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Studies of tissue-specific epigenomes have revealed 5-hydroxymethylcytosine (5hmC)
to be a highly enriched and dynamic DNA modification in the metazoan nervous system,
inspiring interest in the function of this epigenetic mark in neurodevelopment and
brain function. 5hmC is generated by oxidation of 5-methylcytosine (5mC), a process
catalyzed by the ten–eleven translocation (TET) enzymes. 5hmC serves not only as an
intermediate in DNA demethylation but also as a stable epigenetic mark. Here, we review
the known functions of 5hmC and TET enzymes in neural progenitor cell biology and
embryonic and postnatal neurogenesis. We also discuss how TET enzymes and 5hmC
regulate neuronal activity and brain function and highlight their implications in human
neurodevelopmental and neurodegenerative disorders. Finally, we present outstanding
questions in the field and envision new research directions into the roles of 5hmC and
TET enzymes in neurodevelopment.

Keywords: TET enzymes, 5-hydroxymethylcytosine, neural progenitor cells, neurogenesis, neurodevelopmental
disorders, epigenetics

INTRODUCTION

Precise temporal and spatial control of gene expression is essential for metazoan neurogenesis. This
is achieved, in part, by reversible covalent modifications of DNA and histones which influence
the accessibility and recruitment of transcription factors to target genes. Methylation of the 5-
position carbon of cytosine (5mC) is one DNA modification influencing the transcriptional state
of chromatin. DNA methylation is largely believed to be a suppressive mark achieved by de novo
methyltransferases DNMT3A/B and maintained by maintenance methyltransferase DNMT1 (Wu
and Zhang, 2014). In 2009, the discovery that ten-eleven translocation (TET) proteins (TET1,
TET2, and TET3) are dioxygenases capable of oxidizing 5mC to 5-hydroxymethylcytosine (5hmC)
(Tahiliani et al., 2009) ushered in interest to study this modified base not only as an intermediate
in DNA demethylation but also as a novel epigenetic mark. Oxidation of 5mC to 5hmC by
TETs facilitates passive and active DNA demethylation (Tahiliani et al., 2009; Ito et al., 2011;
Wu and Zhang, 2014), the latter via iterative conversion of 5hmC to 5-formylcytosine (5fC) and
5-carboxylcytosine (5caC) and subsequent removal by DNA glycosylases and the base excision
repair pathway (He et al., 2011; Ito et al., 2011). In addition to being an intermediate in DNA
demethylation, 5hmC has been recognized as a stable epigenetic mark. This is supported by initial
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findings that 5hmC is enriched in Purkinje neurons (Kriaucionis
and Heintz, 2009), and subsequent studies confirming the
presence of 5hmC and the expression of TET enzymes across
many neural cell types and tissues (Globisch et al., 2010;
Szwagierczak et al., 2010; Ruzov et al., 2011; Mellen et al., 2012).
It has been demonstrated that 5hmC may persist for months
without turnover in the brain (Bachman et al., 2014), further
supporting a potential role for 5hmC as a bona fide epigenetic
mark with regulatory roles in the nervous system.

TET enzymes are required for mammalian development, as
loss of all three enzymes in embryonic stem cells compromises
differentiation (Dawlaty et al., 2014) and in mice leads to early
embryonic lethality due to gastrulation arrest (Dai et al., 2016).
Loss of TET3 leads to perinatal lethality (Gu et al., 2011),
though individual loss of TET1 and TET2 is compatible with
development of viable mice (Dawlaty et al., 2011; Li et al., 2011;
Moran-Crusio et al., 2011). Combined loss of TET1 and TET2
leads to partial perinatal lethality, with a subset of neonates
exhibiting exencephaly and other developmental abnormalities
(Dawlaty et al., 2013). Similarly, combined loss of TET1 and
TET3 leads to early developmental arrest and holoprosencephaly
(Kang et al., 2015). This phenotypic variability suggests potential
compensatory roles among TET paralogs. However, owing to the
early embryonic lethality of triple TET deficiency, the absolute
molecular and physiological requirements of TETs and 5hmC in
neurogenesis has not yet been well-defined.

