weight 36–50 kDa; MP Biomedicals, Solon, OH,
United States) was then dissolved in their drinking water every
day for 1 week at the start of week 1, followed by normal drinking
water for next 2 weeks; thus, DSS was administrated at weeks 1–2,
4–5, and 7–8 for the whole experiment. The MSC [2 × 106 cells
in 0.2-ml phosphate-buffered saline (PBS)] was injected once per
week during the study, whereas 0.2-ml pure PBS was injected in
the control group and AOM/DSS group mice accordingly. Body
weight was measured and recorded weekly. The mice were killed
after anesthesia at week 10. After colon length was recorded,
colons were incised longitudinally; fecal contents were collected
and then washed for further analysis. The tumor number was
counted, and the tumor size was measured using a caliper. Tumor
tissues were fixed in 4% paraformaldehyde and subsequently
used for hematoxylin and eosin (H&E), immunohistochemistry,
and immunofluorescence. The other tissues were stored for
further analysis.

Culture and Identification of
Mesenchymal Stem Cells
Male C57BL/6 green fluorescent protein (GFP)-transgenic mice
(3–4 weeks old) were purchased from Cyagen Biosciences
(Cyagen Biosciences Inc., Guangzhou, China). Bone marrow-
derived MSCs were isolated from the GFP-transgenic mice
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TABLE 1 | Key finding from studies using MSCs to treat colon cancer.

Author Isolation Tumor model Findings

Tumor promoting

Wang et al., 2015 Human BMD-MSC Subcutaneous
xenograft ± coinjected MSC

Secretion of IL-8 by MSCs promotes tumor
growth

Widder et al., 2016 Human BMD-MSC Subcutaneous
xenograft ± coinjected MSC

Secretion of β1-integrity by CRC participates in
the effect of MSCs

Mele et al., 2014 Human BMD-MSC Subcutaneous
xenograft ± coinjected MSC

MSCs triggered EMT, mediated by TGF-β
expressed on MSCs

De Boeck et al., 2013 Human BMD-MSC Subcutaneous
xenograft ± coinjected MSC

MSCs affected tumor initiation and growth

Huang et al., 2013 Not specified Subcutaneous
xenograft ± coinjected MSC

MSCs increased tumor growth rate and
angiogenesis

Liu et al., 2011 Mouse BMD-MSC Subcutaneous
xenograft ± coinjected MSC

MSCs enhanced tumor growth

Tsai et al., 2011 Human BMD-MSC Subcutaneous
xenograft ± coinjected MSC

MSCs derived IL-6 promoted tumor formation

Shinagawa et al., 2010 Human BMD-MSC Orthotopic colon
cancer ± coinjected MSC

MSCs promoted tumor growth and liver
metastasis

Tumor inhibiting

Chen et al., 2014 Mouse BMD-MSC AOM/DSS ± MSC MSCs inhibited tumor number through
IL-6-STAT3 signaling

Tang et al., 2015 Umbilical cord blood AOM/DSS ± MSC MSCs inhibited tumor initiation by inhibiting
inflammatory cytokine production

Nasuno et al., 2014 Rat BMD-MSC AOM/DSS ± MSC MSCs inhibited tumor initiation by affecting
tumor cell-cycle machinery

Rhyu et al., 2015 Rat BMD-MSC Subcutaneous allograft ± MSC MSCs inhibited the outgrowth of the rat colon
carcinoma and induced greater monocyte
infiltration

BMD-MSC, bone marrow-derived mesenchymal stem cell; CRC, colorectal cancer; EMT, epithelial to mesenchymal transition; AOM, azoxymethane; DSS,
dextran sulfate sodium.

