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Craniofacial malformations are among the most common birth defects in humans and
they often have significant detrimental functional, aesthetic, and social consequences.
To date, more than 700 distinct craniofacial disorders have been described. However,
the genetic, environmental, and developmental origins of most of these conditions
remain to be determined. This gap in our knowledge is hampered in part by the
tremendous phenotypic diversity evident in craniofacial syndromes but is also due to
our limited understanding of the signals and mechanisms governing normal craniofacial
development and variation. The principles of Mendelian inheritance have uncovered the
etiology of relatively few complex craniofacial traits and consequently, the variability
of craniofacial syndromes and phenotypes both within families and between families
is often attributed to variable gene expression and incomplete penetrance. However,
it is becoming increasingly apparent that phenotypic variation is often the result
of combinatorial genetic and non-genetic factors. Major non-genetic factors include
environmental effectors such as pregestational maternal diabetes, which is well-known
to increase the risk of craniofacial birth defects. The hyperglycemia characteristic of
diabetes causes oxidative stress which in turn can result in genotoxic stress, DNA
damage, metabolic alterations, and subsequently perturbed embryogenesis. In this
review we explore the importance of gene-environment associations involving diabetes,
oxidative stress, and DNA damage during cranial neural crest cell development, which
may underpin the phenotypic variability observed in specific craniofacial syndromes.
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INTRODUCTION

The vertebrate head and face comprise a complex assemblage of specialized tissues including the
viscerocranium, chondrocranium and neurocranium, the central and peripheral nervous systems,
and all of the major sense organs (Trainor, 2013). The anatomical complexity of the craniofacial
complex coupled with the initiation of its development during early embryogenesis renders the
head and face prone to malformation. In fact, of the 1% of all live births that present with a
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minor or major anomaly, about one-third affect the head and face
(Gorlin et al., 1990). To date, more than 700 distinct craniofacial
disorders have been identified and phenotypically described
(Carey, 1992), and orofacial clefts (1:1,000) and craniosynostosis
(1:2,500) represent two of the most common craniofacial birth
defects. These disorders are characterized by a wide spectrum of
anomalies with varying degrees of severity, and no phenotypes
or syndromes are identical in all affected individuals. In fact,
many affected individuals with extremely mild phenotypes
go undiagnosed or are only diagnosed retrospectively upon
the birth of a severely affected sibling or progeny (Trainor
et al., 2009). Additionally, craniofacial anomalies can occur
sporadically without a familial history of mutation, indicating
that genetic background, environmental factors, and stochastic
events can influence the etiology and pathogenesis of craniofacial
disorders (Jones et al., 1975; Trainor et al., 2009; Bartzela
et al., 2017). Therefore, a thorough understanding of the events
controlling normal craniofacial morphogenesis is central to
improving diagnosis and care for patients.

Craniofacial malformations typically arise due to defects in
cranial neural crest cell formation, migration, or differentiation
and are collectively termed “neurocristopathies.” Distinct and
diverse phenotypes manifest depending on which phase of cNCC
development is disrupted (Trainor, 2010; Watt and Trainor,
2014). Although variable gene expression and incomplete
penetrance contribute to phenotypic variability, the impact of
combinatorial genetic and non-genetic factors in craniofacial
malformations is increasingly being recognized. A growing body
of evidence demonstrates that neural crest cells are particularly
sensitive to environmental influences such as diabetes and
oxidative stress. Maternal diabetes is associated with an increased
risk of birth defects (Kucera, 1971; Casson et al., 1997; Hawthorne
et al., 1997; Von Kries et al., 1997; Mills, 2010) and may account
for half of all perinatal deaths (Greene, 2001). In fact, women
with pre-gestational diabetes have children with birth defects
three to five times more frequently than women without diabetes
(Greene, 2001). Oxidative stress-inducing teratogens, such as
alcohol (Sulik et al., 1988), retinoic acid (Williams and Bohnsack,
2019), and nicotine (Zhao and Reece, 2005; Schneider et al.,
2010), can also increase the likelihood of embryos born with
craniofacial anomalies. Persistent oxidative stress can impinge on
neural crest cell development through distinct mechanisms such
as DNA damage, p53 activation and autophagy (Wang et al., 2015;
Sakai et al., 2016; Han et al., 2019; Cao et al., 2020). Consistent
with this idea, DNA damage and genome instability are associated
with an increased incidence of cleft lip and/or palate (Kobayashi
et al., 2013). Furthermore, mutations in DNA damage repair
genes can result in craniofacial malformations, highlighting
the importance of maintaining genome stability during normal
craniofacial morphogenesis (Wong et al., 2003; Seeman et al.,
2004; Altmann and Gennery, 2016; Sakai et al., 2016; Kitami
et al., 2018; Boone et al., 2019; Yamaguchi et al., 2021). This led
us to postulate that exogenous stressors, particularly oxidative
stress and DNA damage, can worsen the damage caused by a
particular neural crest cell disruptive mutation, thus exacerbating
its phenotypic outcome. In this review, we provide a brief
overview of cranial neural crest cell development and the effects

of diabetes and oxidative stress on craniofacial morphogenesis.
We will also discuss potential mechanisms for oxidative stress-
induced DNA damage in modulating the phenotypic variability
associated with craniofacial disorders.

NEURAL CREST CELL AND
CRANIOFACIAL DEVELOPMENT

Underpinning the complex morphogenesis of head and facial
development is a population of cells called neural crest
cells (NCC). Considered a vertebrate-specific cell type, NCC
are transiently generated during the neurulation phase of
embryogenesis which corresponds to about 3–4 weeks of
human development. Specified in the neural ectoderm along
nearly the entire length of the embryo, NCC undergo an
epithelial-to-mesenchymal transition (EMT), which facilitates
their delamination and migration throughout the primitive head.
Cranial NCC give rise to the chondrocytes and osteoblasts
of cartilage and bone, the fibroblasts of connective tissue, the
odontoblasts in teeth, the sensory neurons and glia in the
peripheral nervous system, and the pigment cells in the skin (Le
Douarin and Kalcheim, 1999; Bronner and LeDouarin, 2012).
Ultimately, there is barely a tissue or organ throughout the
entire body that does not receive a contribution from NCC.
Given this remarkable differentiation capacity, NCC have been
described as the fourth primary germ layer (Hall, 1999). The
specification of neural crest cell progenitors is thought to occur
during gastrulation in the neural plate border (Trainor and
Krumlauf, 2001, 2002; García-Castro et al., 2002; Basch et al.,
2006; Prasad et al., 2020). This territory is defined as the junction
between the neural ectoderm and the surface ectoderm and in
chick embryos is demarcated by the expression of Pax7 (Basch
et al., 2006). During neurulation, the two halves of the neural
ectoderm or neural plate elevate, converge and fuse to form
a neural tube, which is the precursor of the central nervous
system (Figure 1A). At the same time, neural crest cells are
induced to form in the dorsolateral aspect of the neural plate in
response to signals from the surrounding ectoderm, mesoderm,
and endoderm. Considerable evidence has shown that signaling
cascades mediated by BMP (Bone Morphogenetic Protein),
FGF (fibroblast growth factor), and Wnt (Wingless/Int) play
central roles in neural crest induction, although the importance
and spatiotemporal regulation of these individual signaling
pathways varies depending on the species (Bae and Saint-
Jeannet, 2014). The potential reasons for, and significance of,
these species-specific differences have been previously discussed
(Barriga et al., 2015).