Genomic Distribution of 5hmC in the
Brain
To understand the roles of 5hmC and TETs in regulation of
neural gene expression, several studies have mapped the genomic
distribution of 5hmC in various neural cell types and tissues
over the course of embryonic and postnatal development (Jin
et al., 2011; Szulwach et al., 2011; Khare et al., 2012; Hahn et al.,
2013; Lister et al., 2013). In the embryonic mouse cortex, 5hmC
levels increase as neural progenitor cells develop into mature
neurons (Hahn et al., 2013). Interestingly, this increase is not
necessarily accompanied by an increase in unmodified cytosine
levels, suggesting that 5hmC can be a stable epigenetic mark
in neurons and not merely a DNA demethylation intermediate
(Hahn et al., 2013). Consistent with the notion that 5hmC is
derived from 5mC, genomic regions in the fetal mouse brain that
are enriched for 5hmC also tend to be enriched for 5mC. Notably,
many of these regions become depleted of both marks in the adult
mouse (Lister et al., 2013), demonstrating that 5hmC facilitates
DNA demethylation in the developing brain.

5hmC levels increase in various mouse and human brain
tissues over the course of life (Szulwach et al., 2011), and may have
implications for neurodegenerative diseases. 5hmC is enriched
in gene bodies and promoters, depleted from intergenic regions
and transcription start sites, and is deposited at brain-specific
enhancers (Jin et al., 2011; Szulwach et al., 2011; Hahn et al., 2013;
Lister et al., 2013; Cui et al., 2020). The presence of 5hmC in gene
bodies is associated with increased gene expression, suggesting
that TET enzymes and 5hmC contribute to a transcriptionally
permissive state of chromatin in the brain (Jin et al., 2011;

Szulwach et al., 2011; Hahn et al., 2013; Lister et al., 2013).
5hmC also demarcates intron-exon boundaries in human brain
cells and marks constitutively expressed exons, suggesting a
potential role in control of splicing (Khare et al., 2012). Genes
with high levels of 5hmC, for example Syt1 and Nav2, belong
to functional categories critical for nervous system function,
such as synaptic transmission and neurogenesis (Khare et al.,
2012; Hahn et al., 2013). 5hmC is also associated with repetitive
elements as it is enriched at SINE and LTR elements in the
cerebellum and hippocampus, and depleted from LINE elements
in the cerebellum (Szulwach et al., 2011). Enrichment at SINE and
LTRs increases over postnatal life in the cerebellum (Szulwach
et al., 2011), indicating a possible role in regulation of repetitive
element activity in the brain. Indeed, Tet2/3 knockdown reverses
loss-of-Uhrf1-mediated increased DNA hydroxymethylation and
activation of IAP elements in NPCs (Ramesh et al., 2016).
Together, these observations support important roles for 5hmC
and TETs in mammalian neurogenesis and brain function.

Regulation of Neural Progenitor Cells
and Neurogenesis by TET Enzymes and
5hmC
Studies of embryonic stem cell (ESC) differentiation have
suggested a critical role for TET enzymes and 5hmC in neural
lineage commitment. Deficiency of all three TETs in ESCs
compromises pluripotency and Tet1/2/3 triple knockout (TKO)
ESCs fail to form neural pigmented epithelium in teratoma
assays, though they are able to form other neural tissue types
(Dawlaty et al., 2014). These cells fail to contribute to nervous
system structures when injected into wild type blastocysts to form
chimeras (Dawlaty et al., 2014). Consistently, Tet TKO mouse
embryos and ESCs differentiated toward the neural lineage
have reduced neuroectodermal and increased mesodermal gene
expression, in part due to failure to inhibit Wnt signaling (Li
et al., 2016). Likewise, TET TKO human ESCs exhibit aberrant
neuroectodermal gene expression when differentiated toward the
neural lineage and fail to demethylate the PAX6 promoter, a
transcription factor critical for neurodevelopment (Verma et al.,
2018). These studies support a requirement for TET enzymes
in the commitment of ESCs to a neural fate, an idea further
supported by studies of TET genes in ESC specification to
neural progenitor cells (NPCs). TET enzymes, in particular TET2,
regulate enhancer methylation during differentiation of ESCs
to NPCs (Hon et al., 2014). Though Tet2 knockout ESCs can
successfully differentiate into NPCs, these cells exhibit delayed
induction of neural gene expression programs accompanied
by enhancer hypermethylation and reduced histone H3 lysine
27 acetylation (Hon et al., 2014). This is in line with DNA
hypermethylation in the embryonic cerebral cortex of Tet2
knockout mice (Lister et al., 2013). TET3 plays a role in the
epigenetic regulation of NPC specification and maintenance of
cellular identity (Montibus et al., 2020; Santiago et al., 2020).
During differentiation of mouse ESCs to NPCs, the catalytic
activity of TET3 promotes expression of histone demethylase
Kdm6b, an epigenetic regulator critical for gene regulation during
neurogenesis (Montibus et al., 2020), and loss of TET3 promotes
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NPC apoptosis (Li T. et al., 2015). Knockdown of Tet3 in NPCs
promotes de-repression of pluripotency genes Oct4 and Nanog,
implicating TET3 in the maintenance of NPC identity (Santiago
et al., 2020). These studies implicate TETs in the epigenetic
regulation of NPC biology.