as previously described (Lin et al., 2020). Briefly, mice were
killed after anesthesia, soaked in 75% ethanol for 3 min.
Femurs and tibias were separated and removed of muscle and
connective tissues; bone marrow was flushed out by using a 1-
ml sterile syringe with a complete culture medium consisting
of low glucose Dulbecco’s modified Eagle’s medium (Gibco,
Carlsbad, CA, United States) with 10% fetal bovine serum
(Gibco R© Cell Culture, Melbourne, VIC, Australia) and 1%
penicillin/streptomycin (Gibco, Carlsbad, CA, United States).
The cell suspension was centrifuged at 300 × g for 5 min,
then removed the supernatant and resuspended the cells with
the complete culture medium mentioned earlier and plated in
T25 cell culture dishes (Nest, Shanghai, China). The supernatant
was changed every other day to discard the non-adherent cells.
When adherent cells reached more than 80%, 0.25% trypsin–
ethylenediaminetetraacetic acid solution (Gibco, Carlsbad, CA,
United States) was used to digest cells for 5 min, and collected
cells were subcultured. Cells at three to six passages were used for
the subsequent experiments.

To identify the surface markers of MSCs obtained earlier,
flow cytometry (FCM) analysis was performed. Briefly, cells were
collected and washed by PBS two times. Cells were then incubated
with fluorescein isothiocyanate-conjugated anti-mouse Sca-
1, CD11b, CD45, PE-conjugated CD73, CD90, and APC-
conjugated CD44, CD105 (BD Bioscience, NJ, United States) in
the dark for 40 min at 4◦C. To detect the GFP expression of

MSCs, normal MSCs isolated from male C57BL/6 mice were
used as control. Cells were washed and resuspended in 100-
µl PBS; then, cells were examined using a flow cytometer (BD
PharMingen, San Diego, CA, United States). One thousand viable
events were collected and analyzed using FlowJo V10 software
(Tree Star, Ashland, OR, United States).

Hematoxylin and Eosin Staining
Colonic specimens were immersed in 4% paraformaldehyde for
24 h, then embedded in paraffin and dehydrated in ethanol
using standard procedures (Hong et al., 2010); 5-µm sections
were stained with H&E and examined and photographed with a
light microscope.

Immunohistochemistry
Paraffin-embedded sections (5 µm) were deparaffinized and
rehydrated through graded alcohols; antigen heat retrieval was
conducted in citrate buffer using a pressure cooker and then
cooled down to room temperature; hydrogen peroxide solution
was then used to block endogenous peroxidase. The slides
were incubated overnight with an antibody against mouse
Ki67 (1:200, Abcam, Cambridge, MA, United States) at 4◦C.
Wash the slides with PBS, horseradish peroxidase-conjugated
secondary antibody was added to the slides and co-incubated
for 2 h; the slides were then incubated for 10 min using DAB
kit following the manufacturer’s instructions (Boshide, Wuhan,
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China) and counterstained with hematoxylin for 2 min. Sections
were observed and photographed using a light microscope.

Terminal Deoxynucleotidyl Transferase
Deoxyuridine Triphosphate Nick End
Labeling Assay
The terminal deoxynucleotidyl transferase deoxyuridine
triphosphate nick end labeling (TUNEL) method was used to
detect tumor cellular apoptosis in paraffin-embedded sections
(5 µm). TUNEL apoptosis detection kit (Roche, Indianapolis,
IN, United States) was applied following the manufacturer’s
instruction, and the slides were examined and photographed by
fluorescence microscope.

Immunofluorescence Staining
Paraffin-embedded sections (5 µm) were dewaxed and
rehydrated through graded alcohols; antigen heat retrieval
was conducted in citrate buffer using a pressure cooker and
then cooled down to room temperature; 10% donkey serum was
then used to block endogenous antigen for 30 min. The slides
were incubated overnight with an antibody against mouse GFP
(1:200, Abcam, Cambridge, MA, United States) at 4◦C. The
slides were washed with PBS, incubated with Alexa Fluor 488
conjugated donkey anti-mouse secondary antibodies (Antigen
Biotech Co., Ltd., Wuhan, China) for 1 h, and 4′,6-diamidino-2-
phenylindole was used to stain nuclei. Images were photographed
by fluorescence microscope.