Irrespective of which signaling pathways are involved,
the formation of NCC involves tremendous cytoskeletal
changes. During EMT, adjoining neuroepithelial cells lose their
intracellular tight junctions, adherens junctions, and apicobasal
polarity, and acquire focal adhesions, become polarized and
migratory (Taneyhill and Padmanabhan, 2014). These changes
in cell adhesion are mediated in part by a “Cadherin switch”
in which E-cadherin expression is downregulated in concert
with N-cadherin upregulation (Hatta and Takeichi, 1986;
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FIGURE 1 | (A) NCC are initially specified within the neural plate border. As the two halves of the neural plate elevate to form a neural tube, NCC are induced and
undergo EMT, after which they migrate and colonize the frontonasal prominences, first, second, third, and fourth pharyngeal arches (adapted from Simões-Costa
and Bronner, 2015). (B) Cranial NCC patterns of migration and differentiation into the bone and cartilage of the head and face. During embryogenesis, the brain is
specified into prosencephalon (diencephalon and telencephalon), mesencephalon, and rhombencephalon regions. The colors highlight regions of the developing
face that correspond to NCC populations of different axial origins. The facial prominence and pharyngeal arches then undergo complex morphogenesis to form the
structures of the face. AS, alisphenoid bone, F, frontal bone, FEZ, frontonasal ectodermal zone, FNP, frontonasal prominence, H, hyoid bone, I/S, incus and stapes,
M, mandible, MX, maxilla, N, nasal bone, PA, pharyngeal arches, r, rhombencephalon, S, squamosal, Z, zygomatic bone.

Coles et al., 2007). A number of transcription factors including
members of the Snail, Zeb and Twist protein families play
critical roles in NCC EMT (Nieto et al., 1994; Van De Putte
et al., 2003; Coles et al., 2007; Mayor and Theveneau, 2012) in
part through directly repressing the transcriptional activity and
function of E-cadherin (Cano et al., 2000). However, again there
are species-specific differences in the absolute requirement and
functions of these transcription factors in NCC EMT (Barriga
et al., 2015). Nonetheless, the induction, EMT, delamination,
migration, and differentiation of NCC depends on integrated
gene regulatory networks in which many genes and signaling
pathways exhibit reiterative functions.

Neural crest cells arise progressively in an anterior-posterior
manner along nearly the entire neuroaxis of the embryo and
are classified into cranial, cardiac, trunk, vagal, and sacral
NCC axial populations. Of particular relevance in this review
are the cranial NCC, which generate most of the craniofacial
skeleton in vertebrates. Cranial NCC delaminate from the
diencephalon (posterior forebrain), mesencephalon (midbrain),
and rhombencephalon (hindbrain) and give rise to the majority
of the bone, cartilage and connective tissue of the head and face
(Figure 1B) (Achilleos and Trainor, 2015). The most anterior

cranial NCC migrate collectively and populate the frontonasal
and periocular regions, where they contribute to the nasal and
frontal bones, the meninges underlying the calvarial bones and
most of the suture mesenchyme separating the skull bones. The
posterior cranial NCC migrate in discrete segregated streams
and populate the pharyngeal arches (Osumi-Yamashita et al.,
1994; Tam and Trainor, 1994; Trainor and Tam, 1995; Trainor
et al., 2002), where they differentiate into the upper and lower
jaw, middle ear, and skeletal structures in the neck (Figure 1B;
Chai et al., 2000; Kulesa et al., 2010). Cranial NCC exhibit
varying degrees of unipotency, bipotency and multipotency and
are capable of differentiating into neurons and glia of the
peripheral nervous system, as well as osteochondroprogenitors
(Baroffio et al., 1991; Le Douarin et al., 2004; Dupin et al., 2010;
Baggiolini et al., 2015). Migrating neural crest cells express Sox10
and Foxd3, and the activity of these factors persist in cranial NCC
destined for neuroglial differentiation, but are switched off in
osteochondroprogenitors (Bhatt et al., 2013). Conversely, Sox9,
a master regulator of chondrogenesis is expressed in cranial NCC
destined for cartilage and bone differentiation but is switched off
in neuroglia progenitors (Trainor and Krumlauf, 2001; Dash and
Trainor, 2020).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 May 2021 | Volume 9 | Article 644410

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-644410 May 14, 2021 Time: 17:54 # 4

Fitriasari and Trainor Gene-Environment Interactions

Several mechanisms may account for the ability of NCC
to differentiate into diverse cell types and tissues. If the fate
of NCC was predetermined at the time of induction, NCC
would comprise a heterogeneous mixture of unipotent progenitor
cells, with each giving rise to a singular distinct cell type.
Their differentiation would therefore be primarily dependent
upon intrinsic signals (Bhatt et al., 2013). However as noted
above, NCC exhibit varying degrees of cell fate potency, and
therefore depend upon a combination of intrinsically expressed
factors in concert with extrinsic signals emanating from the
tissues they contact during their migration to undergo their
proper spatiotemporal patterns of differentiation (Trainor and
Krumlauf, 2001; Trainor, 2003, 2013; Trainor et al., 2003; Crane
and Trainor, 2006). These key principles of NCC heterogeneity,
potency, and plasticity which were determined through classic
embryology, lineage tracing, and transplantation studies have
been further substantiated by more recent genetic and molecular
analyses such as single cell RNA-sequencing (Morrison et al.,
2017; Shang et al., 2018; Soldatov et al., 2019). The remarkable
lineage potential of NCC, combined with a limited capacity for
self-renewal that persists even into adult life, has raised the
potential for NCC to be used in regenerative medicine (Crane and
Trainor, 2006; Achilleos and Trainor, 2012; Shang et al., 2018).

Synonymous with the “new head” hypothesis (Gans
and Northcutt, 1983), cranial NCC carry species-specific
programming information that is integral to craniofacial
development, evolution, variation, and disease (Noden, 1983;
Trainor and Krumlauf, 2001; Schneider and Helms, 2003;
Trainor, 2003; Trainor et al., 2003; Noden and Trainor, 2005).
Proper craniofacial development therefore requires that an
embryo generates and maintains a sufficient number of NCC
that proliferate, survive, migrate, and differentiate in the correct
spatiotemporal manner. Perturbation of any one of these
phases of NCC development can lead to variable craniofacial
malformations. A growing body of evidence suggests that NCC
are particularly sensitive to exogenous environmental stressors
such as diabetes, oxidative stress, and DNA damage (Sakai and
Trainor, 2016; Sakai et al., 2016; Kitami et al., 2018; Yamaguchi
et al., 2021). We postulate that the interactions between these
exogenous stressors and genetic risk factors for individual
craniofacial malformations compromise NCC viability, thus
contributing to the phenotypic variation observed in many
craniofacial syndromes. To illustrate this concept, we discuss
craniofacial syndromes with well recognized broad phenotypic
variation that are known to be influenced by diabetes, oxidative
stress, and DNA damage.

