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In vitro differentiation or expansion of stem and progenitor cells under chemical
stimulation or genetic manipulation is used for understanding the molecular mechanisms
of cell differentiation and self-renewal. However, concerns around the cell identity of
in vitro–cultured cells exist. Bioinformatics methods, which rely heavily on signatures
of cell types, have been developed to estimate cell types in bulk samples. The Tabula
Muris Senis project provides an important basis for the comprehensive identification
of signatures for different cell types. Here, we identified 46 cell type–specific (CTS)
gene clusters for 83 mouse cell types. We conducted Gene Ontology term enrichment
analysis on the gene clusters and revealed the specific functions of the relevant cell
types. Next, we proposed a simple method, named CTSFinder, to identify different cell
types between bulk RNA-Seq samples using the 46 CTS gene clusters. We applied
CTSFinder on bulk RNA-Seq data from 17 organs and from developing mouse liver
over different stages. We successfully identified the specific cell types between organs
and captured the dynamics of different cell types during liver development. We applied
CTSFinder with bulk RNA-Seq data from a growth factor–induced neural progenitor cell
culture system and identified the dynamics of brain immune cells and nonimmune cells
during the long-time cell culture. We also applied CTSFinder with bulk RNA-Seq data
from reprogramming induced pluripotent stem cells and identified the stage when those
cells were massively induced. Finally, we applied CTSFinder with bulk RNA-Seq data
from in vivo and in vitro developing mouse retina and captured the dynamics of different
cell types in the two development systems. The CTS gene clusters and CTSFinder
method could thus serve as promising toolkits for assessing the cell identity of in vitro
culture systems.
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INTRODUCTION

Single-cell RNA sequencing (scRNA-Seq) is a powerful tool
that can be used to profile gene expression in individual cells
(Tang et al., 2009). The 10x Genomics platform and Smart-Seq2
platform provide commercially available scRNA-Seq solutions
for researchers worldwide. Massive sequencing of single cells
from multiple tissues of model animals, such as that performed
during the Tabula Muris Senis project and the Mouse Cell Atlas
project, provides characterizations of cells in their respective
tissues and have significantly improved our understanding of
the transcriptomes of individual cell types, especially those that
were previously poorly characterized (Han X. et al., 2018; Tabula
Muris Consortium et al., 2018, 2020; Han et al., 2020). These
comprehensive scRNA-Seq resources provide an unprecedented
opportunity to study unique gene expression programs in
different cell types and find cell type–specific (CTS) genes. These
genes will enhance our understanding of the specific functions of
the cell types and serve as ideal markers of cell identity.

In vitro cell culture is a standard tool for understanding cell
molecular mechanisms under chemical stimulation, as well as
genetic manipulation. It is also an efficient tool for producing
stem cells on a large-scale for therapeutic interventions (Polanco
et al., 2020). However, concerns around the cell identity of
cultured cells exist. The cultured cells, especially stem and
progenitor cells, may differentiate and change their identity
over time. Immunohistochemistry and flow cytometry have been
applied to determining the cell identity of culture cells (Polanco
et al., 2020; Shibamiya et al., 2020). However, these traditional
methods rely on limited molecular markers and lack scalability
relative to the current rate of data generation (Hu et al., 2016).
Direct scRNA-Seq is a powerful tool for the identification of cell
types in the culture pool. However, the cost of scRNA-Seq is 30
times more than that of bulk RNA-Seq, which thus impedes its
diffusion and use.

In recent years, several bioinformatics methods have been
developed to estimate cell types in bulk samples from gene
expression profiles (Le et al., 2020). These methods, including
CIBERSORTx (Newman et al., 2019), Tsoucas et al. (2019),
Bisque (Jew et al., 2020), Scaden (Deng et al., 2019), MuSiC
(Wang et al., 2019), xCell (Aran et al., 2017), and CPM
(Frishberg et al., 2019), rely on the CTS genes to decompose
gene expression profiles of bulk samples and estimate cell types in
the samples. Using bulk RNA sequencing experiments and these
methods, researchers can derive the cell types present in bulk
samples. In some circumstances, researchers are more concerned
about the different cell types between bulk samples, such as
emerging cell populations during in vitro cell culture. Gene set
enrichment analyses, such as CTen (Shoemaker et al., 2012),
ssGSEA (Barbie et al., 2009), and many other methods, provide
solutions for identifying the different cell types between bulk
samples. However, all these methods rely heavily on CTS genes
to estimate cell types.

In most methods, such as CIBERSORTx and xCell, CTS
genes are defined as the genes specifically expressed in a unique
cell type. Sun et al. (2015); Vrba and Futscher (2018), and
other researchers used genes specifically expressed in a limited

number of tissues as plasma DNA methylation markers for
noninvasive prenatal, cancer, or transplantation assessments.
Their findings suggested that genes specifically expressed in a
limited number of cell types could also serve as CTS genes.
Panina et al. (2020) summarized the CTS gene databases for
mice and humans, including Labome, CellFinder (Stachelscheid
et al., 2014), CellMarker (Zhang et al., 2019), PanglaoDB (Franzén
et al., 2019), and SHOGoiN (Hatano et al., 2011). Multiple
cell-type markers collected from heterogeneous experimental
sources are available for a cell type in the databases. A major
concern is that we need to evaluate the cell-type markers
from different sources to understand the scope and limitations
before combining them as a marker set for a cell type.
However, evaluation of the markers set for a cell type is lacking
in the databases.

Here, we identified 46 CTS gene clusters related to 83 mouse
cell types using the scRNA-Seq data of more than 350,000 cells
from the Tabula Muris Senis project. Gene Ontology (GO)
term enrichment analysis of the CTS gene clusters revealed
the specific functions of the relevant cell types. We further
proposed a simple method named CTSFinder to identify different
cell types between bulk RNA-Seq samples based on the 46
CTS gene clusters. We tested CTSFinder with bulk RNA-Seq
data from 17 organs and successfully identified the specific
cell types of the organs. We further tested CTSFinder with
bulk RNA-Seq data from developing mouse liver over different
stages and captured the dynamics of different cell types during
development. Then, we applied CTSFinder on the bulk RNA-
Seq data from a growth factor–induced neural progenitor cells
(giNPCs) culture system. We identified the dynamics of brain
immune cells and nonimmune cells during the long-time cell
culture. We also applied CTSFinder with the bulk RNA-Seq
data from reprogramming induced pluripotent stem (iPS) cells
by a tamoxifen-inducible Cre recombinase (mER-Cre-mER)–
induced Sox2, Klf4, and c-Myc (SKM) expressing system. We
identified the stage when those cells were massively induced.
Finally, we applied CTSFinder with bulk RNA-Seq data from
in vivo and in vitro developing mouse retina. We identified the
shared and unique cell types between the two systems, suggesting
the development track of each system. Overall, we identified 46
CTS gene clusters and demonstrated that they could be used
to identify the different cell types between mouse bulk RNA-
Seq samples.

RESULTS

Identification of Mouse CTS Gene
Clusters With A Single-Cell RNA-Seq
Data Compendium From Tabula Muris
Senis
We selected cells from the Tabula Muris Senis project (see “Data”
in “Materials and Methods” section), including cells from 3-, 18-,
and 24-months-old mice sequenced by a SMART-Seq2 platform;
and cells from 1-, 3-, 18-, 21-, 24-, and 30-months-old mice
sequenced by a 10x Genomics platform. We grouped cells into
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cell types by annotation information for each age group. We
selected cell types with 20 or more cells and calculated gene
expression profiles of the cell types (see “Calculation of Gene
Expression Profiles of Cell Types” in “Materials and Methods”
section). Thus, we obtained gene expression profiles of cell
types in each age group of mice sequenced by either platform
(Supplementary Table 1). In the 3-months-old mice sequenced
by the SMART-Seq2 platform, we found that most cell types
(101) were profiled. We identified CTS gene clusters with the
gene expression profiles of these cell types. We took the gene
expression profiles of cell types from the other age groups of mice
sequenced by either platform to validate the identified CTS gene
clusters. We identified the CTS gene clusters with the following
steps (Figure 1).