RNA Sequencing
The colonic tumor tissues of AOM/DSS and MSC groups
were collected and flash-frozen in a −80◦C freezer. Total RNA
extraction and RNA sequencing were performed by Shenzhen
BGI Institute (BGI-Shenzhen, China) using the BGIseq500
platform. SOAPnuke (v1.5.2) was used to filter data, and
high-quality reads were aligned to the mice reference genome
performed by Bowtie2 (v2.2.5). The expression levels of each
gene were normalized to fragments per kilobase million (FPKM).
DEGSeq2 (v1.4.5) was used to analyze differential expression
gene (DEG) analysis with aQ value≤ 0.05; pheatmap (v1.0.8) was
used to draw heatmap according to FPKM in different samples.
Then, the Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis of DEGs was conducted by Phyper based
on the hypergeometric test. Q value with a strict threshold (Q
value ≤ 0.05) by Bonferroni was used to correct the significant
levels of terms and pathways.

Enzyme-Linked Immune Sorbent Assay
Analysis
Serous concentrations of tumor necrosis factor-α (TNF-α),
interleukin (IL)1β, and IL6 were measured by enzyme-linked
immune sorbent assay (eBioscience, Thermo Fisher Scientific,
United States) according to the manufacturer’s manuals. The
absorbance was obtained at relative nanometer wavelength
using a microplate reader (BioTek Instruments, Inc., Winooski,
VT, United States).

16S Ribosomal RNA Sequencing of Fecal
Microbiota
The fecal contents were collected after the killing of mice
for further analysis. Total fecal DNA extraction and 16S
ribosomal RNA (rRNA) sequencing were conducted by the
GENEWIZ Institute (Suzhou, China) using the Illumina MiSeq
platform. QIIME (v1.9.1) was applied to filter the sequencing
data, whereas Vsearch (v1.9.6) was used to cluster the high-
quality sequences with a 97% read identity into operational
taxonomic units. To determine differences of fecal microbiota
between the AOM/DSS and MSC groups, we analyzed the
α diversity and β diversity by QIIME. Chao1 and Simpson
indices were assessed to determine α diversity, which refers
to the diversity within sample community species richness.
Unweighted UniFrac distances were applied to characterize
β diversity, which represents dissimilarity among different
treatment groups. Principal coordinate analysis (PCoA) plot
and analysis of similarities (ANOSIM) were used to calculate
the β diversity visually. Linear discriminant analysis effect size
(LEfSe)1 was used to screen different species between different
groups. Linear discriminant analysis value > 2 and P < 0.05
were considered statistically significant in LEfSe). Interactions
between fecal bacterial species (or between fecal bacterial species
and differential expression genes) were assessed by Spearman
correlation (R v3.5.1) (Supplementary Figure 1).

Statistical Analysis
All data were expressed as means ± standard error of the mean.
SPSS software (v22.0) and GraphPad Prism software (v8.0) were
used for statistical analysis and picture drawing. P < 0.05 was
considered statistically significant.

Data Availability

All the sequence data in this study are available in the Sequence
Read Archive (SRA) database (SRA accession number of RNA-
seq data: SPR305475; SRA accession number of 16S rRNA
sequencing data: SPR305592).

RESULTS

Phenotypic Characteristics of
Mesenchymal Stem Cells
Mesenchymal stem cells were isolated from bone
marrow tissues of GFP-transgenic mice and identified
by fluorescence microscope and FCM. Spindle-shaped
cells were observed, and all the cells expressed green
fluorescence visualized by fluorescence microscope
(Supplementary Figure 2A); isolated MSCs were
confirmed by FCM for positive for CD105, CD73, CD90,
CD44, and Sca-1 but negative for CD11b and CD45.
Meanwhile, GFP expression was also identified by FCM
(Supplementary Figure 2B).