GENE-ENVIRONMENT INTERACTIONS
INFLUENCE PHENOTYPE VARIABILITY
IN DIFFERENT CRANIOFACIAL
DISORDERS

Treacher Collins Syndrome
Treacher Collins syndrome (TCS, OMIM number 154500) is
a prime example of the considerable phenotypic variability

characteristic of congenital craniofacial disorders. Extensive
inter- and intra-familial variation is a striking feature of the
condition (Dixon et al., 1994; Marres et al., 1995; Jones et al.,
2008). TCS is characterized by anomalies of the head and face,
including hypoplasia of the facial bones, especially the mandible
and zygomatic complex, which may result in dental malocclusion.
The palate is often high-arched or cleft (Poswillo, 1975). Other
clinical features of TCS include alterations in the shape, size,
and position of the external ears, which are frequently associated
with atresia of the external auditory canals and anomalies of
the middle ear ossicles (Edwards et al., 1996). In the most
extreme cases of TCS, the constellation of craniofacial anomalies
can result in a compromised airway leading to perinatal death
(Edwards et al., 1996). In contrast, some individuals can be so
mildly affected that it is difficult to establish an unequivocal
diagnosis. It is therefore not uncommon for mildly affected TCS
patients to be diagnosed retrospectively, after the birth of a more
severely affected child or sibling.

TCS occurs with an estimated incidence of 1 in 50,000 live
births (Carey, 1992; Twigg and Wilkie, 2015) and is caused
primarily by mutations in the TCOF1 gene. However, TCS
is also associated with mutations in POLR1B, POLR1C and
POLR1D. With respect to TCOF1 the mode of inheritance is
autosomal dominant, although very rare cases of autosomal
recessive mutations have been observed (Dixon et al., 1996;
Edwards et al., 1997). For POLR1B, all mutations to date appear to
be autosomal dominant, whereas for POLR1C they are autosomal
recessive (Dauwerse et al., 2011; Ghesh et al., 2019; Sanchez
et al., 2020). In contrast, both autosomal dominant and recessive
mutations in POLR1D have been reported in association with
TCS (Dauwerse et al., 2011).

Hundreds of family-specific mutations including
deletions, insertions, splice site, missense, and nonsense
mutations have been identified in the TCOF1 gene
(databases.lovd.nl/shared/genes/TCOF1). However, irrespective
of the position of the mutation, or the type of mutation, or
whether the mutation is maternally or paternally inherited,
these factors apparently have no impact on the severity of the
TCS condition, and there does not appear to be any significant
sex-based difference in the effect of a mutation on male vs.
female offspring. Although the penetrance of genetic mutations
underlying TCS is high, approximately 60% of cases arise
randomly or spontaneously as a result of a de novo mutation in
a family without a history of the disorder. The high degree of
variability in which individuals with TCS are affected, together
with the high rate of de novo mutations and the absence of a
strong genotype-phenotype correlation, renders the provision of
genetic counseling complicated, particularly where the diagnosis
of an affected child’s parents is equivocal (Trainor et al., 2009).

TCOF1 encodes the nucleolar phosphoprotein Treacle, which
together with Upstream Binding Factor (UBF) stimulates
transcription of ribosomal DNA by RNA Polymerase I (Valdez
et al., 2004). POLR1B is a catalytic core subunit of RNA
Polymerase I, whereas POLR1C and POLR1D comprise core
subunits of RNA Polymerases I and III. Each of these factors play
essential roles in rDNA transcription, which is the first step and a
rate limiting step in ribosome biogenesis. Ribosome biogenesis
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is the process of making ribosomes, the ribonucleoprotein
machines that translate mRNA into protein, thus synthesizing
proteins within all cells. Since ribosomes underpin protein
production, their synthesis consumes a cell’s metabolic capacity,
and ribosome biogenesis is therefore tightly integrated with
and regulates many cellular processes including proliferation,
survival, growth, and differentiation. Interestingly, deficiencies
in rDNA transcription and ribosome biogenesis result in the
activation and stabilization of p53 and ultimately cell death
(Rubbi and Milner, 2003). Loss-of-function mouse and zebrafish
models of TCOF1, POLR1B, POLR1C or POLR1D homologs
exhibit extensive p53 dependent neuroepithelium and neural
crest cell apoptosis, which presages hypoplasia of the craniofacial
skeleton, mimicking the characteristic features of TCS in humans
(Dixon et al., 2006; Jones et al., 2008; Noack Watt et al.,
2016; Sanchez et al., 2020). Furthermore, pharmacological or
genetic inhibition of p53-dependent apoptosis prevents TCS in
animal models (Jones et al., 2008; Noack Watt et al., 2016).
TCS is therefore primarily associated with perturbation of rDNA
transcription and a subsequent deficiency in the ribosome
biogenesis and protein translation necessary for neuroepithelial
neural crest cell proliferation and survival (Dixon et al., 2006;
Noack Watt et al., 2016).

The p53 inhibition rescue of TCS occurred without restoration
of ribosome biogenesis (Jones et al., 2008). This led to the
suggestion that Tcof1/Treacle may also perform non-rDNA
transcription and ribosome biogenesis associated functions
during development. Treacle was subsequently found to directly
interact with the MRNM (MDC1-RAD50-NBS1-MRE11)
complex (Sakai et al., 2016), which mediates the double-stranded
DNA damage response. In support of this observation, two other
studies focused on the role of NBS1 in response to DNA damage
induced by laser microirradiation in cultured cells, identified
TCOF1/Treacle as a direct binding partner of NBS1 (Ciccia et al.,
2014; Larsen et al., 2014; Sakai et al., 2016). Collectively, this
implied that TCOF1 might play a key role in the response to
DNA damage via the MRNM complex. Treacle was subsequently
shown to localize to sites of DNA damage and Tcof1+/−

embryo-derived mouse embryonic fibroblasts (MEFs) exhibited
a delay in DNA damage repair (Sakai et al., 2016). Furthermore,
p-ATM was observed to be upregulated in Tcof1+/− embryos
compared to control littermates, and γ-H2AX, p-Chk2 and p53
were activated in the same neuroepithelial cells undergoing
apoptosis in vivo in Tcof1+/− embryos (Sakai et al., 2016).
Treacle-dependent NBS1 translocation regulates silencing of
RNA polymerase I-dependent rRNA transcription upon DNA
damage (Ciccia et al., 2014; Larsen et al., 2014; Sakai et al., 2016),
and interestingly in the absence of Treacle, BRCA1 no longer
localizes to sites of DNA damage (Sakai et al., 2016). These
results provided direct evidence that TCOF1/Treacle functions
in the DNA damage response and repair pathway in vivo (Sakai
et al., 2016). Furthermore, it connected deficient DNA damage
repair and the p53 dependent apoptotic elimination of cranial
NCC in Tcof1+/− embryos as a component of the cellular and
developmental mechanisms underlying the pathogenesis of TCS.