In step 1, we selected candidate genes.
We constructed a gene expression matrix of 22,966 genes in

the 101 cell types. Each column represents a cell type and each
row a gene (Figure 1A). For each gene, we checked expression
values in the 101 cell types and counted the number of cell types
with an expression value >0.5 as h. We selected 12,823 genes
satisfying 1 ≤ h ≤ 10.

In step 2, we clustered candidate genes.
We clustered candidate genes by their expression profiles in

the 101 cell types. We employed the R package “factoextra”
to cluster genes (Kassambara and Mundt, 2019). We used
the “euclidean” method to measure the distance between
observations followed by the “ward.D2” method to agglomerate
the observations. Next, the “fviz_dend” function was used to
produce dendrograms; the tree was cut into i clusters using the
“cutree” function (Figure 1B, here i = 38).

In step 3, we calculated expression scores of the gene clusters
and the similarity between them.

We selected a gene cluster s from the i clusters (1 ≤ s ≤ i). This
cluster included m genes. We calculated the expression score of
gene cluster s in cell type n (1 ≤ n ≤ 101) as follows:

Scoresn = Median
(
exp1n, exp2n, . . . , expmn

)
.

Here expmn is the expression value of the mth gene of gene cluster
s in cell type n. We calculated the expression scores of gene cluster
s in all 101 cell types.

We calculated the expression scores of all i clusters via this
method. In Figure 1C, we took i as 38 and calculated expression
scores of the 38 clusters in the 101 cell types.

Then, for each cluster, we checked the expression scores in
the 101 cell types and labeled the cell types with an expression
score > 0.5 as 1, and the cell types with an expression score≤ 0.5
as 0. We randomly selected two clusters, x and y, and calculated
the Kendall rank correlation coefficient between their labeled
values (Kenxy). We calculated the similarity between every two
clusters via this method. We identified the maximum value of the
Kendall rank correlation coefficients as Ken_ max.

In step 4, we determined the optimal number of clusters.
We enumerated i from 5 to 50. For each i, we repeated

steps 2 and 3 to obtain Ken_maxi. We plotted Ken_maxi under
different i (Figure 1D). We identified the i with Ken_maxi = 1
and selected the minimum value of them as i_min. Finally, we

determined the optimal number of clusters as (i_min− 1) and
repeated step 2 to obtain gene clusters.

The choice of i determines expression patterns of the
resultant gene clusters. A small i may produce large gene
clusters with genes of various expression levels in a cell type,
which cannot help us find gene clusters with clear expression
patterns. A large i can produce small gene clusters with
clear expression patterns. However, it may generate multiple
gene clusters sharing the same expression patterns, causing
inconvenience in finding all the CTS genes associated with
the cell types. We transformed the expression patterns of the
resultant gene clusters under each i into a binary space with
expression score > 0.5 or ≤0.5. The analysis based on the
maximum value of Kendall rank correlation coefficients can
help us obtain gene clusters with unique expression patterns as
many as possible.

In step 5, we identified CTS gene clusters.
We calculated expression scores in the 101 cell types for

each gene cluster identified in step 4 via the method described
in step 3. Then we checked expression scores in the 101 cell
types for each gene cluster and marked the cell types with an
expression score > 0.2 as expressed cell types (E types). Those
with an expression score > 0.5 were denoted as specific cell
types (S types). We counted S type and E type for each gene
cluster. Finally, we classified gene clusters into three types: (1)
housekeeping gene clusters, with E-type number > 10; (2) CTS
gene clusters, with E-type number ≤ 10 and S-type number > 0;
(3) undetermined gene clusters, with E-type number ≤ 10, and
S-type number= 0.

At first, we conducted the above steps 1–5 to obtain 87
housekeeping gene clusters, nine CTS gene clusters, and five
undetermined gene clusters (Supplementary Table 2). We then
selected the 1,785 genes in the undetermined gene clusters
as candidate genes and ran steps 2–5 above to obtain two
housekeeping gene clusters, 15 CTS gene clusters, and seven
undetermined gene clusters (Supplementary Table 2). Next,
we selected 729 genes in the undetermined gene clusters
as candidate genes and ran steps 2–5 above to obtain one
housekeeping gene cluster, four CTS gene clusters, and six
undetermined gene clusters (Supplementary Table 2). Four
hundred eighty-seven genes were in the undermined gene
clusters and used as candidate genes to run steps 2–5 again.
We obtained one housekeeping gene cluster, 18 CTS gene
clusters, and two undetermined gene clusters (Supplementary
Table 2). Only 80 genes were in the undermined gene
clusters. We stopped here. In total, we identified 46 CTS
gene clusters (Supplementary Table 3). Their S types included
61 cell types, and their E types contained 83 cell types
(Supplementary Table 4). We calculated expression scores
of these gene clusters in 101 cell types (Figure 2A). For
each cluster, we labeled the cell types with an expression
score > 0.5 as 1, and the cell types with an expression
score ≤ 0.5 as 0. We selected all bivariate cluster pairs and
calculated Kendall rank correlation coefficients between the
labeled values of them. Out of the 2,070 gene cluster pairs,
three pairs had coefficients equal to one, involving three
gene clusters (Figures 2A,B). We thought we had successfully
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FIGURE 1 | Identification of cell type–specific (CTS) gene clusters. Five steps were involved in identifying CTS gene clusters. The expression values of genes across
the 101 cell types in step 1 (A), the expression heatmap of the gene clusters over the 101 cell types in step 2 (B), the expression scores of the gene clusters over the
101 cell types in step 3 (C), and the Kendall rank correlation coefficient between gene clusters under different cluster parameters (D) were displayed.

identified the gene clusters with unique S-type patterns to
this end.

Evaluation of the 46 CTS Gene Clusters
We took the gene expression profiles of cell types from the
SMART-Seq2 platform in 18- and 24-months-old mice and the
10x Genomics platform in 1-, 3-, 18-, 21-, 24-, and 30-months-
old mice as validated datasets. We calculated expression scores of
the CTS gene clusters and then counted E type and S type of each
CTS gene cluster in each dataset (Figure 3). We found that 42
CTS gene clusters were validated as CTS gene clusters in one or
more dataset(s). Gene clusters 2–12, 2–18, 4–16, and 1–31 failed

to be validated as CTS gene clusters in all datasets. We found gene
clusters 2–12, 2–18, and 4–16 had more than 10 E types in some
datasets (Supplementary Table 5). Gene clusters 2–18 and 4–16
were expressed in types of T cells, and gene cluster 2–12 showed
a broad expression in immune cells. The three gene clusters
were specifically expressed in types of immune cells. We retained
them in the CTS gene cluster list for distinguishing immune cells
from other cells. Only gene cluster 1–31 had no S type in all
the validated datasets (Figure 3). We found that medium spiny
neurons were the S type of gene cluster 1–31 in the test dataset
(cells sequenced by the SMART-Seq2 platform in 3-months-old
mice). The medium spiny neurons were not sequenced in any

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 June 2021 | Volume 9 | Article 644261

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-644261 June 19, 2021 Time: 18:5 # 5

He et al. Identify Cell Type Transition

FIGURE 2 | Gene expression patterns of identified CTS gene clusters. (A) Expression heatmap of the 46 identified CTS gene clusters. (B) Heatmap of Kendall rank
correlation coefficients between CTS gene cluster pairs. Genes in the heatmap were sorted by the gene clusters, and the “cluster label” distinguished the genes from
different gene clusters.

validated datasets. We kept gene cluster 1–31 as signatures related
to medium spiny neurons. Thus, we retained all the 46 CTS gene
clusters as signatures related to specific cell type(s).

