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Studies have shown that the calcium-binding protein family S100 may play a role in the

development of pancreatic cancer (PC), but the role of S100A16 in PC is still unknown.

In this study, Oncomine was first used to detect the expression level and prognosis

of S100A16 in PC and other tumors. The results showed that S100A16 was highly

expressed in PC tissues compared with a normal pancreas, and the increased expression

level may be related to poor prognosis in PC patients. The TCGA and ICGC RNA-seq

data of PC patients were downloaded, and the S100A16-related differentially expressed

genome (DEGs) was defined by taking the intersection of two gene sets. The GO and

KEGG pathways were then analyzed. For clinical analysis, boxplots were depicted for

the correlation between clinical characteristics and S100A16 expression. Then Cox

regression was applied for exploring the prognostic value of S100A16 for PDAC patients.

Based on the Cox regression model, we further estabished a S100A16-related risk score

system to strengthen the ability to predict patients’ prognosis. After integrating the risk

score model and multiple clinicopathological factors, we finally established a nomogram

that could predict the survival time of patients. Moreover, Gene set enrichment the

effect of S100A16 expression differences on downstream biological processes. At last,

using TIMER, ImmuneCellAI and GSEA we analyzed the correlation between S100A16

and pancreatic cancer immune infiltration and predicted the response of patients to

checkpoint Blocker (ICB). In summary, S100A16 is involved in the occurrence and

development of PC, affecting the prognosis of patients, and may have potential reference

values for the immunotherapy of PC.

Keywords: S100A16, pancreatic adenocarcinoma, TCGA, prognosis, immune infiltration

INTRODUCTION

Pancreatic cancer (PC) is a kind of disease with an extremely high degree of malignancy (Tempero,
2019). Although progress in clinical drug therapy has been made, due to the interaction between
tumor cells and microenvironment, it is still highly resistant to radiotherapy and chemotherapy.
Moreover, PC is often difficult to diagnose at the early stages, but it is prone to exert earlymetastasis.
Generally speaking, the prognosis is still poor for PC patients (Vincent et al., 2011). Further research
on the driving genes of PC and the proteins in the tumor microenvironment that enhance the
interaction between invasion and metastasis will help guide the development of new treatment
methods, decipher treatment resistance, and predict andmonitor treatment response (Ligorio et al.,
2019).
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S100 proteins are a calcium-binding protein. Its molecular
structure consists of antiparallel homopolymers and
heterodimers. Each monomer is composed of two helical
loops connected by a hinge region (EF-1 and EF-2). S100
proteins are widely expressed in different organs and tissues. At
present, there are 25 known members in the S100 protein family
(Donato, 2001). These proteins play an important role in the
basic processes of cell proliferation, apoptosis, differentiation,
and inflammation through participating in a variety of different
pathways (Donato et al., 2017). Furthermore, its role in tumors
is also worth further attention. The function of S100 proteins in
breast cancer, lung cancer, and malignant melanoma has been
studied to a certain extent. The pathological signal of S100 can
also be observed in PC (Bresnick et al., 2015). S100A2, S100A4,
S100A8, S100A9, and S100A11 in the S100 family have been
found to be associated with the pathogenesis and invasion of PC
(Allgöwer et al., 2020). However, the effect of the S100 protein
family in PC needs to be further explored.

It has been reported that S100A16 is linked to obesity, type
2 diabetes, and inflammation through the calcium dependent
mechanism (Gonzalez et al., 2020). In addition, it has also
been found to be linked to a number of tumors, including
carcinoma of the urinary bladder, lung cancer, thyroid gland
cancer, ovarian cancer, and gastric cancer (Zhu et al., 2016;
Chen et al., 2018; Sun et al., 2018). S100A16 participates in
various signal adjustment pathways, such as extracellular signal-
regulated kinase, Notch, and nuclear factor kappa B pathways.
Research by Zhu et al. (2016) indicate that the overexpression of
S100A16 adjusts protein kinase transcription factors according
to Akt and extracellular data signals to promote the proliferation
and erosion of cancer cells. Despite a certain degree of
understanding, the exact biological function of S100A16 in PC
is still unclear. This article explores the role of S100A16 in PC

FIGURE 1 | The pipeline designed for this work. TCGA, The Cancer Genome Atlas, DEGs: differentially expressed gene; GO, gene ontology; KEGG, Kyoto

Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis.

through a bioinformatics analysis. The workflow chart is shown
in Figure 1.