In adult NPCs, different TET paralogs have unique functions,
highlighting some non-redundant and context-specific roles.
Loss of TET2 increases the proliferation of adult NPCs
and reduces their differentiation into neurons and astrocytes
in vivo, indicating that TET2 promotes NPC differentiation
(Li et al., 2017). Deletion of Tet3 decreases NPC proliferation
in the subventricular zone of the mouse cortex and promotes
astrocytic differentiation, consistent with a role for TET3 in
maintaining NPC identity (Montalban-Loro et al., 2019). Tet1
knockout mice have fewer NPCs in the dentate gyrus of the
hippocampus and conditional deletion of Tet1 or Tet2 in
NPCs compromises hippocampal neurogenesis (Zhang et al.,
2013; Gontier et al., 2018). While most functions of TETs in
NPCs are attributed to their enzymatic activity (Zhang et al.,
2013; Li et al., 2017; Montibus et al., 2020), some functions
are independent of enzymatic activity, such as transcriptional
repression of the imprinted gene Snrnp by TET3 (Montalban-
Loro et al., 2019). Investigating these dual roles of TETs and
dissecting their requirements in NPC biology and neurogenesis
will be essential.

Although global or neural-specific loss of each Tet gene in
mice influences NPC biology, it does not block neurogenesis or
cause gross neuroanatomical defects (Rudenko et al., 2013; Zhang
et al., 2013). However, combined loss of TET1/2 and TET1/3
causes exencephaly and holoprosencephaly in some embryos,
respectively (Dawlaty et al., 2013; Kang et al., 2015) suggesting
redundancy between TETs in neurogenesis that warrants further
investigation. Findings from other organisms have also supported
a role for TET enzymes in embryonic neurogenesis. Xenopus
laevis embryos depleted of TET3 are microcephalic and eyeless
with deregulation of neurodevelopmental programs leading to
aberrant expression of neuronal, eye, neural crest, and sonic
hedgehog signaling genes (Xu et al., 2012). Moreover, tet2/3
mutant zebrafish exhibit abnormal brain and eye morphology (Li
C. et al., 2015) and impaied retinal neurogenesis, partly due to
overactive Notch and Wnt signaling (Seritrakul and Gross, 2017).
Aberrant expression of mesodermal genes was also observed in
tet2/3 mutant retinas (Seritrakul and Gross, 2017), a finding
similar to those in Tet1/2/3 knockout embryos (Li et al., 2016).
Importantly, TET enzymes mediate demethylation of conserved
developmental enhancers in brain during the phylotypic stage
of vertebrates, as demonstrated in zebrafish, Xenopus tropicalis,
and mouse (Bogdanovic et al., 2016). Together, these findings
support highly conserved and overlapping functions for TETs in
neurodevelopment.

Role of TET Enzymes and 5hmC in
Postnatal Brain and Mature Neuronal
Function
In addition to roles in regulation of NPC biology, TETs and
5hmC are important in postnatal neurodevelopment and mature