Neuroepithelial cells including progenitor neural crest cells
endogenously generate high levels of reactive oxygen species

(ROS) compared to other tissues during embryogenesis (Sakai
et al., 2016). Furthermore, exposing wild-type embryos to
strong oxidants such as 3-nitropropionic acid or H2O2 induces
apoptosis specifically in the neuroepithelium and progenitor
neural crest cells. Thus, not only do these cells naturally exist
in a highly oxidative state, they are also particularly sensitive
to exogenous ROS (Sakai and Trainor, 2016; Sakai et al., 2016).
Furthermore, mutations in genes critical for responding to
and repairing DNA damage, would increase the sensitivity to
exogenous ROS as is the case in Tcof1+/− embryos (Sakai
et al., 2016). Conversely, antioxidant supplementation provided
a therapeutic avenue for ameliorating or even preventing ROS
induced DNA damage phenotypes. Treating Tcof1+/− embryos
in utero with a strong antioxidant such as N-acetylcysteine
is able to clear the ROS, thereby preventing DNA damage,
p53 activation and apoptosis. Consequently, about 30% of
antioxidant treated Tcof1+/− embryos were fully rescued
and morphologically indistinguishable from their wild-type
littermates (Sakai et al., 2016). Thus, Tcof1/Treacle plays an
essential role in protecting neuroepithelial and neural crest cells
from endogenous and exogenous oxidative stress-induced DNA
damage during normal craniofacial development. Consistent
with this idea, a SILAC analysis of oxidative stress-mediated
proteins in human pneumocytes revealed a potential role for
Treacle in oxidant defense (Duan et al., 2010). Given that the
in utero gestational environment generates and is subjected
to dynamic levels of oxidative stress that fluctuate during an
individual pregnancy and vary between pregnancies, these results
imply that differential levels of oxidative stress contribute to
the inter- and intra-familial variability in craniofacial anomalies
characteristic of TCS (Figure 2).

The inter-and intra-familial phenotypic variability observed
in association with TCS in humans can be reproduced
experimentally in mice with mutations in Tcof1 on different
genetic backgrounds (Dixon and Dixon, 2004). This illustrates
the potential for complex interactions between Tcof1 and
intrinsic background-specific modifier genes, or extrinsic
environmental factors, in modulating phenotype variability and
severity. In fact, it is tempting to speculate that a combination
of endogenous background specific levels of TCOF1/Treacle,
genetic modifiers and levels of ROS collectively determines TCS
phenotypic outcomes.

Holoprosencephaly
A complex genotype-phenotype relationship has also been
observed in holoprosencephaly (HPE; OMIM number 236100),
which affects approximately 1 in 16,000 live births (Geng
and Oliver, 2009). HPE is a structural brain malformation
characterized by incomplete or absent division of the forebrain
(prosencephalon) into two cerebral hemispheres, which normally
occurs by the 5th week of gestation (Golden, 1999; Kruszka and
Muenke, 2018). HPE may present as an isolated phenotype (non-
syndromic) or as part of a syndrome (syndromic), the most
common of which include Trisomy 13 and 22, as well as Smith-
Lemli-Opitz syndrome and Hartsfield syndrome (Kruszka and
Muenke, 2018). Non-syndromic HPE is commonly associated
with pathogenic variants in one of four principal genes including
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FIGURE 2 | Potential mechanisms for hyperglycemia, oxidative stress, and DNA damage in the pathogenesis of Treacher Collins syndrome. The hyperglycemic
environment characteristic of maternal diabetes can lead to oxidative stress and epigenetic modification. Oxidative DNA damage and aberrant Pax3 silencing lead to
p53 activation which induces apoptosis particularly within neuroepithelial cells and neural crest cells, resulting in neural tube defects or hypoplasia of neural
crest-derived tissues.

SHH, ZIC2, SIX3, and TGIF (Roessler et al., 1996, 2009; Solomon
et al., 2009; Taniguchi et al., 2012). Other genetic loci, such
as GLI2, CDON (also known as CDO), FGF8, and DISP1 have
also been associated with HPE or HPE-like phenotypes at lower
frequency (Roessler et al., 2003, 2009; Bae et al., 2011; Hong et al.,
2018).

Similar to TCOF1 mutations in TCS, the phenotypic
consequences of loss-of-functions mutations in these HPE
associated loci correlate with a spectrum of facial malformations,
ranging from non-lethal microforms such as hypotelorism,
midfacial hypoplasia, and a single maxillary incisor, to an
extremely severe form characterized by cyclopia and proboscis
(Solomon et al., 2010). Depending on the degree of separation
between the cerebral hemispheres, HPE is generally classified
into four main subtypes: alobar, semilobar, lobar, middle
interhemispheric (Solomon et al., 2010), together with a new
classification called septopreoptic variant (Hahn et al., 2010). In
alobar HPE, the lateral and third ventricles are completely fused,
resulting in the absence of midline separation between cerebral
hemispheres. Semilobar HPE occurs when the interhemispheric
fissure, or the dividing line between left and right side of the
brain, is only present posteriorly. In the less severe lobar HPE,
the cerebral hemispheres are mostly divided except for the
rostral portion of the frontal cortex. Meanwhile, the middle
interhemispheric variant of HPE is characterized by the presence
of interhemispheric fissure only in the anterior and posterior part
of the brain, which results in medial cerebral hemispheres fusion.
Lastly, the septopreoptic variant is considered the mildest form
of HPE, with fusions only present in the septal and/or preoptic
regions of the brain (Petryk et al., 2015). In clinical settings, many
patients with HPE fall within the border zone of neighboring
subtypes, and thus HPE is postulated to exist as a continuum
of phenotypes rather than discrete subtypes (Hahn and Barnes,
2010).