RESULTS

The Expression of S100A16 Increased in
PDAC Tissues
According to the Oncomine database query, the analysis of
cancer and all normal comparisons, contains 265 different
scientific studies on S100A16. In these studies, four studies
on the up-regulation of S100A16 in PC were found, but no
down-regulation study was found, suggesting that S100A16 may
be up-regulated in PC. In addition, among the 158 multi-cancer
comparison studies, there were three studies in pancreatic
cancer that were significantly up-regulated. Apart from this,
there were 522 outlier studies, including one study on the up
regulation of S100A16 and two studies on the down regulation
of S100A16 (Figure 2A). Four studies involving the differential
expressions of S100A16 in the Oncomine database between
Pancreatic ductal adenocarcinoma (PDAC) and normal tissues
were screened (Figures 3A–D). A comprehensive analysis of
the four scientific studies that met the selection criteria showed
that the negative correlation level was 477.5, and the p-value
was 4.37e−4, indicating that compared with all normal tissues,
the expression level of S100A16 in pancreatic tumors increased
(Figure 2B, P < 0.01). In addition, in every scientific study, it
has also been found that S100A16 in pancreatic tumors is higher
than that in all normal tissues. To further clarify whether the
expression of S100A16 is different from that in other malignant
tumors, an analysis of cancer vs. cancer studies was carried
out. There are five scientific studies that meet the selection
criteria, with a negative correlation ranking of 917.0 and a
p-value of 1.05e−9 (Figure 4A). The data shows that S100A16
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FIGURE 2 | High expression of S100A16 in PC based on Oncomine. (A) In PC, S100A16 was significantly upregulated in four studies. Blue represents low

expression. Red represents high expression. The darker the color, the greater the significance. (B) Comparison of S100A16 expression across four analyses, and red

means high expression. P < 0.01.The tumor type represented by each number is shown in Supplementary Figure 1.

in pancreatic tumors is significantly higher than other types
of malignant tumors (Figures 4B–D). This result shows that
S100A16 is highly expressed in PDAC patients. It is likely to
play a key buffering role for S100A16 in the carcinogenesis and
development of pancreatic tumors. Pancreatic carcinoma and
adjacent normal pancreatic tissues from three patients were
collected and immunohistochemically assayed. Figure 5 shows
the S100A16 immunohistochemical results of one of the patients
and the S100A16 immunohistochemical results of another two
patients have been added to the Supplementary Material

(Figure 5 and Supplementary Figure 2). These results
confirmed the above conclusion that S100A16 was
highly expressed in pancreatic cancer tissues through a
database analysis.

Relationship Between S100A16 Expression
and Prognosis of Patients With PDAC
Screening GEPIA database information showed that
S100A16 expression was up-regulated in BLCA (Bladder
Urothelial Carcinoma), CESC (Cervical squamous cell
carcinoma and endocervical adenocarcinoma), COAD (Colon
adenocarcinoma), DLBC (Lymphoma Diffuse Large B Somatic
Lymphoma), GBM (Glioblastoma multiforme), LGG (Brain
Lower Grade Glioma), LUSC (Lung squamous cell carcinoma),
OV (Ovarian serous cystadenocarcinoma), PAAD (pancreatic
tumor), READ (Rectum adenocarcinoma), STAD (rectal
cancer), THYM (thymoma). The expression of S100A16 was
down-regulated in ACC (Adrenocortical carcinoma), ESCA
(Esophageal carcinoma), KICH (Kidney Chromophobe), PRAD

(Prostate adenocarcinoma), SKCM (Skin Cutaneous Melanoma),
and TGCT (Testicular Germ Cell Tumors) (Figure 6A). The
association between S100A16 expression and PDAC was further
elucidated, and the results were consistent with the above
Oncomine analysis (Figure 6B). In addition, the prognostic
analysis showed that high expression of S100A16 jeopardized
the disease-free survival and overall survival of PADC patients
(Figures 6C,D P < 0.05).

GO Analysis and KEGG Analysis of
Differentially Expressed Genes
Through differential expression gene analysis, a total of 1330
DEGs (|logFC|> 2, FDR < 0.05) were screened from TCGA
and ICGC cohorts of PDAC patients (Figure 7). The volcano
map was drawn according to the selected DEGs (Figures 8A,B.
Then, 71 intersected genes were selected, and GO analysis of
these genes showed that these DEGs were mainly concentrated
in the regulation of trans-synaptic signals, the regulation of
chemical synaptic transmission, and calcium homeostasis. The
Transporter Complex, Transmembrane Transporters Complex,
Presynapse, Serine hydrolase activity, Serine- type Peptidase
activity, Serine-type endopeptidase activity, etc. are shown in
Figures 8D–F.The analysis of the KEGG channel shows that the
DEGs are mainly concentrated in ways relating to human fat
digestion and absorption, protein digestion and absorption, and
pancreatic secretion, with the pathway that is associated with
pancreatic secretory function perhaps being the most important
(Figure 8C).
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FIGURE 3 | Expression level of S100A16 in each study based on Oncomine. (A) Pei pancreas, (B) Grutzmann Pancreas, (C) Badea Pancreas, (D) Buchholz

Pancreas, Top 10% refers to the top10% of genes; P < 0.01.