neurons. As previously mentioned, 5hmC accumulates over the
course of life (Szulwach et al., 2011). During development of
mouse olfactory bulb neurons, which occurs throughout life,
5hmC is enriched in neurons relative to immature cells and is
associated with increased neurodevelopmental gene expression
(Colquitt et al., 2013). Likewise, 5hmC increases over the course
of postnatal retinal maturation, and is enriched at neurogenesis
genes (Perera et al., 2015). In the cerebellum, 5hmC increases
during an important period of neuronal circuit formation, and
TET1 and TET3 are required for proper branching of granule
cell dendrites (Zhu et al., 2016). Chimeric Tet3 knockout mice
generated by injection of Tet3 sgRNAs in one cell of a two-
cell-stage embryo develop histologically normal cerebral cortices
composed of Tet3 wild type and knockout cells but exhibit
abnormal electrophysiology in recordings of excitatory and
inhibitory neurotransmission, suggesting that TET3 is required
for developmental synapse and circuit formation (Wang et al.,
2017). These studies implicate TETs in shaping the epigenetic
landscape during specification of mature neural cell types
after birth and in the development of higher order structures,
including neuronal circuits.

5hmC and TET enzymes have also been shown to be
highly dynamic within post-mitotic neurons. Cortical 5hmC has
cell-type specific distributions associated with differential gene
expression (Kozlenkov et al., 2018), and the ability of TETs to
promote active DNA demethylation and alter gene expression in
response to neuronal activity and to influence behavior has been
the subject of extensive study (Guo et al., 2011; Kaas et al., 2013;
Rudenko et al., 2013; Zhang et al., 2013; Li et al., 2014; Yu et al.,
2015). Tet1 expression is downregulated in response to neuronal
activity in hippocampus where it regulates spatial memory and
fear memory extinction (Guo et al., 2011; Kaas et al., 2013;
Rudenko et al., 2013; Zhang et al., 2013). Hippocampal neurons
upregulate Tet3 to initiate active DNA demethylation in response
to neuronal stimulation (Yu et al., 2015). In cortical neurons, Tet3
is upregulated during fear extinction learning and, like Tet1 in the
hippocampus, is required for fear memory extinction (Li et al.,
2014). Fear extinction learning is accompanied by Tet3-mediated
upregulation of the Gephyrin gene and a transcriptionally-
permissive reshaping of chromatin around this locus (Li et al.,
2014). Loss of Tet3 is sufficient to produce anxiety-like behaviors
in mice, partly due to increased expression of immediate early
genes like Npas4 (Antunes et al., 2020), a role that is opposite
to the anxiolytic and anti-depressant effects of Tet1 (Feng et al.,
2017). In general, the mechanistic basis by which TET enzymes
influence behavior is, in part, due to reshaping of neuronal 5mC
and 5hmC landscapes in response to activity. This remodeling of
the epigenome is required for proper expression of genes involved
in memory consolidation and synaptic function, such asBdnf and
Arc, and is sufficient to alter the electrophysiological properties of
neurons (Guo et al., 2011; Kaas et al., 2013; Rudenko et al., 2013;
Zhang et al., 2013; Li et al., 2014; Yu et al., 2015). In post-mitotic
cerebellar neurons, 5hmC dynamics can influence recruitment of
key gene regulatory factors. For example, 5hmC in gene bodies is
associated with reduced MeCP2 occupancy and increased gene
expression, possibly due to loss of MeCP2 repression (Mellen
et al., 2017). Of note, reduced MeCP2 occupancy is specifically
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associated with 5hmC at gene body CpG dinucleotides, whereas
5hmC at CpA sites flanking enhancers retains MeCP2 binding.
This highlights the ability of 5hmC to influence recruitment
of gene regulatory factors in a sequence-dependent manner
(Mellen et al., 2017). Moreover, findings that common MECP2
mutations in Rett syndrome disrupt MeCP2 binding to 5hmC
has implications for this mark in Rett syndrome pathogenesis
(Mellen et al., 2012; Brown et al., 2016). Together, these studies
propose crucial roles for 5hmC and TET enzymes in mature
neuronal function.