The pathogenesis of HPE is complex and involves both
genetic causes and environmental risk factors. HPE occurs
due to defective development of the axial midline, which
is largely orchestrated by Sonic hedgehog (SHH), BMP,

FGF, WNT, Nodal, and retinoic acid signaling pathways
(Grinblat and Lipinski, 2019). SHH signaling from the
ventral midline is especially crucial for the outgrowth and
patterning of developing brain. During embryogenesis, the
brain is partitioned into prosencephalon, mesencephalon, and
rhombencephalon (Figure 1B). While all three regions undergo
further compartmentalization, the most relevant region in HPE
pathogenesis is the prosencephalon or forebrain, which is further
divided anteriorly into the telencephalon and posteriorly into
the diencephalon. Unlike TCS, the craniofacial phenotypes
associated with HPE do not come primarily from excessive
apoptosis within the neural tube but instead are consequences
of the molecular reprogramming of SHH signaling activity
(Cordero et al., 2004; Richbourg et al., 2020). Nonetheless,
apoptosis within cranial NCC due to aberrant Shh signaling can
add to the severity of HPE (Cordero et al., 2004).

SHH plays a key role in coordinating dorsoventral polarity
of the forebrain by establishing ventral identity in the neural
tube during early embryogenesis (Ericson et al., 1995). Hedgehog
(HH) proteins undergo lipid modifications and are anchored to
the membrane of the producing cells prior to secretion. After
being released from the cell membrane by Dispatched (DISP1),
HH then binds to its receptor PTCH, which subsequently relieves
the inhibition of SMO facilitating signaling through the GLI
protein family (Burke et al., 1999; Ruiz and Altaba, 1999; Denef
et al., 2000). Other HH-binding proteins, such as BOC, CDO, and
GAS1 may act as co-receptors to enhance SHH signaling activity
(Tenzen et al., 2006; Allen et al., 2007). Considering the central
role that SHH signaling plays during midfacial development, it
is perhaps unsurprising that mutations in SHH loci are the most
common genetic cause of HPE in humans (Roessler et al., 2018).
However, individuals with SHH mutations display incomplete
penetrance, with only about 37% of carriers actually developing
HPE (Roessler et al., 1996). Similarly, mutations in other SHH-
related genes such as GLI2 and ZIC2 lead to HPE with variable
severity. This indicates that haploinsufficiency for the respective
genes alone is insufficient to elicit the full spectrum of HPE
phenotypes (Petryk et al., 2015).
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The variable severity of HPE may be associated with the
time at which HH signaling is disrupted (Cohen, 2006), or a
dose-dependent decrease in signaling activity. In 1908, anatomist
Harris Wilder postulated the “Morphology of Cosmobia” where
he speculated that a spectrum of symmetrical anomalies of the
face was due to “some modification in the germ itself, leading
the organisms to develop in accordance with laws as definite
and natural, though not as usual, as those governing normal
development” (Wilder, 1908). This spectrum of facial anomalies
in effect corresponds to a gradient of Shh signaling activity, where
elimination or a significant reduction in Shh signaling leads to
cyclopia, a severe form of HPE characterized by a single median
eye and proboscis, while in contrast, increased Shh signaling can
result in facial duplication (Wilder, 1908; Figure 3). In support of
this idea, work in chick embryos has shown that varying the level
of Shh signaling affects the induction and spatial organization
of the frontonasal ectodermal zone (FEZ) (Cordero et al., 2004),
and alters dorsoventral patterning of the forebrain (Brugmann
et al., 2010), each of which results in significant changes in
facial appearance.

Animal models provide evidence for a functional threshold
level of Shh signaling below which HPE phenotypes are
always severe. In mice, homozygous mutation of Shh results
in cyclopia and proboscis, leading to embryonic lethality,
whereas Shh heterozygous mice are morphologically normal
(Chiang et al., 1996). Genetic background also has a major
effect on the penetrance of HPE phenotypes in mice. For
instance, a homozygous mutation of Cdo on a 129S6/SvEvTac
background results in mild facial microforms of HPE, whereas
on a C57BL/6NTac background results in phenotypes similar to
semilobar HPE (Chiang et al., 1996). Other intrinsic signaling
pathways affecting the level of Shh expression may also contribute

to HPE phenotypic variation. For example, mutations of Tgif,
which maintains the balance between Shh and its antagonist
Gli3 (Taniguchi et al., 2012), result in a more severe HPE
phenotype when coupled with Shh haploinsufficiency compared
to phenotypes from individual mutations alone (Chiang et al.,
1996). Tgif protein can bind to a retinoic acid response element
(RARE) in Cyp26a1, which plays a critical role in anterior-
posterior patterning of the forebrain through the degradation
of retinoic acid (Gongal and Waskiewicz, 2008). Sub-teratogenic
doses of retinoic acid, which are often prescribed to treat
skin conditions, thereby sensitize embryos to Tgif mutations
(Bartholin et al., 2006). This supports the notion of a Shh
threshold, where any additional stress, be it from genetic factors
or the environment, can lower Shh expression below the level at
which HPE always manifests (Bartholin et al., 2006).

Major environmental risk factors implicated in human HPE
include maternal diabetes and ethanol exposure, which converge
on SHH signaling. Around 1–2% of infants born from diabetic
mothers develop HPE and women with gestational diabetes have
twice the risk for HPE compared to control mothers (Petryk
et al., 2015). Maternal hyperglycemia can disrupt the oxidant-
antioxidant balance in the embryos and increase oxidative
stress, increasing the severity of HPE (Zhao and Reece, 2005;
Figure 3). Similarly, ethanol exposure impairs Shh expression and
causes defects in midline development. Ethanol activates PKA,
a negative regulator of Shh signaling, in the anterior prechordal
mesendoderm during midline specification, and subsequently
induces apoptosis (Lepage et al., 1995; Pan and Rubin, 1995;
Hammerschmidt et al., 1996; Ahlgren and Bronner-Fraser, 1999;
Aoto et al., 2008). Both ethanol-induced cranial neural crest
cell death and associated craniofacial growth defects can be
rescued by exogenous Shh, suggesting that craniofacial anomalies

FIGURE 3 | Environmental factors can affect SHH signaling. Oxidative stress and epigenetic modification can alter the levels of SHH signaling. Over-activation of
SHH results in widening of the midline, leading to phenotypes such as hypertelorism and diprosopus, or facial duplication. Conversely, suppression of SHH signaling
results in narrowing of the midline, leading to hypotelorism and cyclopia, phenotypes that are commonly associated with holoprosencephaly.
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resulting from fetal alcohol exposure are caused at least partially
by loss of Shh and its effects on neural crest cell survival (Ahlgren
et al., 2002). In addition, dietary antioxidant supplementation
can prevent the abolition of Shh expression as well as apoptosis
in a dose-dependent manner. This indicates that oxidative stress
can downregulate Shh expression and may contribute to the
phenotypic variability observed in SHH heterozygous patients
(Aoto et al., 2008). More recently, ethanol was shown to synergize
directly with Cdo mutations to suppress Shh expression and elicit
severe HPE on a 129S6 background, which would otherwise only
exhibit a mild phenotype (Hong and Krauss, 2017). Interestingly,
antioxidant treatment did not alter the frequency or severity
of HPE phenotypes in these mice despite normalization of
ROS levels. These conflicting results suggest that ethanol’s
teratogenicity may occur via multiple mechanisms depending on
the genetic background and developmental context.