Clinical Correlation Between S100A16
Expression and Clinical Characteristics
Based on TCGA Data
Through the analysis of 182 TCGA specimens, it was found that
high or low expression of S100A16 was significantly correlated
with Primary tumor site, stage, and grade of PDAC (P < 0.05). It
has no obvious correlation with age, size, alcohol history, gender,
primary therapy Response, DM History, radiation therapy, and
lymphatic metastasis (Figure 9). Kaplan-Meier analysis showed
that patients in the high expression group of S100A16 had a
poor prognosis (Figure 10), which is also consistent with the
GEPIA analysis result. This result shows that S100A16 can
be used as an index value for the progress and prognosis of
pancreatic tumor patients, while the high expression of S100A16
is correlated with reduced survival time. Univariate COX analysis
was adopted to verify the above conjecture, and it was found
that S100A16 is a high-risk factor along with age, histological
classification, primary therapy response, and Radiation therapy
(HR = 1.647 95%CI = 1.24–2.189). However, when factors
related to the survival rate of patients, analyzed by univariate

COX regression analysis, were included into a multivariate COX
regression analysis, S100A16 (HR = 0.632; 95% CI = 0.383
1.044) was no longer correlated with the patient’s overall survival
(Table 1).

In the case where S100A16 could not predict prognosis in
a multivariate cox model, we established a prognostic model

by looking for prognostic molecules that are potentially related

to S100A16. As mentioned in the Methods section, we first

checked the expression correlation of all the genes detected
in the TCGA and ICGC datasets with S100A16. Genes that

possessed a Pearson correlation coefficient> 0.5 were considered
as S100A16 related genes. These related genes were then included

in the univariate Cox regression analysis. After these two steps,

a gene set consisting of 42 S100A16 related prognostic genes

was obtained. Wilcoxon signed-rank test was performed to
determine whether this gene set was related to the prognosis

of patients, and the results showed: Wilcoxon: P = 1.1E-7

(Figure 11A). To use as few genes as possible to achieve the
best prognostic prediction effect, the five most representative
genes, “SERPINB1”, “RAB27B”, “MGLL”, “ANKRD22”, and
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FIGURE 4 | Analysis of relationship between the S100A16 expression and the type of PC. (A) Comparison of S100A16 expression across five analyses, and red

means high expression. S100A16 expression in (B) Garnett cell Line, (C) Wanger cell line (D) Wooster cell line. The expression level is evaluated via the median line;

Top 10% refers to the top 10% of genes; P < 0.01.

FIGURE 5 | Immunohistochemistry of S100A16 in PC tissues and adjacent tissues.

“UCA1” were obtained by applying the LASSO regression
dimension reduction analysis. The risk score model was then
constructed for the five molecules obtained by LASSO along

with S100A16 using the algorithm mentioned in the Methods
section (Figures 11B–D). The established risk score model and
the aforementioned univariate cox regression factors related to
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FIGURE 6 | Relationship between S100A16 expression and prognosis of PC patients based on GEPIA database. (A) S100A16 was significantly upregulated in

various tumors, such as BLCA, CESC, COAD.DLBC, LGG,OV, PAAD, READ, and THYM. Expression level of S100A16 in PAAD in comparison with the normal control.

*P < 0.05. (B) The relationship between S100A16 expression levels and overall, in PDAC patients as analyzed by GEPIA database. (C) The relationship between

S100A16 expression levels and disease-free survival in PC patients as analyzed by GEPIA database and disease-free survival based on GEPIA database (D).

prognosis were then incorporated into the multivariate Cox
regression analysis again, and the results showed that the age
and the risk score we established (HR = 2.253; 95%CI =

2.0038–6.1318) were risk factors for low survival rate of PDAC
patients, while responding to primary therapy and the radiation
therapy received were protective factors (Table 1). ROC curve
then proved that this model had a good prediction ability, with
AUC= 0.728 (Figure 11E).