1http://huttenhower.sph.harvard.edu/galaxy/
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Mesenchymal Stem Cell Migrated to the
Colon and Reduced the Initiation of
Colon Tumors Induced by
Azoxymethane/Dextran Sulfate Sodium
To investigate the effect of MSCs on CAC, an AOM/DSS-induced
CAC model was administrated with MSCs. The experimental

process is shown in Figure 1A. Mice received the administration
of AOM and DSS showed significant weight loss and bloody
diarrhea. Colon tumors were mainly located from the middle
colon to the distal rectum, which is the predominant location
of human colorectal cancer. As shown in Figure 1B, the MSC
group had less weight loss compared with the AOM/DSS group.
In addition, compared with the control group, the AOM/DSS

FIGURE 1 | MSCs administration reduced the initiation of colon tumors induced by AOM/DSS in mice. (A) Experimental process of AOM/DSS-induced colon tumors
and MSC injection procedure. (B) Body weight. (C) Colon length. (D) Representative macroscopic images of colons and tumors. (E) Total tumor numbers in each
group. (F) Average tumor size in each group. Data are expressed as mean ± SEM, **P < 0.01, ***P < 0.001, n = 10 mice per group.
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group showed more notable colon shortening. However, MSC
significantly prevented colonic shortening induced by AOM/DSS
(Figures 1C,D). Furthermore, fewer tumors were found in mice
infused with MSCs compared with that in AOM/DSS mice
(Figures 1D,E). Interestingly, there was no significant difference
in the average tumor size between the two groups (Figure 1F).

GFP-MSCs were used to trace its localization in colon tissues.
As shown in Figure 2, MSCs were not detected in colonic tissues
in AOM/DSS group but can be detected in colonic tissues in the
MSC group, which indicated that MSCs migrated to colon tissues
when mice had intestinal damage.

Colon tissues were stained with H&E, and mucosal damage
and colonic inflammation in mice were histologically observed.
In the sections of the AOM/DSS group, distorted crypt
epithelial, extensive mucosal injury, and massive inflammatory
cell infiltration were found. In contrast, the MSC group showed
reduced structural disruption and immune cell infiltration
compared with the AOM/DSS group (Figure 3A).

Excessive proliferation and apoptosis inhibition have
commonly emerged during the development of colon cancer. To
detect the effect of MSCs on tumor cells, the proliferation and
apoptosis rates in colon tumor tissues were analyzed. Compared
with the AOM/DSS group, the positive rate of Ki-67 in the MSC
group was significantly augmented (Figures 3B,C). The number
of apoptotic cells reduced in the MSC group than that in the
AOM/DSS group as assessed by TUNEL. Therefore, the results
suggested that MSC infusion promoted apoptosis and inhibited
proliferation in intestinal tumor cells (Figures 3D,E).

Differential Expression of Genes in
Intestinal Tumor Tissues After
Mesenchymal Stem Cell Injection
RNA-seq analysis was performed to acquire the global
transcriptomic profiles to compare the differences of tumor
transcriptome between the AOM/DSS group and MSC group.
The quality of each sample was shown in Additional File 1 and
Supplementary Figure 3. The global transcriptomic profiles

FIGURE 2 | MSCs migrated to colonic tissues. (A) and (B) show colon tissues
stained to explore the migration of MSCs in each group (scare bar, 50 µm).

of FPKM of each sample, fold change, and Q value of AD and
AME groups were presented in Additional File 2. Hierarchical
clustering analysis was performed according to the FPKM of each
sample. As shown in Figure 4A, the samples of AOM/DSS mice
were clustered into the AD group, whereas the samples of MSCs
injection mice were clustered into the AME group. Differential
expression gene analysis was performed, and 878 DEGs were
obtained in the MSC group compared with that of the AOM/DSS
group (262 upregulated genes and 616 downregulated genes)
(Figure 4B). Subsequently, we used the KEGG to analyze the
biological signaling pathways involved in the 616 downregulated
genes. As shown in Figures 4C,D, KEGG enrichment analysis
revealed that “cell adhesion molecules,” “T cell receptor signaling
pathway,” and “cytokine–cytokine receptor interaction” were
the three top signaling pathways involved (Additional File 3).
Thus, RNA-seq analysis helps to elucidate that immune responses
participate in the mechanism of MSCs to reduce tumor initiation.