Next, we explored the potential functions of the CTS gene
clusters. We conducted GO term enrichment analysis on the gene
clusters (see “Gene Set Enrichment Analysis” in “Materials and
Methods” section). Thirty-one of the 46 gene clusters (67.4%)
had enriched GO terms (Figure 4A and Supplementary Table 6),

whereas 15 did not (Figure 5). For the 31 gene clusters, we
listed their S type(s) and found the enriched terms supported the
specific functions of the cell types (Figure 4B). For example, gene
cluster 1–3 were specifically expressed in the ciliated columnar
cells of tracheobronchial tree tissue; the genes were enriched in
the “cilium movement” term. Gene cluster 1–32 was specifically
expressed in pancreatic PP cells, pancreatic D cells, pancreatic
A cells, and pancreatic B cells; the genes were enriched in the
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FIGURE 3 | Number of S types and E types associated with each CTS gene cluster in the validated the single-cell RNA sequencing (scRNA-Seq) data. “Smart 18m”
and “Smart 24m” represent the scRNA-Seq data using the SMART-Seq2 platform in 18- and 24-months-old mice. “10x 1m,” “10x 3m,” “10x 18m,” “10x 21m,” “10x
24m,” and “10x 30m” represent the scRNA-Seq data using the 10x Genomics platform in 1-, 3-, 18-, 21-, 24-, and 30-months-old mice.
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FIGURE 4 | Cell types and gene ontology (GO) terms associated with 31 CTS gene clusters. (A) Expression heatmap of 31 CTS gene clusters with enriched GO
terms over the 101 cell types. Genes in the heatmap were sorted by the gene clusters, and the “cluster label” distinguished the genes from different gene clusters.
The names of the 101 cell types are listed in Supplementary Table 1 (“Smart_3m” column) in the same order. (B) S types and selected GO terms of the 31 CTS
gene clusters.
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FIGURE 5 | Gene expression patterns of 15 CTS gene clusters without enriched GO terms over the 101 cell types. Genes in the heatmap were sorted by the gene
clusters, and the “cluster label” distinguished the genes from different gene clusters. The names of the 101 cell types are listed in Supplementary Table 1
(“Smart_3m” column) in the same order.

“endocrine pancreas development” term. Gene cluster 2–9 was
specifically expressed in type 2 pneumocyte; the genes were
enriched in the “respiratory gaseous exchange” term.

We observed that some gene clusters had the same GO term.
For example, gene clusters 2–11, 2–12, 2–17, 2–18, and 4–16 were
enriched in the “immune system process” term. We examined
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the heatmap of genes comprising the gene clusters and found
they had distinct expression patterns (Figure 6). The S-type
profiles showed that gene clusters 2–11 and 2–12 were both
specifically expressed in granulocytopoietic cells; gene cluster 2–
17 showed specific expression in late pro–B cells, immature B
cells, naive B cells, and B cells; gene clusters 2–18 and 4–16
were both specifically expressed in mature natural killer T cells
(Supplementary Table 4). The results suggested that the term
“immune system process” could be further divided to reflect the
processes occurring in different cell types. We also found that
the terms “cell adhesion” and “ion transport” could be further
divided (Figure 6).

We observed that multiple CTS gene clusters were specifically
expressed in the same cell type. For example, gene clusters
2–2, 2–3, 2–10, 3–1, and 4–17 shared hepatocytes as their S
type (Figure 7). The S type and GO term results of gene
cluster 2–2 showed that hepatocytes and epithelial cells of
proximal tubule tissue both participated in the process of
sodium-independent organic anion transport (Figure 4B). Gene
cluster 2–3 revealed the unique roles that hepatocytes played
in hemostasis (Figure 4B). The S type and GO term results
of gene cluster 1–10 showed that hepatocytes and Kupffer
cells took part in the process of acute-phase response. These
results revealed the multiple functions of hepatocytes, as well
as the functional similarity between hepatocytes and other
cell types.

Accordingly, we reasoned that CTS gene clusters were
applicable across scRNA-Seq datasets and provided rich
information on the specific functions of different cell types.

Identification of Specific Cell Types From
Simulated Bulk RNA-Seq Data
We want to determine whether the CTS gene clusters could
be used to identify different cell types between bulk samples.
We simulated the bulk RNA-Seq data of cells from each of the
101 cell types (see “Construction of the Simulated Datasets” in
“Materials and Methods” section for details). We also constructed
the simulated bulk RNA-Seq data of the cells from 101 cell types
(see “Construction of the Simulated Datasets” in “Materials and
Methods” section). We developed a permutation-based method,
named CTSFinder, to identify the significant CTS gene sets
between bulk samples (see “Permutation-Based Fold Change
Test” in “Materials and Methods” section).

For each of the 101 cell types, we took their bulk RNA-Seq
data as the case and the bulk RNA-Seq data from the cells from
all 101 cell types as the control. We ran CTSFinder to calculate
the log2 transformed fold change (log 2(FC)) values and p values
of CTS gene clusters in each cell type. We also calculated the
expression scores of the CTS gene clusters in each cell type. We
plotted the expression score and log 2(FC) value pairs for CTS
gene clusters from the 101 cell types (Figure 8). We identified the
significantly up-regulated CTS gene clusters with log 2 (FC) > 1
and p< 0.001. We found 154 CTS gene clusters were significantly
up-regulated, and 150 of them had expression scores greater than
0.2 (Figure 8). The results suggested that the E-type profiles of
significant CTS gene clusters could help identify the cell types.

FIGURE 6 | Expression heatmap of the CTS gene clusters enriched in the GO
terms “immune system process,” “cell adhesion,” and “ion transport.” Genes
in the heatmap were sorted by the gene clusters, and the “cluster label”
distinguished the genes from different gene clusters. The names of 101 cell
types are listed in Supplementary Table 1 (“Smart_3m” column) in the same
order.

Identification of Specific Cell Types
Between Different Organs From Bulk
RNA-Seq Data
We have demonstrated that the CTS gene clusters can help
identify the specific cell types in simulated data. We then tested
the performance of CTSFinder on bulk RNA-Seq data between
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FIGURE 7 | Expression heatmap of the CTS gene clusters specifically expressed in hepatocytes. Genes in the heatmap were sorted by the gene clusters, and the
“cluster label” distinguished the genes from different gene clusters.

FIGURE 8 | Expression scores and log2(FC) values of the CTS gene clusters in 101 cell types.

different organs. Bulk RNA-Seq profiles from 17 organs from
two female and four male, C57BL/6JN, 3-months-old mice were
obtained from the outputs of the Tabula Muris Senis project.
The 17 organs include bone (both femurs and tibiae), brain
(hemibrain), brown adipose tissue (BAT, interscapular depot),
gonadal adipose tissue (GAT, inguinal depot), heart, kidney, limb
muscle (tibialis anterior), liver, lung, marrow, mesenteric adipose
tissue (MAT), pancreas, skin, small intestine (duodenum), spleen,

subcutaneous adipose tissue (SCAT, posterior depot), and white
blood cells (buffy coat). We found that cells from 14 of the 17
organs had been profiled using a SMART-Seq2 platform in 3-
months-old mice. Besides, the large intestine tissue had been
profiled with SMART-Seq2 platform in 3-months-old mice. We
paired the bulk RNA-Seq data from the small intestine and
scRNA-Seq data from the large intestine. Thus, we had both
bulk RNA-Seq data and scRNA-Seq data for 15 organs including
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FIGURE 9 | Dynamics of significantly dysregulated CTS gene clusters during
mouse liver development. The heatmap displays the expression fold change
of the gene clusters during mouse liver development compared to E17.5 time
point. The gene clusters in brown font are associated with hepatocytes; those
in green are associated with immune cells; the one in red is associated with
stem/progenitor cells; those in purple are possibly associated with vascular
smooth muscle cells in the liver tissue; the one in yellow is possibly associated
with hepatic stellate cells (HSCs). The representative cell type of gene cluster
1–4, in blue, is not determined.

the brain, BAT, GAT, heart, kidney, limb muscle, liver, lung,
marrow, MAT, pancreas, skin, intestine (small or large intestine),
spleen, and SCAT.