With respect to the HPE continuum, a functional ceiling is
likely to exist where Shh signaling above a certain level can
induce replication stress and DNA damage. Consistent with this
idea, overexpression of the Shh co-receptor gene BOC results
in elevated Shh-induced replication stress and DNA damage,
which increases the incidence of Ptch loss-of-heterozygosity,
leading to constitutive activation of Shh signaling (Mille et al.,
2014). It is well-known that Ptch gain-of-function can cause
HPE due to ventralization of the neural tube and incorrect
specification of the forebrain (Goodrich et al., 1999; Mullor
and Guerrero, 2000), however, it has yet to be determined
whether rescuing DNA damage can ameliorate the effect of
Shh over-activation in this case. Aside from replication stress,
mutations resulting in excessive Shh signaling lead directly
to increased proliferation of neural crest cells, which can
manifest as hypertelorism and frontonasal dysplasia (Mille et al.,
2014). Furthermore, mouse embryos derived from dams with
streptozotocin-induced diabetes exhibit expanded Shh expression
in the ventral telencephalon, which leads to a phenotype similar
to the middle interhemispheric variant of HPE (Brugmann et al.,
2010). Taken together, the variable expressivity of similar HPE
gene mutations can be attributed to co-morbid genetic interactors
and environmental modifiers.

DIABETES, OXIDATIVE STRESS AND
DNA DAMAGE AFFECT CRANIOFACIAL
DEVELOPMENT AND MODULATE
PHENOTYPE VARIBILITY IN
CRANIOFACIAL SYNDROMES

Hyperglycemia in Diabetic Pregnancy
Alters Cellular Metabolism and Increases
Oxidative Stress
Maternal diabetes involves systemic metabolic changes which can
affect virtually any organ system, but the craniofacial, central
nervous system and cardiovascular structures are primarily
affected (Becerra et al., 1990). These diabetic pregnancy-induced
malformations, collectively termed diabetic embryopathy, are

thought to arise due to defects in neurulation and neural
crest cell development during the early stages of organogenesis,
which corresponds to approximately the first 8 weeks of human
gestation (Mills et al., 1979; Li et al., 2005; Fetita et al., 2006;
Loeken, 2006). The prevalence for women with either type 1
or type 2 diabetes to be at high risk for giving birth to babies
with diabetic embryopathy (Towner et al., 1995), suggests a
fundamental causal role for hyperglycemia and increased glucose
uptake to the embryo via glucose transporters (Loeken, 2020).

Excessive glucose metabolism increases oxidative
phosphorylation (OXPHOS) and the production of reactive
oxygen species (ROS), which induces a state of oxidative stress
if not balanced by increased antioxidant capacity (Wentzel and
Eriksson, 2011; Kim et al., 2017; Loeken, 2020). Intracellular ROS
such as superoxide (O−2 ) is primarily produced via the oxidation
of NADPH or by the partial reduction of oxygen during aerobic
respiration in mitochondria. Superoxide can be converted into
hydrogen peroxide (H2O2) by superoxide dismutases, which
then either oxidizes cysteine residues on proteins or becomes
converted to H2O by cellular antioxidant proteins such as
catalase, glutathione peroxidase or peroxiredoxins. If high
levels of H2O2 levels go unchecked, hydroxyl radicals (OH−)
will form and this can result in molecular, cellular, and tissue
damage during embryogenesis (Jones and Sies, 2015). However,
increased oxidant status is complex, involving a combination of
increased superoxide production as well as impaired free radical
scavenging, although the pathways responsible for increased
oxidant status have not been completely elucidated. Interestingly,
early embryonic development is especially vulnerable to oxidative
stress due to the lack of free radical scavenging enzymes activity
(El-hage and Singh, 1990). In fact, premigratory and migratory
NCC appear to be particularly at risk of free radical damage
since they are deficient in superoxide dismutase and catalase
activity, which are necessary for the normal inactivation of
superoxide, hydrogen peroxide and hydroxyl radicals (Davis
et al., 1990; Chen and Sulik, 1996). This is consistent with
the neuroepithelium from which NCC originate, existing in
a highly oxidative state and being particularly sensitive to
exogenous oxidative stress (Sakai et al., 2016), thus indicating
that cranial NCC possess lower tolerance to the detrimental effect
of increased ROS.

High glucose metabolism in NCC may be attributable to
their rapid proliferation and motile nature, reminiscent of
the Warburg effect in cancer metastasis (Warburg, 1956).
Actively dividing cells favor glucose metabolism through
aerobic glycolysis to produce biomass. In contrast, terminally
differentiated cells rely on OXPHOS to generate energy more
efficiently from glucose (Warburg, 1956). Cellular glucose
metabolism thus alternates between aerobic glycolysis and
OXPHOS depending on the stage of development. During
EMT, neural crest cells undergo similar cytoskeletal and
molecular changes observed in metastatic tumor cells where
aerobic glycolysis is increased to serve the anabolic demand
of proliferation. Enhanced aerobic glycolysis promotes the
Yap/Tead pathway that is necessary for cell delamination during
EMT (Bhattacharya et al., 2020). Conversely, the decay of
glycolytic activity and increased OXPHOS correlate with the
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loss of mesenchymal motility (Warburg, 1956), suggesting that
hyperglycemia may accelerate the differentiation of neural crest-
derived tissues through preferential switching to OXPHOS.
Additionally, hyperglycemia-induced oxidative stress leads to
the oxidation of cholesterol, lipids, and proteins, which have
been proposed to contribute to the pathology of Smith-
Lemli-Opitz syndrome (Richards et al., 2006) and thus may
add to the phenotypic variability of HPE. Since proper Shh
gradient formation is dependent upon cholesterol modification,
oxidation of cholesterol can directly impact Shh signaling
and impair neural tube patterning (Guerrero and Chiang,
2007; Porter and Herman, 2011). More studies are still
needed to understand whether untimely switching to OXPHOS
and increased cholesterol oxidation contribute to increased
risk of craniofacial malformation or variation in craniofacial
development. However, it is clear that improper fluctuations of
glucose metabolism in diabetic embryopathy can adversely affect
NCC EMT and migration as well as neural tube patterning,
resulting in craniofacial malformations.