Chronic inflammation is the key driver of the CAC;
the RNA-seq transcriptome study demonstrated that MSCs
reduce tumor initiation through immune responses, so we
detected pro-inflammatory cytokines TNF-α, IL-1β, and IL-6
in serum to determine the systematic immune responses. As
shown in Figures 4E–G, the expressions of cytokines in mice
sera were lower in the MSC group compared with that of
the AOM/DSS group.

Mesenchymal Stem Cells Altered the
Composition of Intestinal Flora in Mice
It has been reported that MSCs could regulate gut microbiome
dysbiosis in mouse colitis model, so we predicted that MSCs
could also change the intestinal flora of CAC mice induced
by AOM/DSS. Fecal contents of killed mice were collected,
and 16S rRNA sequencing was conducted to explore the effect
of MSCs on the gut microbiota of CAC mice. α-Diversity
of the gut microbiome was not affected by MSCs, which
is evaluated by Chao1 and Shannon indexes, respectively
(Figures 5A,B). β-Diversity, assessed by PCoA of the unweighted
and ANOSIM, showed that the two groups were clearly clustered
into two separate groups (Figure 5C). In summary, we found
a dissimilarity of gut bacteria between the AOM/DSS and
MSC groups.

As shown in Figure 5D, there are 10 major phyla present
in the gut microbiota, both in the AOM/DSS and MSC groups,
among which the phylum Bacteroidetes was most predominant.
We then analyzed the ratio of Firmicutes/Bacteroidetes, which is
usually increased in CAC patients. We observed a reduction of
Firmicutes/Bacteroidetes ratio in the MSC group compared with
the AOM/DSS group (Figure 5E), which means this feature in
CRC could be reversed by MSC administration.

Furthermore, LEfSe was performed to elucidate the specific
changes in bacterial taxa after MSC injection. At the genus level, a
higher abundance of Staphylococcus, Candidatus Saccharimonas,
Acetatifactor, Intestinimonas, and Parabacteroides and a lower
abundance of Bilophila and Eubacterium brachy were detected
in the MSC group (Figures 6A,B and Additional File 4).
Interactions between these genera were then explored using
correlation analysis. There was a significant positive relationship
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FIGURE 3 | MSC administration regulated tumor cells. (A) H&E staining of colon sections in each group. (B,C) Ki-67 staining of tumor section in each group. (D,E)
TUNEL staining of tumor section in each group. Each group randomly selected five tumor tissues and calculated the positive cells. Data are expressed as
mean ± SEM, ***P < 0.001.

between Biophilia and E. branchy and between Acetatifactor and
Intestinimonas (Figure 6C).

Correlations Between the Bacteria and
Differential Expression Genes
Correlation analysis of the seven bacterial genera and 56 DEGs
with three signaling pathway parameters was further conducted
to analyze the association between gut microbiota and tumor
transcriptome. As shown in Figure 7, Bilophila and E. brachy
had a significant positive correlation with immune parameters,
which indicated that these two genera could promote colitis and
tumorigenesis through regulate immunity.

DISCUSSION

Chronic inflammation has been considered as the key driver
of CRC (Keum and Giovannucci, 2019), and IBD patients
have an increased risk of developing CAC (Chumanevich
et al., 2010; Jess et al., 2012). In current years, MSCs have
been used in preclinical studies in rodent models and clinical
trials in humans to treat IBD and have shown considerable

promising results (Liang et al., 2011; Anderson et al., 2013; Park
et al., 2015; Lee et al., 2016; Cao et al., 2017). Previous
studies also showed that MSCs could migrate to the colon
and inhibit CAC. Nasuno et al. (2014) noted that MSCs
could reduce the tumor initiation, whereas WNT and TGF-
β-Smad signaling pathways were dysregulated in subsequent
carcinogenesis, Tang et al. (2015) proved that the differentiation
of Treg through Smad2 could be induced by MSCs to suppress
the development of CAC, and Chen et al. (2014) determined
that MSCs might attenuate the carcinogenesis by reducing pro-
inflammatory cytokines release and STAT3 activation. Besides
immunological regulation function, MSCs have also been proven
to ameliorate gut microbiota dysbiosis (Soontararak et al., 2018),
which is considered as another important regulator in the
initiation and progression of CRC. Here, our central finding
is that MSC administration diminished the initiation of colon
tumors in mice through regulating inflammatory status and gut
microbiota dysbiosis.