We took each of the 15 organs as cases in turn, with the
combined samples from the other organs as the control. We
ran CTSFinder and identified the significantly up-regulated gene
clusters for each organ (see “Permutation-Based Fold Change
Test” in “Materials and Methods” section). We identified 33 up-
regulated gene cluster–organ pairs (Supplementary Table 7).
We listed the cell types detected by scRNA-Seq in each organ.
Then, for each pair, we matched the E type(s) of the gene cluster
and the cell types in the organ. In 31 pairs, the E type(s) of
the gene cluster matched the cell types present in the organ
(Supplementary Table 7). In two pairs, the E types of gene

clusters did not match the cell types present in the organ, namely,
gene cluster 1–6 detected in limb muscle and gene cluster 2–24
detected in MAT. It is unexpected to see that 1–6 is up-regulated
in limb muscle because its E types, ventricular myocytes, and
atrial myocytes are not associated with the production of limb
muscle. However, the GO term result of gene cluster 1–6 showed
the genes took part in the processes of “sarcomere organization”
and “muscle contraction” (Supplementary Table 6). The gene
cluster may thus share signatures with a cell type in limb muscle,
which had not been profiled by the scRNA-Seq experiment but
plays similar roles to ventricular myocytes and atrial myocytes
in limb muscle. Gene cluster 2–24, whose E types include
multiple cell types (Supplementary Table 7), was significantly
up-regulated in MAT. We found no GO terms enriched in the
genes. A further Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis showed that the “vascular smooth
muscle contraction” pathway was enriched in the genes (see
“Gene Set Enrichment Analysis” in “Materials and Methods”
section). The enriched pathway matched the specific functions
of some of its E types, smooth muscle cells, and smooth muscle
cells of the trachea. However, the roles of the gene cluster in MAT
warrant further investigation.

Here we identified 33 significantly up-regulated gene cluster–
organ pairs, and 32 of them could be explained. The results
thus demonstrated that we could identify specific cell types in
organs by analyzing CTS gene cluster expression from bulk RNA-
Seq data.

Identification of Specific Cell Types
Between Different Development Stages
From Developing Mouse Liver Bulk
RNA-Seq Data
We tested the performance of CTS gene clusters on time-
series bulk RNA-Seq data to reveal the dynamics of specific cell
types. Renaud et al. used a bulk RNA sequencing experiment to
interrogate the developmental dynamics of the C57BL/6 mouse
liver transcriptome (Renaud et al., 2014). They profiled the
developing mouse liver over 12 different time points from the
late embryonic stage (E17.5) to maturity (60 days after birth).
Gong et al. used a bulk RNA sequencing experiment to profile
developing C57BL/6 mouse liver at 15 different time points that
covered embryonic days (E12.5, E13.5, E14.5, E15.5, E16.5, E17.5,
and E18.5), postnatal days (D1, D3, and D5), and postnatal weeks
(W1, W2, W3, W6, and W8) (Gong et al., 2020). We obtained
gene expression profiles at time points E17.5, D0, D1, D3, D5,
D10, D15, D20, D25, D30, D45, and D60 from Renaud et al.’s
data and gene expression profiles at time points E17.5, E18.5, D1,
D3, D5, W1, W2, W3, W6, and W8 from Gong et al.’s data.

We took the data from E17.5 as the control and the data at
other time points as the case. We ran CTSFinder and identified
the significantly up- or down-regulated gene clusters for each
time point in either Renaud et al.’s data or Gong et al.’s data
(see “Permutation-Based Fold Change Test” in “Materials and
Methods” section). Gene clusters 2–10, 2–2, 2–3, 3–1, 4–17, 2–11,
2–12, 2–16, 2–17, 1–5, 2–23, 2–24, 1–33, and 2–4 were profiled
by the two datasets and significantly up- or down-regulated
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in at least one time point. The E types of gene cluster 2–
10 include hepatocytes, Kupffer cells, and endothelial cells of
hepatic sinusoid tissue (Supplementary Table 4). The GO term
enrichment analysis showed that the genes played roles in
the process of “acute-phase response” but not immune-related
processes (Supplementary Table 6). The E types of 2–2, 2–
3, 3–1, and 4–17 include hepatocytes. We inferred that the
five gene clusters were signatures of hepatocytes. The E types
of gene clusters 2–11 and 2–12 include cell types related to
granulocytes and monocytes. We inferred that the two gene
clusters were signatures of granulocyte- and monocyte-related
cells. The E types of gene clusters 2–16 and 2–17 include cell types
related to B cells. We inferred that the two gene clusters were
signatures of B-cell–related cells. The E types of 1–5 are stem and
progenitor cells. The GO term enrichment analysis showed that
the genes were highly enriched in proliferation-related processes
(Supplementary Table 6). We inferred that the gene cluster was
a signature associated with stem/progenitor cells in the liver.
The E types of gene clusters 2–23 and 2–24 include smooth
muscle cells. We conducted KEGG enrichment analysis on the
two gene clusters and found both gene clusters were enriched in
the “vascular smooth muscle contraction” pathway (see “Gene
Set Enrichment Analysis” in “Materials and Methods” section).
We inferred that the two gene clusters were signatures of vascular
smooth muscle cells in the liver. The E types of gene cluster 1–33
are Bergmann glial cells, astrocytes, oligodendrocyte precursor
cells, and neuronal stem cells. The GO term enrichment analysis
showed that the genes participated in the process of cell adhesion
(Supplementary Table 6). It has been reported that hepatic
stellate cells (HSCs) and astrocytes share striking morphological
and functional similarities (Schachtrup et al., 2011). The gene
cluster could serve as signatures related to HSCs. The E type of
gene cluster 2–4 is bladder urothelial cells. We did not find any
GO terms enriched in the gene cluster. However, KEGG pathway
enrichment analysis showed that the “metabolism of xenobiotics
by cytochrome P450” pathway was enriched in the gene cluster
(see “Gene Set Enrichment Analysis” in “Materials and Methods”
section). The cell type(s) associated with gene cluster 2–4 in the
liver needs further investigation.

When taking E17.5 as the starting point, the gene clusters
associated with hepatocytes (2–10, 2–2, 2–3, 3–1, and 4–17)
were up-regulated during the development (Figure 9). The gene
clusters associated with granulocytes (2–11 and 2–12) were
down-regulated. The gene clusters related to B cells (2–16 and
2–17) were down-regulated. The gene cluster of stem/progenitor
cells (1–5) was down-regulated. The gene clusters associated with
vascular smooth muscle cells (2–23 and 2–24) were up-regulated
from E17.5 to weeks 2 or 3 after birth and then down-regulated.
The gene cluster of HSC (1–33) was up-regulated during the
development. Gene cluster 2–4 was also up-regulated during
development. In summary, the results from two independent
datasets were highly consistent.