Hyperglycemia-Induced Oxidative Stress
Leads to Epigenetic Modifications and
Altered Gene Expression
One of the negative effects of excess ROS is that it can
disrupt key signaling events during cellular differentiation,
resulting in structural abnormalities (Kemp et al., 2008). In
fact, many developmental genes exhibit specific sensitivities to
hyperglycemic conditions and changes in the cellular redox state
(Fetita et al., 2006; Wu et al., 2012). This may be due in part to
the presence of binding sites for transcription factors involved in
response to oxidative stress in their promoters (Pavlinkova et al.,
2009). These genes which were identified under the conditions
of maternal diabetes, and in the absence of genetic alterations,
are therefore subject to gene-environment interactions in their
response to the intrauterine environment of a diabetic pregnancy.
Further evidence indicates that environmental factors can
perturb gene regulation, which may affect gene dosage variability
in individuals from different genetic backgrounds (Phelan et al.,
1997). For instance, both diabetes and oxidative stress can impair
Shh signaling by increasing or reducing Shh expression, which
leads to defects in neural tube patterning (Pavlinkova et al., 2009).
Furthermore, maternal diabetes increases the overall variability
of gene expression levels in embryos, including deregulation of
genes involved in Wnt, Hedgehog, and Notch signaling (Salbaum
and Kappen, 2010). Additionally, diabetes-induced oxidative
stress results in reduced expression of Pax3, which plays a major
role in neuroepithelial development (Pavlinkova et al., 2009;
Salbaum and Kappen, 2010). Pax3 loss-of-function results in
aberrant p53 activation, neuroepithelium and neural crest cell
apoptosis, and consequently neural tube defects (Liao et al., 2004;
Aoto et al., 2008) as well as malformation of structures derived
from neural crest cells (Loeken, 2006; Wu et al., 2012).

Epigenetic factors, such as DNA methylation and histone
modification, may also contribute to this variability through
gene silencing or aberrant activation. In fact, hyperglycemia and
oxidative stress were shown to trigger chromatin modifications

via histone and DNA methylation. Mouse neural stem cells
derived from the embryos of diabetic mothers exhibit increased
global histone H3K9 trimethylation and DNA methylation, as
well as decreased histone H3K9 acetylation which leads to altered
miRNA expression (Shyamasundar et al., 2013; Ramya et al.,
2017). Alteration of miRNA activity can impair autophagy and
lead to neural tube defects such as exencephaly (Xu et al., 2013;
Wang et al., 2017). The same phenomena were also observed in
human neural progenitor cells in which high glucose modifies
the DNA methylation pattern of neurodevelopment-associated
genes, hence affecting their activity (Kandilya et al., 2020).
These findings suggest that hyperglycemia can interact with
genetic loci by influencing the activities of histone-modifying
and DNA methyltransferase enzymes. Indeed, increased activity
of DNA methyltransferase 3b (Dnmt3b) in mouse embryos
and embryonic stem cells (mESC) of diabetic mothers result
in decreased methylation of Pax3 CpG island, which leads to
silencing of Pax3 (Wei and Loeken, 2014). More importantly,
Tcof1 and Cdo were shown to be deregulated in hyperglycemic
embryos (Salbaum and Kappen, 2010), indicating that maternal
diabetes may exacerbate TCS and HPE phenotypes by directly
lowering Tcof1 and Cdo expression even further. It has yet
to be determined what epigenetic modification occurs within
Tcof1 and Cdo CpG islands, however, hyperglycemia-induced
epigenetic modifications potentially underlie gene expression
variability in Tcof1+/− or Cdo−/− mutant mice on different
genetic background, which may correlate with phenotypic
variability in TCS and HPE.

A Potential Role for DNA Damage in
Craniofacial Development
The rapid and sustained proliferation of premigratory and
migratory NCC results in naturally high levels of ROS, which if
left unchecked can lead to genotoxic stress in the form of DNA
damage (Sakai and Trainor, 2016; Sakai et al., 2016). Newborns
from mothers with diabetes exhibit elevated levels of 8-OHdG,
which is a widely used marker for oxidative nucleotide damage
(Gelaleti et al., 2015; Castilla-Peon et al., 2019), and suggests
that hyperglycemia can induce DNA damage. In support of
this idea, analysis of neurulation-stage mouse embryos showed
that hyperglycemia increases the DNA damage marker p-H2AX,
which can be suppressed by overexpression of antioxidant SOD1
both in vitro and in vivo. This indicates that the hyperglycemic
environment triggers DNA damage and the DNA damage
response (DDR) pathway through oxidative stress (Dong et al.,
2015).

NCC-derived tissues seem to be particularly sensitive to DNA
damage accumulation due to the lower antioxidant capacity and
higher level of ROS in the neuroepithelium and progenitor NCC.
Global treatment of mouse embryos with the mitochondrial
inhibitor 3-nitropropionic acid induces ROS over-production,
resulting in elevated levels of DNA damage specifically within
the neuroepithelium (Sakai and Trainor, 2016; Sakai et al., 2016).
Although ubiquitously expressed and central to cell survival, the
localized endogenous spatiotemporal generation of ROS could
render the effects of mutations in DDR genes more significant in
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NCC-derived tissues compared to other tissues. This is evident
from the phenotypes of mutations in BRCA1, MRE11, RAD50
and NBS1 in humans and in mouse models. Mutations affecting
the MRE11-RAD50-NBS1 (MRN) protein complex are known to
cause craniofacial anomalies (Chrzanowska et al., 2001; Fernet
et al., 2005; Waltes et al., 2009). The MRN complex functions as
a DNA damage sensor by recognizing and binding to the broken
ends of DNA (Assenmacher and Hopfner, 2004; Paull and Lee,
2005; Stracker and Petrini, 2011) and thus regulates initial and
sustained responses to DNA damage. Hypomorphic mutations
in NBS1 are associated with Nijmegen breakage syndrome (NBS),
which is characterized by distinct facial features including a small
lower jaw (Chrzanowska et al., 2012). Similarly, mutations in
MRE11 have also been shown to underlie craniofacial anomalies
such as a small lower jaw, together with microcephaly as part of
the rare Ataxia Telangiectasia-like disorder (Matsumoto et al.,
2011). Developmentally, these phenotypes are thought to arise
in part through extensive neuroepithelial apoptosis (Kobayashi
et al., 2004; McKinnon, 2012), and consistent with these
observations in humans, neural stem cell-specific conditional
deletion of Nbs1 and Mre11 in mouse embryos results in
microcephaly (Frappart et al., 2005).

Further support for the importance of DNA damage repair
in neural crest cell and craniofacial development can be found
in BRCA1, a tumor suppressor and a key player in the
DNA damage response through its central role in homologous
recombination (Frappart et al., 2005). BRCA1 dysregulation is
associated with non-syndromic cleft lip and palate, which is one
of the most common human craniofacial defects (Kobayashi
et al., 2013). Knockout of Brca1 in mouse embryos results
in extensive neuroepithelial cell apoptosis during the early
stages of craniofacial development (Gowen et al., 1996; Hakem
et al., 1996; Liu et al., 1996). Conditional deletion of Brca1
in NCC in mouse embryos manifests in hypoplastic jaws, cleft
palate, and microcephaly. NCC-derived osteogenic progenitors
exhibited increased levels of γ-H2AX and p53 activation, which
subsequently led to their apoptosis, resulting in cranioskeletal
hypoplasia. Interestingly, the loss of Brca1 did not affect
osteogenic differentiation, indicating that Brca1-mediated DNA
damage repair is critically required for osteoprogenitor survival
during craniofacial development (Kitami et al., 2018; Yamaguchi
et al., 2021).