Colitis-associated colon cancer mouse model induced by
AOM/DSS mimics the pathological process of human colitis-
associated colorectal cancer and has been proven to be valuable
in predicting the efficacy of chemical prevention in humans
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FIGURE 4 | Differential expression of genes in intestinal tumor tissues. (A) Hierarchical clustering analysis was performed according to the FPKM of each sample.
(B) Volcano plot of DEGs in MSC group compared with AOM/DSS group. (C) KEGG enrichment analysis was conducted for downregulated genes in MSC group
compared with AOM/DSS group. (D) Genes in the three top signaling pathways. (E–G) Expression of TNF-α, IL-1β, and IL-6 in serum was detected by
enzyme-linked immune sorbent assay. *P < 0.05, **P < 0.01, ***P < 0.001. n = 3 mice per group.

(De Robertis et al., 2011). The significant advantages of the
AOM/DSS mouse model are that factors influencing tumor
initiation should lead to changes in tumor numbers, whereas
factors affecting tumor progression should lead to changes in
the average size (Nasuno et al., 2014). Our results found that
bone marrow-derived MSC injection significantly reduced the
average tumor number per mouse without affecting the average
tumor diameter, thus suggesting that MSCs could reduce tumor
initiation induced by AOM/DSS rather than tumor progression.

Chronic inflammation functions as the key driver of CAC
through inducing gene mutations, promoting proliferation, and
reducing apoptosis. In the current experiment, less weight loss,
longer colon length, reduced tumor numbers, decreased rate of
positive Ki67, and increased rate of apoptotic cells were detected
after MSC injection. Furthermore, RNA-seq was performed
in colonic tumor tissues, and in the MSC group, immune-
associated pathways “cell adhesion molecules,” “T cell receptor

signaling pathway,” and “cytokine–cytokine receptor interaction”
were significantly reduced. Furthermore, we detected pro-
inflammatory cytokines TNF-α, IL-1β, and IL-6 in serum and
found that MSCs could reduce the release of pro-inflammatory
cytokines in AOM/DSS-induced chronic inflammation. These
results together suggest that MSCs can attenuate tumorigenesis
by inhibiting chronic inflammation.

A potential secondary mechanism of MSCs involves
microbiome alterations. In this study, the administration of
MSCs did not change α-diversity but change β-diversity of the
gut microbiome, indicating that MSC injection cannot change the
abundance but can significantly change diversity. Furthermore,
we identified 10 predominant phyla in the gut microbiome:
Firmicutes, Bacteroides, Proteobacteria, Actinobacteria,
Patescibacteria, Verrucomicrobia, Epsilonbacteraeota,
Deferribacteres, Tenericutes, and Cyanobacteria. Among them,
Firmicutes and Bacteroides are the two most predominant
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FIGURE 5 | MSCs altered the composition of intestinal flora in mice. (A,B) α-Diversity measured by Chao1 and Shannon indexes (P > 0.05). (C) β-diversity
measured by PCoA based on unweighted UniFrac distance and ANOSIM’s analysis. (D) Relative bacterial abundance at phylum levels. (E) Firmicutes to
Bacteroidetes ratio. Data are expressed as mean ± SEM, ***P < 0.001, n = 4 mice per group.

FIGURE 6 | Fecal microbial community altered after MSCs administration. (A,B) Significant differences of bacteria between the two groups. (C) Correlation between
different bacteria at genus level. n = 4 mice per group.

bacterial phyla. Previous studies suggested that a low
Firmicutes/Bacteroides ratio signifies a healthy condition,
whereas an increasing ratio of Firmicutes/Bacteroides
was observed in CRC patients. Our study demonstrated
that MSC treatment led to a significant decrease in the
Firmicutes/Bacteroides ratio.