Gong et al. used proteomics data to reveal five temporal
expression modules during mouse liver development from E12.5
to week 8 (Gong et al., 2020). Module 1, mainly involved in
cell cycle and RNA transcription, was down-regulated during the
development. Module 2, participating in inflammatory response,

phagocytosis, and immune response, obtained a peak intensity
at E18.5 and then was subsequently down-regulated. Modules
3–5 were enriched in similar biological processes, including
oxidation–reduction, metabolism, and transport, which are
all essential for adult liver function. They were up-regulated
after birth compared to time point E17.5. The results from
proteomics data suggested that the time-series intensity profiles
of module 1 reflected the dynamics of stem/progenitor cells in
the development. The intensity profiles of module 2 reflected
the dynamics of immune cells, including granulocytes and B
cells, in the development. The time-series profiles of modules 3–
5 generally reflected the dynamics of hepatocytes. The dynamics
of cell types derived from the bulk RNA-Seq data using the
CTS gene clusters were consistent with the dynamics of the cell
types derived from proteomics data. We captured the dynamics
of different cell types during mouse liver development with the
CTS gene clusters.

We used CIBERSORTx to estimate cell fractions in the
developing mouse liver bulk RNA-Seq data and compared the
cell fractions between different time points (see “Application of
CIBERSORTx to Estimate Cell Fractions in Bulk Samples” in
“Materials and Methods” section). We identified the cell types
with fold change > 2 or fold change <0.5 at any time point and
listed them in Supplementary Figure 1. The results revealed that
hepatocytes were expanded, and professional antigen-presenting
cells, late pro–B cells, granulocytes, and hematopoietic stem cells
were reduced during the development process in both datasets.
The CTSFinder also captured the dynamics of these cell types
in both datasets: gene clusters 2–10, 2–2, 2–3, 3–1, and 4–17 for
hepatocytes, 2–11, 2–12, 2–16, and 2–17 for late pro–B cells and
granulocytes, and 1–5 for hematopoietic stem cells (Figure 9).
However, CTSFinder provided ambiguous results. The results
from CIBERSORTx also revealed that many cell types with small
cell fractions were expanded or reduced during the development
process in only one dataset (Supplementary Figure 1). They
needed to be further investigated. However, the gene clusters
reported by CTSFinder were highly consistent between the
datasets. Besides the cell types revealed by CIBERSORTx,
CTSFinder possibly captured the dynamics of vascular smooth
muscle cells and HSCs in both datasets, providing more details
about mouse liver development.

Identification of Specific Cell Types
Between in vitro–Cultured Cells From
Bulk RNA-Seq Data
We used CTS gene clusters to identify cell-identity transitions
during in vitro cell culture. Gao et al. (2017) developed a method
to generate giNPCs from mouse embryonic fibroblasts (MEFs).
First, they cultured MEFs in an initiation medium for 14 days
with the following supplements: B27 minus vitamin A, heparin,
leukemia inhibitory factor, basic fibroblast growth factor (bFGF),
and epidermal growth factor (EGF). They gently pipetted the cells
every day for the first week to prevent them from attaching to the
bottom of the dish. Sphere morphology was visualized during the
process. Then, the neural rosettes were pipetted and passaged in
suspension onto ultralow attachment plates (Costar) to form the
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giNPCs in the second week. Sphere-like colonies attached to the
bottom of the culture dishes, followed by cell mixtures migrating
and gradually forming monolayer structures in that week. Next,
they digested the cell mixtures and expanded the cells with the
following supplements: N2, B27, bFGF, and EGF. This facilitated
the establishment of primary neurosphere-like networks in the
third week. They harvested cultured cells at various induction
days, specifically D1, D4, D7, D10, D14, D17, and D21, and
conducted bulk RNA sequencing experiments at each time point.
They found that the cultured cells could be divided into three
stages: initiation, intermediate, and maturation. At the initiation
stage, MEFs were induced by the initiation medium, and a
sphere morphology was observed within the first week (D1, D4,
and D7). At the intermediate stage, the monolayer structure
appeared, and cells started to express NPC-specific genes (D10
and D14). At the maturation stage, primary neurosphere-like
networks formed, and NPC-specific genes were prominently up-
regulated (D17 and D21).

We took the data from D1 as the control and the data from
other time points as the case. We ran CTSFinder and identified
the significantly up-regulated gene clusters for each time point
(see “Permutation-Based Fold Change Test” in “Materials and
Methods” section). Gene clusters 1–30, 1–31, 1–33, 1–5, 2–11,
2–12, 3–5, 4–13, and 4–14 were significantly up-regulated in at
least one time point. The E types of 1–30 are medium spiny
neurons, neurons, oligodendrocyte precursor cells, neuronal
stem cells, Bergmann glial cells, pancreatic D cells, pancreatic A
cells, pancreatic B cells, and pancreatic PP cells (Supplementary
Table 4). The E types of 1–31 are medium spiny neurons,
neurons, and oligodendrocyte precursor cells. The E types of 1–33
are Bergmann glial cells, astrocytes, oligodendrocyte precursor
cells, and neuronal stem cells. We inferred that the three gene
clusters were signatures associated with brain nonimmune cells.
We inferred 1–5 to be signature of stem/progenitor cells. 2–11
and 2–12 were inferred to be signatures of granulocytes and
monocytes related cells. The E types of 4–13 and 4–14 include cell
types related to monocytes (Supplementary Table 4). The E types
of gene cluster 3–5 are endothelial cells of hepatic sinusoid tissue
and Kupffer cells. We inferred that 3–5 was signature related to
Kupffer cells in the brain tissue. Here, we inferred that 2–11,
2–12, 3–5, 4–13, and 4–14 were the signatures associated with
brain immune cells.

When taking D1 as the starting point, the gene clusters
associated with brain nonimmune cells were up-regulated
gradually over the course of 21 days (Figure 10A). The gene
set of stem/progenitor cells was up-regulated between D10 and
D14 and down-regulated in the third week. The gene clusters
related to brain immune cells (2–11, 2–12, 3–5, 4–13, and 4–
14) were up-regulated between D4 and D14 and down-regulated
during the third week. This suggested that the brain nonimmune
cells were gradually differentiating and expanding in the initial,
intermediate, and maturation stages. The stem/progenitor cells
(giNPCs) were mainly induced in the intermediate stage. The
brain immune cells were differentiating during the initial and
intermediate stages. The MEFs tended to differentiate into
immune cells ahead of nonimmune cells in the initial stage.
The manipulation of pipetting and passaging neural rosettes

FIGURE 10 | Dynamics of significantly up-regulated CTS gene clusters during
the culture of growth factor-induced neural progenitor cells (giNPCs) and
induced pluripotent stem (iPS) cells. (A) Expression fold change of the
significantly up-regulated gene clusters during the culture of giNPCs
compared to mouse embryonic fibroblasts (MEFs). The gene clusters in brown
font are associated with brain nonimmune cells; the one in red is associated
with stem/progenitor cells; those in green are associated with brain immune
cells. (B) Expression fold change of CTS gene cluster 1–5 under different
conditions compared to MEFs.

in the intermediate stage facilitated giNPC generation and the
differentiation of brain nonimmune cells. The manipulation of
digesting the cell mixtures and supplying an expanded medium
stimulated giNPCs to differentiate into brain nonimmune cells in
the maturation stage to a massive extent.

We also used CIBERSORTx to estimate cell fractions in the
cultured giNPCs bulk RNA-Seq data and compared the cell
fractions between different time points (see “Application of
CIBERSORTx to Estimate Cell Fractions in Bulk Samples” in
“Materials and Methods” section). We identified the cell types
with fold change > 2 at any time point and listed them in
Supplementary Figure 2. The result showed that Kupffer cells,
leukocytes, classical monocytes, and monocytes were expanded
from D4 to D10 and then reduced. Bergmann glial cells, neuronal
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stem cells, oligodendrocyte precursor cells, and astrocytes were
expanded from D10 to D21. CIBERSORTx revealed the dynamics
of these brain immune cells and nonimmune cells in a clear,
unambiguous way comparing to CTSFinder. The results from
CIBERSORTx also reported other cell types (Supplementary
Figure 2), which needed to be further investigated.