These findings illustrate the importance of maintaining
genome integrity during NCC development and help to account
for why disruptions in a central process such as the DNA damage
response can result in tissue-specific developmental defects.
Given that the neuroepithelium exists naturally in a highly
oxidative state, which lowers its threshold for oxidative stress-
induced p53 activation compared to other tissues (Sakai et al.,
2016), suppressing p53 function should in theory offer an avenue
for the prevention of some craniofacial malformations. Indeed,
both pharmacological and genetic inhibition of p53 function
can decrease neuroepithelial apoptosis and rescue animal models
of TCS (Jones et al., 2008), open neural tube defects (Pani
et al., 2002), and HPE (Billington et al., 2011). Preventing
p53 activation through maintenance of proper physiological
levels of ROS can therefore help avoid the detrimental effects

of DNA damage. In support of this idea, NAC antioxidant
supplementation ameliorated the TCS phenotype in Tcof1+/−

mouse embryos via the diminishment of γ-H2AX, p-Chk2,
and p53 (Sakai et al., 2016). Similarly, several studies have
shown that administration of antioxidants, particularly vitamins
C or E, or overexpression of superoxide dismutase reduce the
incidence of developmental defects in experimental models of
intrauterine diabetes and hyperglycemia (Aoto et al., 2008).
Taken together, these data reveal the importance of redox
homeostasis for proper developmental signaling and cell viability.
Redox homeostasis is maintained through a fine balance between
oxidants and antioxidants and when an imbalance occurs
prolonged oxidative stress can induce genotoxic stress in the
form of DNA strand breaks. Maternal diabetes, smoking and
alcohol consumption during pregnancy are all factors known
to increase maternal ROS levels, which can be damaging
to the genomic DNA of embryos (Ornoy, 2007). Thus in
the absence of key pathways for detoxifying ROS or DNA
damage repair, persistent hyperglycemia-induced oxidative stress
can have embryopathic consequences (Wells et al., 2010) or
exacerbate the phenotypic severity caused by a particular genetic
mutation (Figure 4). Although the full extent of oxidative stress-
induced DNA damage remains to be elucidated, multiple studies
have indicated that insufficient DNA damage repair capacity,
particularly within premigratory and migratory neural crest
cells, can lead to craniofacial malformations (Ornoy, 2007).
More importantly, this suggests that oxidative stress-induced
DNA damage can underpin gene-environment interactions and
influence the variable phenotypic severity observed in many
craniofacial disorders and syndromes.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

The anatomical complexity of the craniofacial complex coupled
with the initiation of its development during early embryogenesis
renders the head and face prone to malformation. One of
the biggest clinical challenges in craniofacial biology is the
frequent lack of accurate genotype-phenotype correlation. This
illustrates the need for more detailed quantitative phenotyping
to accurately capture the full spectrum of variation for an
individual craniofacial syndrome, but it also implies that both
genetic and environmental factors contribute to the etiology
and pathogeneses of craniofacial anomalies. One of the biggest
risk factors for increased severity in craniofacial disorders is
maternal diabetes (Ewart-Toland et al., 2000; Chappell et al.,
2009). Hyperglycemia, which is the hallmark of diabetes, disrupts
cellular metabolism, induces over-production of reactive oxygen
species (ROS), and dysregulates genes involved in craniofacial
development. We postulate that the detrimental effect of any
candidate mutation causing a craniofacial anomaly will be
amplified by oxidative stress-induced DNA damage in the
neuroepithelium and NCC (Figure 4). TCS is a prime example
of this synergistic interaction. Haploinsufficiency of Tcof1 not
only disrupts rDNA transcription and ribosome biogenesis,
which activates p53 thereby diminishing NCC proliferation
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FIGURE 4 | Proposed mechanism of oxidative stress contribution to phenotypic variability in craniofacial anomalies. ROS is a natural byproduct of cellular
metabolism which can be scavenged by antioxidant enzymes, and ROS-induced DNA damage within normal levels can be repaired by the DDR machinery.
However, continuous exogenous or environmental oxidative stress can overwhelm antioxidant enzymes and DDR capacity, leaving some ROS-induced DNA damage
unrepaired. This unrepaired DNA damage can compound the detrimental effects of genetic mutations associated with craniofacial malformations.

and survival, but haploinsufficiency of Tcof1 also perturbs the
DNA damage response and affects the ability of Tcof1+/−

embryos to survive under endogenously high levels of oxidation
(Dixon et al., 2006; Jones et al., 2008; Sakai et al., 2016).
This demonstrates that DNA damage-inducing stress in the
gestational environment, such as in the case of maternal diabetes
and alcohol exposure, or modifier mutations in DNA damage
response and repair genes could therefore affect phenotypic
variability and compound TCS severity.

Although the complete mechanisms underpinning the
teratogenic effects of maternal diabetes during pregnancy
on development are not yet fully understood, it is clear
that diabetes-induced oxidative stress, and oxidative stress-
induced DNA damage, impacts neuroepithelial and neural
crest cell survival and patterning, resulting in significant
craniofacial dysmorphogenesis (Aoto et al., 2008). Optimizing
maternal metabolic control in the first trimester of gestation
during which neurulation and neural crest cell formation
and migration occur is therefore critical for protecting
newborns against oxidative damage and to ensure normal
craniofacial morphogenesis. Suppression of p53-dependent
apoptosis appears to be key in preventing many craniofacial
anomalies by ensuring survival of neural crest cells throughout
development. Although promising, inhibition of p53 poses an

unacceptably high risk due to its role as a tumor suppressor.
Thus, circumventing p53 activation by maintaining the correct
physiological levels of oxidation is a potential avenue for
preventing or reducing the severity of craniofacial anomalies.
It is important to note however, that lowering ROS too far
can pose a cytostatic risk where neural crest cells may not
fully grow or differentiate, as well as increase the risk for
immunosuppression within the embryo. It is also important
to keep in mind that the nature of gene interactions with
oxidative stress may differ according to their temporal, spatial,
and biochemical context. To date, antioxidant supplementation
has only been performed successfully in animal models of
craniofacial disorders. Further investigation is needed to
elucidate the appropriate dosage, time of administration,
and side effects of antioxidant treatment as a viable means
for preventing craniofacial anomalies in a clinical setting.
Nonetheless, new studies should more extensively investigate
the diagnostic and therapeutic value of various oxidative stress
biomarkers and antioxidants to reduce oxidative tissue injury to
developing newborns. Since phenotypes are frequently affected
by gene-environment interactions, examining Quantitative
Trait Loci using genetically diverse backgrounds under different
environmental conditions may be beneficial for identifying such
interactions. Using genome wide association studies (GWAS) to
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identify gene-environment interaction can also be advantageous
for identifying high-risk subjects and improving the diagnosis of
complex craniofacial diseases.
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