Implication of TET Enzymes and 5hmC in
Human Neurodevelopmental and
Neurodegenerative Disorders and
Addiction
Compelling evidence for the importance of TETs in
neurodevelopment and brain function is the identification
of TET gene mutations and alterations in 5hmC levels in
human neurodevelopmental and neurodegenerative disorders.
Mutations in TET3 were recently identified to underlie an
inherited syndrome of intellectual disability and craniofacial
abnormalities (Beck et al., 2020). While most mutations are in the
catalytic domain and are sufficient to impair enzymatic activity,
some are outside of this domain, and one mutation does not affect
catalytic activity (Beck et al., 2020), underscoring the importance
of TET3 catalytic and non-catalytic functions in human
neurodevelopment. Interestingly, the clinical characteristics of
patients with TET3 deficiency resemble those of patients with
Tatton-Brown-Rahman syndrome and Sotos syndrome, caused
by mutations in DNMT3A and NSD1, respectively (Kurotaki
et al., 2002; Tatton-Brown et al., 2014). This highlights the
general importance of DNA and histone methylation dynamics
in human craniofacial and neural development. Other TET
mutations have been observed in individuals with intellectual
disability. Mutations in TET1 were identified in consanguineous
Pakistani and Iranian families with familial intellectual disability
syndromes (Harripaul et al., 2018), and a germline TET2 variant
in an individual diagnosed with intellectual disability and delayed
verbal comprehension in the absence of any other known genetic
causes (Kaasinen et al., 2019). Together, these findings support an
important role for TETs in the etiology of neurodevelopmental
disorders and intellectual disability.

In addition TET enzymes and 5hmC are recurrently
dysregulated in neurodegenerative conditions and in aging
brain. Induced pluripotent stem cell-derived NPCs and neurons
from Alzheimer’s disease (AD) patients exhibit differential
hydroxymethylation at genes associated with neurodevelopment
and synaptic function, including at known AD susceptibility loci,
compared to cells derived from healthy controls (Fetahu et al.,
2019). Consistently, presumptive loss-of-function mutations in
TET2 have been identified in patients with early onset AD and
frontotemporal dementia (Cochran et al., 2020). Interestingly,
TET2 promotes proinflammatory gene expression in microglia
and TET2 expression is increased in microglia associated with
amyloid beta plaques in the brains of AD patients and mouse
models (Carrillo-Jimenez et al., 2019). Thus, the positive and

negative roles of TET2 in AD are likely specific to distinct stages
in clinical course and cell types. TET variants or dysregulation
have also been implicated in Parkinson’s disease (PD). TET1
mutations were reported in a Chinese cohort of PD patients
(Shu et al., 2019). Intriguingly, increased expression of TET2 and
increased 5hmC at neural enhancers is observed in prefrontal
cortex of patients with PD and Tet2 knockout mice are
protected from inflammatory damage to the substantia nigra
(Marshall et al., 2020). Conversely, Tet2 expression declines in
the hippocampus of aging mice and is associated with age-
related cognitive decline (Gontier et al., 2018). Remarkably,
restoration of hippocampal Tet2 expression by stereotactic
lentivirus injection is sufficient to improve cognitive function
in aged mice (Gontier et al., 2018). Moreover, recent findings
that TET1 and TET2 are required for axonal regeneration by
reprogramming factor expression highlights their potential as
therapeutic targets (Lu et al., 2020). These observations in
human disease and mouse models warrant further studies to
clarify the discordant roles of TET enzymes in the etiology of
neurodegenerative diseases and aging.

In addition to their roles in neurodevelopmental and
neurodegenerative disorders, TET enzymes are associated with
addictive behaviors in humans. TET1 expression is decreased in
the nucleus accumbens (NAc) of humans suffering from cocaine
addiction and cocaine administration to mice is sufficient to alter
5hmC at enhancers in NAc (Feng et al., 2015). Tet expression in
NAc is also responsive to methamphetamine administration in
rats (Jayanthi et al., 2018). Further work is necessary to clarify the
role of TETs in mediating addictive behaviors.

DISCUSSION

A dozen years since the discovery that TET enzymes promote
DNA hydroxylation and demethylation and the first studies
reporting the abundance of 5hmC in the mammalian nervous
system (Kriaucionis and Heintz, 2009; Tahiliani et al., 2009),
work in the field has shed some light on their functions in
neural physiology. TETs are dynamically expressed during
development and in particular during embryonic and adult
neurogenesis. 5hmC is a highly enriched mark in the brain and
its levels increase over the course of embryonic neurogenesis
and postnatal life where it is associated with neural gene
expression. TET enzymes are required for various aspects
of neurodevelopment, NPC biology, and neuronal activity.
Findings that 5hmC and TETs are dysregulated in human
neurodevelopmental and neurodegenerative disorders and
addiction open new frontiers for utilizing them in clinical
diagnostics and therapeutics. Despite this progress, several
fundamental questions remain unanswered. These pertain to:
(1) mechanisms of TET recruitment to target sites, (2) functional
redundancy between TET paralogs, (3) gene activation and
silencing by the dual enzymatic and non-enzymatic functions of
TET enzymes, (4) relevance of 5hmC readers and interactomes
of TETs in gene regulation, (5) re-establishment of 5hmC
upon active DNA demethylation at activity-dependent
genes in post-mitotic neurons, and (6) involvement of 5fC
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and 5caC, the other oxidized derivatives of 5mC, in DNA
demethylation and beyond.