Eguchi et al. (2016) conducted genetic manipulation on MEFs
using an mER-Cre-mER system. They constructed a genome-
scale ATF library and tested it in reprogramming MEF to iPS
cells. They found that three combinations of ATFs could induce
pluripotency when expressed with SKM, including (1) C2-Zfatf1,
Zfatf2, and Zfatf3; (2) C3-Zfatf1, Zfatf2, and Zfatf4; and (3) C4-
Zfatf1, Zfatf2, and Zfatf5. They profiled the bulk RNA-Seq data
of (1) MEF cells, (2) C2 and SKM overexpressed induced iPS
(C2+SKM iPS), (3) C2 and SKM overexpressed MEFs between
18 and 27 days (C2 + SKM early iPS), (4) C3 and SKM
overexpressed induced iPS (C3 + SKM iPS), (5) C3 and SKM
overexpressed MEFs between 18 and 27 days (C3 + SKM early
iPS), (6) C4 and SKM overexpressed induced iPS (C4 + SKM
iPS), (7) C4 and SKM overexpressed MEFs between 18 and
27 days (C4 + SKM early iPS), (8) SKM overexpressed MEFs
(Empty SKM MEFs), (9) Oct4 and SKM overexpressed MEFs
between 18 and 27 days (OSKM early iPS), and (10) Oct4 and
SKM overexpressed iPS (OSKM iPS).

We took the data from MEFs as the control and the data from
the genetically manipulated cells as the case. We ran CTSFinder
and identified the significantly up-regulated gene clusters in
each genetically manipulated cell (see “Permutation-Based Fold
Change Test” in “Materials and Methods” section). We found that
only gene cluster 1–5 was significantly up-regulated in C2+ SKM
iPS, C3+ SKM iPS, C4+ SKM iPS, OSKM early iPS, and OSKM
iPS (Figure 10B). We inferred gene cluster 1–5 to be signatures of
stem/progenitor cells. This suggested that stem/progenitor cells
appeared and expanded in these genetically manipulated cells.

Eguchi et al. (2016) clustered the above 10 cell types with
fibroblast and pluripotency markers. The C2 + SKM iPS,
C3 + SKM iPS, C4 + SKM iPS, and OSKM iPS with significant
pluripotency marker expression were in the first group, and
the other cell types were in the second group. However, the
OSKM early iPS had a higher expression of pluripotency
markers and a lower expression of fibroblast markers, compared
to the other cells in the second group, suggesting that it
occupied the transition point between fibroblast and pluripotency
cells. The CTS gene clusters helped distinguish the stages of
the induced iPSs.

Overall, the results demonstrated that the CTS gene clusters
facilitated the identification of specific cell types between in vitro–
cultured cells with either chemical or genetic manipulation from
bulk RNA-Seq data.

Identification of Specific Cell Types in
the in vivo and in vitro Developing Mouse
Retina
We tested the performance of CTS gene clusters on time-
series bulk RNA-Seq data from developing mouse retina and
developing mouse retina organoids derived from iPS cells to

reveal the dynamics of cell types in the two development systems.
Brooks et al. (2019) performed bulk RNA-Seq on developing and
mature retina from 12 stages comprising four embryonic time
points (E11, E12, E14, and E16) and eight postnatal time points
(P0, P2, P4, P6, P10, P14, P21, and P28). They also performed
bulk RNA-Seq on developing mouse retina organoids derived
from iPS cells at 10 time points during differentiation (D0, D4,
D7, D10, D12, D15, D18, D22, D25, and D32).

We took the data from embryonic time point E11 as the
control and the other data in the developing mouse retina
cases. We took the data from D0 as the control and the
other data cases in the developing mouse retina organoids.
We ran CTSFinder and identified the significantly up-regulated
gene clusters for each time point (see “Permutation-Based Fold
Change Test” in “Materials and Methods” section). In the
developing mouse retina, gene clusters 1–3, 1–30, 1–31, 1–32,
1–33, 1–6, and 2–23 were significantly up-regulated in at least
one time point (Figure 11A). In the developing mouse retina
organoids, gene clusters 1–3, 1–30, 1–31, 1–32, 1–33, 2–16, and
2–23 were significantly up-regulated in at least one time point
(Figure 11B). The E types of 1–30, 1–31, and 1–33 include
neurons, neuronal stem cells, oligodendrocyte precursor cells,
astrocytes, and Bergmann glial cells (Supplementary Table 4).
The three clusters were up-regulated during the development
processes in both systems, indicating the development track of
these cells. The E type of gene cluster 1–3 is ciliated columnar cells
of tracheobronchial tree (Supplementary Table 4). Genes of 1–3
took part in the “cilium movement” and “cilium assembly” terms
(Supplementary Table 6). Cluster 1–3 may share signature with
a cell type with cilium in mouse retina, such as photoreceptor
cilium, and indicate the cell type development in both systems.
The E types of gene cluster 1–32 are endocrine cells in the
pancreas (Supplementary Table 4). The GO term result showed
that genes of 1–32 participated in the functions related to insulin
(Supplementary Table 6). The gene cluster indicated a cell
type similar to the endocrine cells in mouse retina. However,
further investigation is needed. The E types of gene cluster
2–23 contain smooth muscle cells. The gene cluster indicated
the development track of smooth muscle cells in both systems.
Gene cluster 1–6 was only up-regulated in the developing mouse
retina, and gene cluster 2–16 was specifically up-regulated in
the developing mouse retina organoids. The E types of 1–6 are
ventricular myocytes and atrial myocytes, and the E types of 2–
16 include precursor B cells, early pro–B cells, and late pro–B
cells. It is interesting to see that the gene clusters associated with
different cell types were up-regulated in the development systems,
respectively, which shed light on the distinct developmental
fate of the in vivo and in vitro developing mouse retina.
However, further wet laboratory investigations are needed to
support the conclusion.

We used CIBERSORTx to estimate cell fractions in the in vivo
and in vitro developing mouse retina bulk RNA-Seq data and
compared the cell fractions between different time points (see
“Application of CIBERSORTx to Estimate Cell Fractions in Bulk
Samples” in “Materials and Methods” section). We identified the
cell types with fold change > 2 at any time point and listed
them in Supplementary Figure 3. The results revealed that
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FIGURE 11 | Expression fold change of the significantly up-regulated gene
clusters in the in vivo (A) and in vitro (B) developing mouse retina.

neuronal stem cells were first expanded, and then neurons and
astrocytes were expanded in both in vivo and in vitro developing
mouse retina. However, the results from CIBERSORTx revealed
that many cell types with small cell fractions were specifically
expanded in each development system. They needed to be
further investigated.

The CTSFinder captured the expansion of neurons, neuronal
stem cells, and astrocytes in the two development systems.
But it provided ambiguous results. CIBERSORTx specified the
dynamics of these cell types. However, besides the cell types
revealed from CIBERSORTx, CTSFinder identified the expansion
of other cell types in both development systems, providing a
more comprehensive view of the shared development track in
the two systems.