To better establish a predictive tool for quantitative analysis of
OS in PDAC patients in clinical work, we applied the risk score
model, combined with the elements of clinical characteristics
that were positive in the above multivariate cox model to
build a nomogram model (Figures 11F,G). This model further
illustrated the potential guiding role of the S100A16-related gene
risk score in PC patients.

GSEA Enrichment Analysis of S100A16
To further analyze the role of S100A16 in the pancreatic
tumor pathway, we divided the differentially expressed

genes into S100A16 high-expressed and low-expressed
subgroups and conducted a GSEA pathway enrichment
analysis. Then, according to its normalized enrichment
score, the signaling pathways with the most significant
enrichment when S100A16 is up-regulated and down-
regulated were selected. GSEA analysis showed that translation
elongation, mitochondrial membrane tissue, mitotic division,
nucleoside monophosphate biosynthesis, and mismatch
repair oxidative phosphorylation were all enriched in the
S100A16 high expression phenotype. On the contrary, the
regulation of leukocyte system or roll, CAMP-dependent
protein kinase activity, camp-mediated negative regulation of
signal transduction, glutamate receptor signal transduction
pathway, AMPA receptor activity, and excretion showed
different enrichments in the S100A16 down-regulation group
(Figure 12A). To better understand the role of S100A16 in
pancreatic cancer development, we established the protein-
protein interaction (PPI) network and performed a statistical
analysis and visualization using Cytoscape. The results show that
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FIGURE 7 | Heat map of DEGs when S100A16 is down-regulated and up-regulated in PDAC based on TCGA database (A) and ICGC database (B).

FIGURE 8 | Volcanic map based on differential gene expressions of TCGA (A) and ICGC. (B) KEGG pathway analysis of DEGs. Only pathways with a P-value< 0.05

are presented. (C) GO analysis of DEGs in PC Biological process, cell components, and molecular function enrichment analyses of DEGs (D–F).
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FIGURE 9 | Clinical correlation analysis based on TCGA database.

S100A16 interacted mainly with SUCLG1, IDH3A, and SUCLA2
in PC (Figure 12B).

Correlation Analyses Between S100A16
and Immune Infiltration
According to the TIMER database analysis, CD8+ T cells were
negatively correlated with S100A16, suggesting that S100A16
was correlated with tumor immunity (Figure 13A). Univariate
COX survival analysis showed that five types of immune cells
and S100A16 had significant effects on the survival time of
PDAC patients. Multivariate analysis of S100A16 expression
and operating system immune osmotic PDAC patients showed
age, purity, CD4T cells, and S100A16 as possible independent
prognostic factors for PDAC survival (Supplementary Table 1).
With the GSEA analysis of immune-related gene sets, we
found S100A16 high expression groups in different data sets
of infiltration of immune cells and immune-related cells. In
the group with a high expression of S100A16, the differential
genes were mainly concentrated in Naive, BCL low TFH,
CRTL, and induced Treg, while in the group with a low
expression of S100A16, the differential genes were mainly
concentrated in Naive CD4T cells, Naive CD8T cells, naïve, and
Pro B cells (Figure 13B). Immunoassay results on the TCGA
database showed that there were significant differences in the

expression of S100A16 in naive CD4, CD8, Cytotoxic, exhausted,
Tr1, nTreg, Th1, TH17, Central Memo, Effecter Memo, NKT,
MAIT, monocyte, gamma, delta, and CD4T (Figure 14A). “ICB
response prediction” can be used to output the predicted immune
checkpoint response of PDAC patients. This can be used to
predict the immune checkpoint response in PDAC patients
(Figure 14C). In addition, the change of copy number S100A16
can significantly affect the infiltration level of immune cells in
PDAC (Figure 14B), indicating that S100A16 can influence the
changes of the immune infiltration level and the number through
replication, thus affecting the prognosis of PATIENTS with
PDAC. In summary, S100A16 has potential value in pancreatic
tumor remission and immunotherapy.

DISCUSSION

Early stage PDAC has no obvious symptoms and often progresses
to advanced PDAC, when detected, with a poor prognosis
(Bray et al., 2018). Therefore, finding accurate biomarkers for
early diagnosis of PDAC will be helpful for the treatment and
prognosis of patients (Leclerc andVetter, 2015). The S100 protein
family may have the potential to be such a biomarker (Bydoun
et al., 2018). The S100 family plays a different role in PDAC,
S100A11, and S100P are important markers of PDAC, as well
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FIGURE 10 | Relationship between S100A16 expression levels and survival rate in PC as analyzed by Kaplan-Meier (A–D). The relationship between survival

probability and S100A16 expression level.

TABLE 1 | Univariate and multivariate analyses of prognostic factors in 182 cases of PDAC.