It has been substantiated that increases in gene body 5hmC
is associated with activation of neural genes over the course of
development, but the mechanism by which 5hmC influences gene
expression remains incompletely understood. One possibility is
that 5hmC recruits specific factors to promote transcription, and
several groups have sought to identify such readers of 5hmC
(Yildirim et al., 2011; Mellen et al., 2012; Spruijt et al., 2013).
For example, MeCP2 binds 5hmC at neuronal genes to facilitate
transcription, a finding with implications in the pathogenesis
of Rett syndrome, where MECP2 is mutated and 5hmC levels
are altered (Mellen et al., 2012). Alternatively, evidence also
supports a role for MeCP2 and MBD2 in protecting 5mC from
conversion to 5hmC (Szulwach et al., 2011; Ludwig et al., 2017).
In addition, UHRF2 is a specific reader of 5hmC in NPCs while
THAP11 interacts with 5hmC in brain tissue (Spruijt et al.,
2013). The functions of these and other 5hmC readers, including
WDR76 and THY96, in the nervous system remain to be further
explored (Spruijt et al., 2013). In contrast, the observation
that elevated 5hmC levels may persist at genes after silencing
suggests that any factor recruitment by this mark is not sufficient
to maintain gene expression in the presence of antagonistic
or in the absence of agonistic transcriptional cues (Colquitt
et al., 2013). This would be consistent with a necessary but not
sufficient role for TET-mediated 5hmC deposition and DNA
demethylation for potent gene transcription (Baumann et al.,
2019). This could also indicate a requirement for higher-order
formation of 5fC and 5caC for transcription factor recruitment,
given the fact that a growing number of proteins bind 5fC
more specifically than 5hmC (Iurlaro et al., 2013). Additional
work is needed to substantiate a causal role for 5hmC in neural
gene regulation.

Although functional studies have defined important roles
for individual TETs in neural development and physiology, the
absolute requirements of these enzymes and 5hmC is not fully
established. This is in part due to the possible compensatory
effects of TETs in studies involving deletion of individual TET
genes. Leveraging conditional genetic systems for spatial and
temporal deletion of all three TET genes in specific cell types
may allow for identification of their novel functions in the
brain. While TET enzymes certainly influence gene expression
through their enzymatic functions, non-enzymatic activities of
these proteins involving formation and recruitment of chromatin
regulatory complexes have also been described (Chen et al., 2013;
Ito et al., 2019; Montalban-Loro et al., 2019). Further work
is necessary to fully elucidate protein-protein interactions by
which TETs influence transcription and chromatin state, such
as those between TET2 and FOXO3 in NPCs (Li et al., 2017)
and TET3 and NSD3 in mature neurons (Perera et al., 2015).
Comparison of the neural phenotypes associated with loss of
TET enzymes vs. loss of their enzymatic activity alone will help
dissect key enzymatic-dependent and independent functions of
TET proteins in the brain. Use of existing and development of
new Tet catalytic mutant mouse models will facilitate the in vivo
study of TET catalytic-independent functions. Furthermore, the
observation that loss of Tet in Drosophila results in aberrant brain
development and reduced RNA hydroxymethylation warrants
investigation into the role of TET-mediated RNA modifications
in mammalian brains (Delatte et al., 2016). In summary, as
illustrated in Figure 1, TET enzymes and 5hmC play crucial
roles in various aspects of neurobiology, from regulation of
NPCs and neurogenesis to adult brain function and human
diseases. Gaining further insights into their roles will enhance our
understanding of metazoan nervous system development and the
etiology of human neurological disorders.

FIGURE 1 | Overview of the multifaceted roles of TET enzymes and 5hmC in the epigenetic regulation of mamalian neurobiology.
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