DISCUSSION

We have identified 46 CTS gene clusters related to 83 mouse
cell types using scRNA-Seq data from the Tabula Muris Senis

project. We validated the CTS gene clusters in independent
scRNA-Seq datasets. GO term enrichment analysis of the
CTS gene sets revealed the specific functions of the gene
set–associated cell types. Interestingly, we found some GO
terms, such as “immune system process,” were enriched in a
group of CTS gene clusters with distinct expression patterns,
suggesting that the indicated functions were attributable to
different genes in different cells. The multiple CTS gene
clusters associated with the same cell type uncovered the
potential functional similarity between different cell types. For
example, hepatocytes and epithelial cells of proximal tubule
tissue shared CTS gene cluster 2–2, enriched in the GO
terms of “fatty acid metabolic process” and “ion transport”
(Supplementary Table 6). Hepatocytes also shared CTS gene
cluster 2–10 with Kupffer cells. The genes were enriched in the
GO terms of “acute-phase response” and “blood coagulation”
(Supplementary Table 6). The shared CTS genes suggested a
functional similarity between hepatocytes and the two cell types.
We then used CTS gene clusters and their E-types profile to
identify different cell types between simulated bulk samples,
between organs, between different development stages, between
various in vitro culture conditions, and between in vivo and
in vitro development systems. This demonstrated that the CTS
gene clusters could be used for specific cell type identification
between bulk samples.

Transcription factors (TFs) regulate cell division, cell growth,
cell death throughout life, and cell migration and organization
during embryonic development. We obtained 827 mouse TFs
from TRRUST(v2) database (Han H. et al., 2018). We found
179 TFs in 36 CTS gene clusters (Supplementary Table 8).
We obtained 881 mouse surface membrane proteins (SPs) from
the Cell Surface Protein Atlas (Bausch-Fluck et al., 2015). We
found 309 SPs in 38 CTS gene clusters (Supplementary Table 8).
These genes can help us sort the special cell types and study
their functions.

In vitro differentiation and expansion of stem and
progenitor cells are widely applied to understand molecular
mechanisms of cell differentiation and self-renewal. However,
the microenvironment of in vivo cells and in vitro cells is
significantly different. The cell identity of the cultured stem
and progenitor cells, especially those after long-time culturing,
needs to be clarified before drawing any conclusions when
studying cell differentiation and expansion. Morphology,
immunohistochemistry, and flow cytometry have all been
applied to determining the cell identity of culture cells. However,
the cultured cells may be differentiated into multiple cell types
and highly heterogeneous. A comprehensive screen of all the
possible cell types existing in the culture pool is required. In this
respect, the RNA-Seq–based whole-genome screen potentially
outperforms other methods.

We used genes specifically expressed in one or more cell
types as CTS genes and found 46 CTS gene clusters for 83 cell
types (Supplementary Table 4). The existing methods, including
CTSFinder, rely heavily on information about CTS genes to
identify cell types in bulk samples. A single-cell expression
reference from bulk samples is prerequired for CIBERSORTx,
Bisque, MuSiC, and some other methods to estimate the
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numerical proportions of the cell types in each bulk sample.
CTen collected CTS genes mainly for mouse immune cells, and
ssGSEA did not provide CTS genes for mouse cell types. The
method with CTS genes covering more cell types will have
more extensive applications. To our knowledge, the Tabula Muris
Senis project provides the most comprehensive and high-quality
scRNA-Seq data for mouse cell types. Thus, the identified 46
CTS gene clusters for 83 mouse cell types make CTSFinder
unique and valuable.

The CTS gene clusters and the associated cell types (E types)
were not one-to-one matched. This strategy could help us find
CTS gene clusters for more cell types and extend CTS genes
associated with a cell type, compared to the strategy of using
genes specifically expressed in a unique cell type as CTS genes,
such as CIBERSORTx and xCell adopted. However, multiple
candidate cell types were reported, which led to ambiguous
results in some conditions. Knowledge about the cell types
that possibly appeared in the study will help us identify the
specific cell types from the CTS gene cluster E-type list. However,
we failed to specify the dynamics of relevant cell types in
some circumstances. The CTS genes and cell types are one-to-
one matched in CIBERSORTx and not one-to-one matched in
CTSFinder, making CIBERSORTx outperform CTSFinder under
this circumstance. The comparison between CTSFinder and
CIBERSORTx in bulk RNA-Seq data from developing mouse
liver, cultured giNPCs, and in vivo and in vitro developing mouse
retina demonstrated it. People need to assess the benefits and
risks before using CTSFinder.

The number of covered cell types is still limited. The Tabula
Muris Senis project profiled 148 cell types in 20 or more cells
using the SMART-Seq2 and 10x Genomics platforms. The CTS
genes inferred from different data sources cannot be combined as
a CTS gene set if they have not been evaluated across the data
sources. The two platforms detect gene expression in different
ways. SMART-Seq2 sequences mRNA in full length and detects
gene expression with higher sensitivity, whereas 10x Genomics
sequences mRNA in UTR region and provides higher throughput
regarding cells. We did not merge the scRNA-Seq data from
the two platforms because we could not normalize the noise
coupling with the techniques. The multiple data sources can
be merged to estimate CTS genes if they are well normalized.
One hundred one cell types were analyzed here, and 83 were
found with CTS gene clusters. However, the CTS gene clusters
were determined by comparing cell types over the whole body.
We might find CTS gene clusters for the failed cell types
and extend the gene list of the existing CTS gene sets if we
focused on, and compared, the cell types in a specific organ
or organ system.

CTSFinder provides qualitative results. It can identify the cell
type whose proportion in the bulk sample is significantly changed
between two conditions. It does not specify the numerical
proportions of the cell type in the two conditions. CIBERSORTx,
Bisque, MuSiC, and some other methods provide quantitative
solutions. They can infer the numerical proportions of the cell
type in the bulk sample if an accurate single-cell expression
reference is available. The Tabula Muris Senis project provides
a comprehensive mouse single-cell expression reference. These

quantitative solutions have not been evaluated with a single-
cell expression reference of many cell types irrelevant to the
studied bulk samples. Our application of CIBERSORTx with
the single-cell expression reference from the Tabula Muris Senis
project showed that many cell types with small cell fractions
were reported, including the ones irrelevant to the studied bulk
samples. People need to be cautious about using a comprehensive
single-cell expression reference in these methods. For researchers
with a single-cell expression reference for the bulk samples, these
quantitative solutions are a better choice. However, CTSFinder
will be attractive to those researchers who lack such a single-cell
expression reference.

MATERIALS AND METHODS

Data
We downloaded scRNA-Seq data using the SMART-Seq2
platform and 10x Genomics platform generated by the Tabula
Muris Senis project from the GEO database (Clough and
Barrett, 2016). For the SMART-Seq2 data, we removed cells
with fewer than 5,000 counts and 500 detected genes. For the
10x Genomics data, we removed cells with fewer than 2,500
unique molecular identifiers and 500 detected genes. We also
downloaded the cell annotation files for the cells sequenced
by the two platforms. The bulk RNA-Seq data for 17 organs
were downloaded from the GEO database, including five or six
replicates per organ. The organ annotation file for the samples
was also obtained. The mouse liver development bulk RNA-
Seq data were downloaded from the GEO database, including
Renaud et al. and Gong et al. Concerning Renaud et al.’s data,
we downloaded gene expression profiles of samples at E17.5 and
D0, D1, D3, D5, D10, D15, D20, D25, D30, D45, and D60,
including three replicates per time point. In terms of Gong
et al.’s data, we downloaded gene expression profiles of samples
at E17.5 and E18.5; D1, D3, and D5; and W1, W2, W3, W6,
and W8, including three replicates per time point. The mouse
giNPCs bulk RNA-Seq data were downloaded from the GEO
database, including samples at D1, D4, D7, D10, D14, D17,
and D21 with duplicate samples per time point. The iPS cells
bulk RNA-Seq data were downloaded from the GEO database,
including 10 different conditions and three or four replicates per
condition. The bulk RNA-Seq data for the in vivo and in vitro
developing mouse retina systems were downloaded from the
GEO database, including two or three replicates per time point.
Detailed information concerning these data can be found in
Supplementary Table 9.