Parameter Univariate analysis Multivariate analysis

HR 95%CI P HR 95%CI P

Age 1.028 1.008–1.049 0.006 1.019 1.0076–1.0483 0.007

History of CP 1.161 0.5554–2.428 0.7

History of DM 1.119 0.5142–1.554 0.7

Maximum tumor diameter 1.008 0.904–1.124 0.9

Histologic grade(Grade 1,2 vs. Grades 3, 4) 1.6901 1.065–2.682 0.02 1.4087 0.9032–2.1973 0.130816

M 1.463 0.1650–2.831 0.7

N 1.236 0.7929–1.927 0.4

T 4.228 1.327–13.47 0.008 2.79 0.8745–8.898 0.08302

Primary therapy Response 0.444 0.2772–0.7113 3.00E-04 0.3865 0.2374–0.6292 0.000132

Radiation_Therapy 0.5354 0.292–0.981 3.00E-02 0.5383 0.2923–0.9910 0.046717

Gender_male 0.8174 0.545–1.226 0.3

Tumor Stage III, IV 2.506 0.7917–7.924 0.1

Alcohol exposure yes 1.186 0.7657–1.838 0.1

S100A16 expression 1.647 1.24–2.189 6.00E−04 0.632 0.383–1.044 0.073

Risk_score 2.253 1.24–2.189 1.601–3.169 3.5053 2.0038–6.1318 1.10E−05

as factors contributing to poor prognosis in patients undergoing
surgical resection (Ji et al., 2014). S100A2 is also considered a
biomarker for poor prognosis of PDAC (Ohuchida et al., 2007).
S100A6 in the nucleus could also be an independent prognostic
factor for PDAC (Ohuchida et al., 2005). The expression of
S100A4 is related to the development and final outcome of the

tumor (Che et al., 2015). Studies have shown that S100A16 may
be a prognostic factor for colon and lung cancer (Sun et al.,
2018; Xu et al., 2019). Our study explored the value of S100A16
in PDAC, and the results showed that S100A16 was more
expressed in human pancreatic tissue than in other tissues, with
significant differences in PDAC tissue and normal tissues. These
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FIGURE 11 | Wilcoxon signed-rank test was performed to determine whether these gene sets were related to patient prognosis. (A) Least absolute 1 shrinkage and

selection operator (LASSO) regression was performed. (B,C) Calculating the minimum criteria. (D) ROC curves for prognostic models. (E) Univariate and multivariate

analyses revealed that risk score was an independent prognostic predictor in the TCGA datasets. (F) Nomogram based on risk score, age, WHO grade, radiation

therapy, and primary therapy (G).

results suggest that S100A16 may be differentially expressed
in PDAC. GEPIA analyzes the relationship between S100A16
expression and clinical prognosis. Analysis results showed that
the prognosis of patients with a high expression of S100A16 and a
low expression of S100A16 was significantly different, suggesting
that S100A16 can be used as a prognostic molecule of PDAC;
multivariate Cox regression analysis showed the same results.
These results indicate that S100A16 has the potential to be an
important biomarker for the diagnosis and prognosis of PDAC.

S100A16 exerts its biological effects in different tissues
and in different ways. For example, S100A16 can exacerbate
fibrotic TGF-in tubular epithelial cells by promoting epithelial
mesenchymal transformation in renal injury (Sun et al., 2020).
S100A16 can also promote the proliferation and invasion of
cervical cancer cells. These related biological processes are
regulated by the activation of the PI3K/Akt signaling pathway.
(Zhang et al., 2020). S100A16 may play a role through tumor
suppressor genes p21 and p27 as well as ERK and Akt signaling
molecules (Zhu et al., 2016). To date, the mechanism of
the S100 protein family in PDAC has not been extensively
studied, which may occur through the independent effect
of EMT/ZEB1 and IL-6/11-STAT3 signals and aggregation to
establish the S100 protein expression pattern, thus promoting
the invasion of PDAC (Al-Ismaeel et al., 2019). In our study,
KEGG analysis showed that DEGs were concentrated mainly in
the pathway related to pancreatic secretory function. Relevant

studies have shown that S100A16 can reduce the sensitivity of
3T3-L1 to insulin, overexpression of S100A16 can promote lipid
synthesis of 3T3-L1 preadipocytes, inhibiting glucose uptake
under insulin stimulation, and cause insulin resistance (Kan et al.,
2019). Overexpression of S100A16 in 3T3-L1 cells promotes
proliferation and differentiation of 3T3-L1 cells, which is
consistent with our findings. These results suggest that S100A16
may play an important role in secretory pancreatic diseases, but
whether S100A16 affects the prognosis of PDAC through specific
mechanisms remains to be further explored.