The analysis in genus levels showed an injection of MSCs
that increased the abundance of potentially beneficial bacteria
and decreased the abundance of potentially harmful bacteria
in the gut microbiome of mice. Notably, the abundance of
Parabacteroides, Staphylococcus, Acetatifactor, Intestinimonas,
and Candidatus Saccharimonas was increased after MSC
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FIGURE 7 | Correlation analysis between differentially expressed genes and bacterial abundance. *P < 0.05, **P < 0.01, ***P < 0.001, n = 3 mice per group.

administration. Parabacteroides in feces was proven to inversely
associate with colonic tumor numbers and has anti-inflammatory
and anticancer properties (Koh et al., 2018). Staphylococcus is
a commensal strain and reportedly triggers apoptosis (Zhang
et al., 2017) and may protect against neoplasia (Nakatsuji et al.,
2018). Acetatifactor, which is a butyrate bacterium, has been
demonstrated to decrease DSS-induced colitis in mice (Kim
et al., 2020) and has been proven to be a benefit in anticancer
activities (Xu et al., 2020). Intestinimonas, another butyrate
bacterium, was shown a lower abundance in patients with CRC
(Loke et al., 2018) and mice with IBS (Song et al., 2020).
A lower abundance of Candidatus Saccharimonas has been noted
in hypertriglyceridemia-related acute necrotizing pancreatitis in
rats (Huang et al., 2017) and high-fat diet-fed mice (Wang
et al., 2020), indicating a potential anti-inflammatory role of
Candidatus Saccharimonas.

Administration of MSCs decreased the level of E. branchy and
Bilophila. E. branchy was first isolated from subgingival samples
(Vincent et al., 1984) and was proven to stimulate IL-23-related
immune responses (Moutsopoulos et al., 2015), which has been
identified as a pivotal role in the pathogenesis of IBD and CAC
(Neurath, 2019). Bilophila, an opportunistic pathogen, has been
proven to increase in rodent models of IBD (Cai et al., 2019)
and IBD patients (Yilmaz et al., 2018). Taken together, our results
showed MSCs could promote beneficial microbiome alterations
to cancel colitis-associated tumorigenesis.

It is well-known that intestinal microbiota plays a crucial
part in stimulating local immune responses. The protective
effect of MSCs may be attributed to the host transcriptome
changes mediated by the altered gut microbiome. Based
on the RNA sequencing data and 16S rRNA sequencing
analysis, we studied the complex interaction between the host
transcriptome profile and fecal microbiota. MSC injection

can inhibit inflammation and suppress the immune response,
augment the abundance of Intestinimonas and Candidatus
Saccharimonas, and decrease the abundance of Bilophila and
E. branchy. Moreover, we found that there is something
significantly positive between Bilophila and E. branchy with
the downregulated differential genes, suggesting that these two
genera could promote colitis and tumorigenesis through regulate
immunity. In accordance with previous studies, Bilophila had
inherent pro-inflammatory properties (Devkota et al., 2012;
Feng et al., 2017), whereas E. branchy was proven to stimulate
IL-23-related immune responses (Moutsopoulos et al., 2015);
however, the contribution and relative importance of Bilophila’s
pro-inflammatory properties in CAC condition is unknown.
More researches are needed in the future to elucidate the
contributions of these gut bacteria in the cancer-preventive role
of MSCs.

To sum up, this study suggested that the use of MSCs
suppressed inflammation, inhibited tumor cell proliferation,
and promoted apoptosis in AOM/DSS mice. Furthermore,
MSCs did not change the abundance but changed the diversity
and composition of the intestinal microbiome, decreased the
Firmicutes/Bacteroides ratio, increased the number of the
potential beneficial bacterium, and decreased the opportunistic
pathogen. Thus, MSCs may be a promising strategy for colitis-
associated colorectal cancer.
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