Calculation of Gene Expression Profiles
of Cell Types
For the selected cell types, we calculated the gene expression
profiles as follows. First, for each gene and cell type, the number
of cells expressing the gene in the cell type was counted, and
the percentage of cells in the cell type that express each gene
was calculated. Second, the calculated percentages were taken
as the expression level of the gene in the cell type. Finally, the
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expression levels for all genes in each of the cell types were
obtained via this method.

Gene Set Enrichment Analysis
Gene set enrichment analysis was conducted on the gene
clusters using DAVID 6.8 (Huang da et al., 2009). In GO term
enrichment analysis, terms from the “GOTERM_BP_DIRECT”
ontology, which had Bonferroni-corrected p < 0.05, were taken
as the significant terms (The Gene Ontology Consortium, 2019).
In KEGG pathway enrichment analysis, the pathways with
Bonferroni-corrected p < 0.05 were taken as the significant
pathways (Kanehisa and Goto, 2000).

Construction of the Simulated Datasets
We used the scRNA-Seq data sequenced by the SMART-Seq2
platform in 3-months-old mice and filtered cells as described in
the “Data” section. We randomly selected one cell from each of
the 101 cell types. Then we normalized the sequencing depth
of each cell to 10,000 and scaled the read count of each gene
accordingly. Next, we merged the 101 cells and summed the reads
for each gene to yield a simulated bulk RNA-Seq dataset of cells
from the 101 cell types. We repeated the processes three times to
get three simulated bulk RNA-Seq datasets.

For each of the 101 cell types, we randomly selected 20 cells,
normalized the sequencing depth to 10,000, scaled the read count
of each gene, and merged 20 cells to get a simulated bulk RNA-
Seq dataset for the cell type. We repeated the process three times
to get three simulated bulk RNA-Seq datasets for each cell type.

Permutation-Based Fold Change Test
Here, we describe a simple method named CTSFinder, which can
identify the different cell types between case and control samples.

At first, we conducted differential gene expression analysis
between the case and control samples. In the simulated bulk
RNA-Seq data, we input the processed read files to DESeq2 (Love
et al., 2014) and set the mode as “moderated log2 fold changes”
to calculate the log2-transformed fold-change (log 2(FC)) value
of each gene between samples. We downloaded raw read files
pertaining to bulk RNA-Seq data from 17 organs and then used
DESeq2 (Love et al., 2014), setting the mode as “moderated
log2 fold changes” to calculate the log2-transformed fold-change
(log 2(FC)) value of each gene between samples. In the bulk RNA-
Seq data for the in vivo and in vitro developing mouse retina,
we downloaded the CPM (counts per million reads mapped)
value. In the other bulk RNA-Seq data, we downloaded the FPKM
(fragments per kilobase of exon model per million reads mapped)
value. We calculated its median values in the case samples and
the control samples for each gene. Then, for each gene, we
selected the large one between 1 and its median value in the case
samples and the large one between 1 and its median value in the
control samples and calculated the log2-transformed fold-change
(log 2(FC)) value with the two values.

Then, we filtered out the genes with log 2 (FC) equal to zero.
We counted the sequenced genes in each of the 46 CTS gene
clusters and selected those clusters with 10 or more expressed
genes to conduct further analysis.

Third, for a gene cluster, we calculated the median of
log 2 (FC) value of its genes as median

(
log 2 (FC)all

)
. Then,

we shuffled the log 2(FC) value of all expressed genes
10,000 times and calculated the median

(
log 2 (FC)all

)
of

the gene cluster as the median
(
log2 (FC)perm

)
at each time

to obtain a median
(
log2 (FC)perm

)
set. Next, we calculated

the frequency of the value in median
(
log2 (FC)perm

)
set

equal to or higher than median
(
log2 (FC)all

)
as p value if

median
(
log2 (FC)all

)
≥ 0. We calculated the frequency of the

value in the median
(
log2 (FC)perm

)
set equal to or lower than

median
(
log2 (FC)all

)
as p value if median

(
log2 (FC)all

)
< 0.

We calculated median
(
log2 (FC)all

)
and p value for each gene

cluster in this way.
Finally, we identified the significant gene clusters with

median
(
log2 (FC)all

)
and p value. We identified the significantly

up-regulated gene clusters in bulk simulated RNA-Seq data
and bulk organ RNA-Seq data with median

(
log2 (FC)all

)
> 1

and p < 0.001. We identified the significantly up- or down-
regulated gene clusters in the mouse developing liver RNA-Seq
data with median

(
log2 (FC)all

)
> 1 or median

(
log2 (FC)all

)
<

−1 and p < 0.001. We identified the significantly up-
regulated gene clusters in giNPC data and iPS cell data with
median

(
log2 (FC)all

)
> 1 and p < 0.001. We identified the

significantly up-regulated gene clusters in the in vivo and in vitro
developing mouse retina data with median

(
log2 (FC)all

)
> 1

and p < 0.001.

Application of CIBERSORTx to Estimate
Cell Fractions in Bulk Samples
We used the CIBERSORTx toolkit1 to estimate cell fractions
in the different time points of developing mouse livers,
in vitro–cultured giNPCs, and in vivo and in vitro developing
mouse retina. The scRNA-Seq data from 3-months-old mice
sequenced by the SMART-Seq2 platform from the Tabula
Muris Senis project were taken as a scRNA-Seq reference.
We input read count matrix of the scRNA-Seq data into the
toolkit to get a signature matrix. The parameters are listed
in Supplementary Table 10. We input the signature matrix
and each bulk RNA-Seq dataset to estimate cell fractions
using the CIBERSORTx-B model. The parameters are also
listed in Supplementary Table 10. In the bulk RNA-Seq
data for the in vivo and in vitro developing mouse retina,
CPM values were used; in the other data, FPKM values were
used.

We then compared the cell fractions between the start time
point and other time points in each bulk RNA-Seq dataset. E17.5
was set as the start time point in the developing mouse livers
data; D1 was taken as the start time point in the in vitro–cultured
giNPC data; E11 and D0 were set as the start time points in the
in vivo and in vitro developing mouse retina data, respectively.
In each bulk RNA-Seq dataset, we calculated the fold changes of
cell fractions at the other time points with respect to that at the
start time point for a cell type: at first, cell fractions small than
0.01 were input with 0.01; then, cell fractions of samples from

1https://cibersortx.stanford.edu/
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the same time point were averaged; finally, fold changes of cell
fractions between the other time points and the start time point
were calculated. We calculated the fold changes for all 101 cell
types in each dataset via this method.
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Supplementary Figure 1 | Cell fractions of 101 cell types in bulk samples from
developing mouse livers. Cell fractions of 101 cell types in the bulk samples from
Renaud et al. data (A) and Gong et al. data (B) were estimated by CIBERSORTx.
The samples from different time points are indicated. The names of cell types with
fold change > 2 or fold change < 0.5 are listed in the figures, and the names of all
cell types are listed in Supplementary Table 1.

Supplementary Figure 2 | Cell fractions of 101 cell types in bulk samples from
cultured giNPCs. The samples from different time points are indicated. The names
of cell types with fold change > 2 are listed in the figure, and the names of all cell
types are listed in Supplementary Table 1.

Supplementary Figure 3 | Cell fractions of 101 cell types in bulk samples from
in vivo and in vitro developing mouse retina. Cell fractions of 101 cell types in the
bulk samples from in vivo (A) and in vitro (B) developing mouse retina were
estimated by CIBERSORTx. The samples from different time points are indicated.
The names of cell types with fold change > 2 are listed in the figures, and the
names of all cell types are listed in Supplementary Table 1.
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