In the clinical correlation analysis study, the TCGA database
was used to analyze the pathological factors associated with
S100A16 in patients with PDAC, and Kaplan-Meier analysis
results were used to explain the correlation between S100A16
expression and prognosis in patients with PDAC. Univariate
COX analysis was applied to verify the above assumptions
and it was found that S100A16 was associated with high risk
factors such as age, histological grade type, major treatment
response, and radiotherapy. These results suggest that S100A16
can be used as an indicator of disease progression and prognosis
in patients with PDAC. However, in the multivariate COX
regression analysis of these factors, S100A16 cannot serve as a
predicting factor of prognosis (P > 0.05). This may be due to
the incorporation of the Multivariate COX regression analysis
of the weight of the S100A16 dilution. To solve this problem,
we used the LASSO regression dimension reduction analysis to
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FIGURE 12 | Enrichment plots from GSEA analysis. GSEA analysis showed that translational elongation, mitochondrial membrane organization, mitotic nuclear

division, nucleoside monophosphate biosynthetic process, and mismatch repair oxidative phosphorylation was differentially enriched in the S100A16 high expression

phenotype. Leukocyte tethering or rolling, regulation of CAMP-dependent protein kinase activity, negative regulation of CAMP-mediated signal, regulation of glutamate

receptor signaling pathway, regulation of AMPA receptor activity, and regulation of excretion was differentially enriched in the low expression phenotype of S100A16.

Translational elongation, mitochondrial membrane organization, mitotic nuclear division, nucleoside monophosphate biosynthetic process, and mismatch repair

oxidative phosphorylation was differentially enriched in the low expression phenotype of S100A16. (A) Protein-protein interaction network for S100A16 in PDAC (B).

filter out the five genes, and built a S100A16-related prognostic
model. The risk once again proved that the S100A16 embedded
the multivariate COX regression analysis and related genes in
their prognostic role. To create a quantitative tool suitable for
clinical work to predict OS in patients with PDAC, we also
constructed a clinical prediction nomogrammodel that canmore
accurately predict the prognosis of patients with PDAC. On
the other hand among the genes screened out in the LASSO
regression analysis, LncRNA “UCA1” is the oncogene and the
UCA1 Prime Function BC through the PI3K/Akt/CREB pathway
(Yang et al., 2012). The overexpression of lncRNA UCA1 was
associated with drug resistance to chemotherapy drugs such as
cisplatin, gemcitabine, 5-Fu, tamoxifen, etc., and after lncRNA-
UCA1 was silenced, the drug sensitivity was reversed (Wang
et al., 2017). Therefore, whether S100A16 is regulated by LncRNA
and plays a role in tumor may be the next potential research
direction. However, there were some limitations in our study due
to public data sources, as more valuable clinical characteristics
could not be further explored. More specifically, the correlation
between serological and biochemical parameters, like CA19-9
and serum amylase, and S100A16 in pancreatic cancer, may be
one of our next research directions, which requires further data
verification through the collection of a large number of clinical
samples from PDAC patients.

In this paper, we also explored the correlation between
S100A16 expression and immune cell infiltration in PDAC.

Relevant studies have shown that many other S100 protein
family members are closely related to tumor immune response
(Ulas et al., 2017). Once S100 proteins is released into
extracellular space, it will be able to interact with multiple
immune receptors, like RAGE and Toll-like Receptors (TLRs),
and further regulate diverse biological processes including
chemokines secretion, tumor cell migration, cell proliferation
and tissue repair, etc. (Leclerc et al., 2009; Donato et al.,
2013; Gross et al., 2014; Bertheloot and Latz, 2017). S100A8,
S100A9, and S100A8/A9 complexes have direct chemotaxis of
various immune cells that are involved in keratinocytes inducing
pro-inflammatory cytokines and stimulating keratinocytes to
produce pro-angiogenic mediators (Halawi et al., 2014). S100A7,
S100A12, S100A8, and S100A9 play certain roles in the innate
immune response induced by pathogenic bacteria (Kozlyuk
et al., 2019). The role of the S100 protein family in tumor
immunity is also understood. The expression of S100A9 was
related to the expression of CD68 macrophages in a human
prostate tumor biopsy. S100A9 in tumors appears to be mainly
expressed by CD11b cells (Källberg et al., 2012). In the model
of spontaneous breast cancer, blocking the antibody of S100A4
can affect tumor growth and metastasis (Grum-Schwensen et al.,
2015). Under abnormal conditions, S100A7, located in the
extracellular compartment, can cause the movement of immune
cells and tumor cells (Wolf et al., 2008; Kataoka et al., 2012).
S100A7 is associated with increased macrophage infiltration
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FIGURE 13 | Correlation analysis between the expression level of S100A16 and immune infiltration. (A) GSEA analysis showed that naive BCL6, low ctrl induced treg

were differentially enriched in the high expression S100A16 phenotype. Naive CD4T cell, naive CD8T cell, and naive, pro B cell were differentially enriched in the low

expression S100A16 phenotype (B).

during tumor development (Nasser et al., 2012). In addition,
S100A8/A9 increases the accumulation of circulating immune
cells by enhancing the ability of immune cells to adhere to the
endothelium (Wang et al., 2018). These results indicate that
the S100 protein family may have an impact on the tumor
at different stages of tumor development, which raises some
ideas for the further development of tumor immunotherapies.
Our results showed that multiple immune cells associated with
S100A16 were independent prognostic factors in PDAC patients,
and there were significant differences in the immune infiltration
of immune cells and immune related cell data sets in the S100A16
high and low expression group. ICB response prediction results
showed that the immune checkpoint response was different in
patients with PDAC, the change of the S100A16 copy number can
significantly affect the level of immune cell infiltration in PDAC.
This study found that S100A16, which has not yet been studied,
may have a correlation in the immune infiltration mechanism
of PDAC, highlighting the potential value of S100A16 in the
immunotherapy of PDAC.

In summary, we found increased expression of S100A16 in
PDAC. Evidence suggests that it is the independent prognostic

factor of pancreatic tumors. The analysis of relevant methods
shows that S100A16 is likely to play a certain role in endocrine
function of the pancreas. Clinical correlation analysis shows that
S100A16 can be used as an indicator value for the diagnosis and
prognosis of PDAC patients. We built a comprehensive model
to better predict and analyze patient prognosis. Multivariate
analysis of S100A16 expression and OS immune infiltration
in PDAC patients showed that age, purity, CD4T cells, and
S100A16 may be independent prognostic factors for PDAC.
There were differences in the immune checkpoint response in
patients with PDAC, and S100A16 has a potential reference
value for the remission of PDAC and immunotherapy. This
study uses a variety of bioinformatics methods to process
and analyze a large number of data, but there are still some
limitations. First, all data were from TCGA and ICGC databases,
and a small number of cases in the human case group may
lead to bias in differential gene results. In future studies,
a PDAC database with more data may be a more urgent
problem, so the application value of this model needs to
be further improved and studied. Moreover, this study lacks
further in vitro and in vivo validation, thus, we will study
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FIGURE 14 | Immune CellAI for S100A16 based on the TCGA database. (A) The relationship between the S100A16 copy number variation and infiltration level. *P <

0.05; **P < 0.01; ***P < 0.001 (B). ICB response prediction showed the predicted outcome of immune checkpoint treatment response (C).

the function and mechanism of S100A16 through further
basic experiments.

MATERIALS AND METHODS

GEPIA Database Analysis
GEPIA database (http://gepia2.cancer-pku.cn/#index) collects
gene expression data from TCGA and GTEx, including 9,736
tumor samples and 8,587 normal controls. This database allows
for the exploration of gene expression and prognosis in different
tumors. We used GEPIA to analyze the expression and prognosis
of S100A16 in PDAC in this study.

Oncomine Database Analysis
Oncomine (www.ONCOMINE.org) is a public database that
functions as an analyzer for the expression of various tumor
genes in different transcriptional profiling datasets. S100A16
were input into the database to detect its expression level in
various tumors including pancreatic adenocarcinoma. Analysis
condition setting: Gene name: S100A16. Analysis Type: Cancer
vs. Normal and Cancer vs. Cancer. P-value < 0.05 and Fold
Change ≥ 1.5 was considered significant.

Screening of DEGs
The RNA-seq data of TCGA_PAAD (source: https://portal.gdc.
cancer.gov/; n = 182) and ICGC_AU_PAAD (source: https://
daco.icgc.org/; n = 91) cohorts were applied to find DEGs
between S100A16 high and low expression subgroups, which
defined by the median expression level of S100A16. DEGS were
screened using R package “DESeq2” and heatmaps were plotted

using R package “heatmap” in two cohorts, respectively. P <

0.05, log FC> 1.5 was defined as significantly upregulated DEGS,
while P < 0.05, log FC < −1.5 was defined as significantly
downregulated DEGS. Then, the intersection of the DEGs
obtained by TCGA and ICGC cohort was defined as the final
DEGs in our study.

GO and KEGG Pathway Analysis
GO analysis is divided into three parts, including cellular
component, molecular Function, and biological Process,
explaining the biological function of certain genes from different
aspects. KEGG is an analysis method used to discover which
biological pathways certain genes are enriched in. Using _ to
perform GO and KEGG pathway analysis based on DEGS with
low expression vs. high expression of S100A16.

Construction of “S100A16 Risk Score”
Predicting System
TCGA_PAAD cohort with complete clinical information was
applied in this part. Correlation between multiple clinical
characteristics and the expression level of S100A16 was analyzed
by boxplot. Univariate and multivariate Cox regression analysis
was then adopted to preliminarily detect the relationship between
patient survival and clinical characteristics along with the
expression of S100A16. Then, to further delineate the impact
of S100A16 and its related genes on the prognosis of patients,
we applied the following protocol: First, Pearson correlation
analysis and univariate cox analysis was implemented to screen
S100A16-related prognostic genes. Then, least absolute shrinkage
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and selection operator (LASSO) Cox regression, achieved by
R package “glmnet” was conducted to perform dimension
reduction. After these procedures, a S100A16-related gene set
composed of five genes was successfully developed. The five
genes were “SERPINB1”,“RAB27B”, “MGLL”, “ANKRD22”, and
“UCA1”. Along with S100A16, these 6 genes were included
to calculate a S100A16 risk score for each patient using the
following formula:

Risk Score =

n∑

i=1

Coefi ∗ xi (1)

where Coefi means the coefficients for each gene; xi is the FPKM
value of each gene.

Risk scores were computed for all patients included in our
study. To further obtain a clinical model with predicting values,
another multivariate Cox regression was applied to establish a
nomogram, integrating all clinical characteristics that had HR
>1 (or < −1) and P < 0.05. The calibration plots show the
prognostic predictive accuracy of the nomogram.

Immunohistochemical Staining (IHC) for
S100A16
IHC staining of S100A16 was conducted on paired tumors and
adjacent normal tissues for three PDAC cases. IHC staining
was carried out using the Histostain-Plus kit according to the
manufacturer’s protocol. Briefly, antigen retrieval was conducted
by heating the sections in boiling sodium citrate buffer for
20min. After 3% hydrogen peroxide and BSA blocking, the
tissues were incubated with 1:200 diluted S100A16 antibody
(©Affinity Biosciences LTD, OH, USA) at 4◦C overnight. After
washing, the tissues were incubated with 1:200 diluted HRP-
conjugated secondary antibody (Santa Cruz Biotechnology, Santa
Cruz, CA). IHC signal was developed by DAB substrate, and
counter-stained by hematoxylin. Random fields at 20× and 40×
magnification were captured per sections for evaluation.

GSEA Analysis
Gene set enrichment analysis (GSEA) provided by the JAVA
program (Version 4.0.3) with MSigDB v6.1 was applied
to explore the downstream biological processes affected by
differential expression of S100A16. Patients in the TCGA_PAAD
cohort were divided into two groups by the standard of
“Screening DEGs”; 25,880 genes were enrolled into the GSEA
process. Hallmark gene set “c5.bp.v7.0.symbols.gmt” was used
in this study. Gene sets which obtained the highest Enrichment
Score (ES) with a normalized p-value< 0.05, and a false discovery
rate (FDR) of < 0.25, were considered significantly enriched.

Construction of Protein-Protein Interaction
(PPI) Network
Level-1 and level-2 PPI analysis for S100A16 was performed
using STRING database (https://www.string-db.org/). This
database provided us with information on the interaction score
between proteins. After downloading the results in TSV format,

a PPI network was established by Cytoscape software (NIH,
National Resource for Network Biology) to further cluster
proteins into different modules and to achieve visualization.

Immune Infiltration Analysis
Correlation between S100A16 and immune infiltration were
analyzed by three different tools based on the TCGA_PAAD
cohort, which were TIMER (https://cistrome.shinyapps.io/
timer/), ImmuneCellAI (http://bioinfo.life.hust.edu.cn/web/
ImmuCellAI/), and GSEA (Hallmark gene set “c5. immunologic
signature gene sets.gmt”). The significance of immune cells in the
prognosis of PDAC patients were analyzed by TIMER. Moreover,
TIMER provided an analysis of clinical correlation between
immune cell infiltration and patient survival. ImmuneCellAI
could predict a patient’s response to immune checkpoint blocker
(ICB) treatment based on transcriptomic profiling.
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