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Hypoxia is a hallmark of solid tumors and plays a critical role in different steps of
tumor progression, including proliferation, survival, angiogenesis, metastasis, metabolic
reprogramming, and stemness of cancer cells. Activation of the hypoxia-inducible factor
(HIF) signaling plays a critical role in regulating hypoxic responses in tumors. As a key
tumor suppressor and transcription factor, p53 responds to a wide variety of stress
signals, including hypoxia, and selectively transcribes its target genes to regulate various
cellular responses to exert its function in tumor suppression. Studies have demonstrated
a close but complex interplay between hypoxia and p53 signaling pathways. The
p53 levels and activities can be regulated by the hypoxia and HIF signaling differently
depending on the cell/tissue type and the severity and duration of hypoxia. On the
other hand, p53 regulates the hypoxia and HIF signaling at multiple levels. Many tumor-
associated mutant p53 proteins display gain-of-function (GOF) oncogenic activities to
promote cancer progression. Emerging evidence has also shown that GOF mutant
p53 can promote cancer progression through its interplay with the hypoxia and HIF
signaling pathway. In this review, we summarize our current understanding of the
interplay between the hypoxia and p53 signaling pathways, its impact upon cancer
progression, and its potential application in cancer therapy.
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INTRODUCTION

Extensive studies have established that p53 is a key tumor suppressor, and disruption of the p53
function is a prerequisite for the initiation and/or progression of many human cancers. The key
role of p53 in tumor suppression has been clearly demonstrated by the following evidence. The
p53 gene is mutated in over half of all human cancers and almost in every type of human cancer
(Vousden and Prives, 2009; Muller and Vousden, 2014; Donehower et al., 2019; Levine, 2019; Zhang
et al., 2020). Li–Fraumeni syndrome, a rare autosomal-dominant disorder caused by germline p53
mutations, predisposes patients to different types of tumors, including breast cancer, soft-tissue
and bone sarcomas, and brain tumors (Malkin et al., 1990; Srivastava et al., 1990). p53 knockout
mice are extremely prone to develop tumors, mainly lymphomas and sarcomas (Donehower et al.,
1992; Attardi and Jacks, 1999). In addition to DNA mutations, different mechanisms have been
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reported to disrupt the tumor suppressive function of p53 in
cancer and lead to tumorigenesis, including overexpression of
critical p53 negative regulators, such as MDM2, MDM4, and
WIP1, and inactivation of p53 by oncoproteins encoded by
different tumor viruses, such as simian virus 40 large T antigen,
and E6 of human papilloma virus (Vousden and Prives, 2009;
Muller and Vousden, 2014; Donehower et al., 2019; Levine, 2019;
Zhang et al., 2020).

Tissue hypoxia results from the inadequate supply of oxygen
(O2) that compromises the biological functions of cells. Most
solid tumors have regions under permanent or transient hypoxic
conditions resulting from the poor blood supply with aberrant
vascularization (Schito and Semenza, 2016; Petrova et al., 2018;
Choueiri and Kaelin, 2020; de Heer et al., 2020; Lee et al.,
2020). Hypoxia activates the hypoxia signaling pathway, which
is predominantly governed by hypoxia-inducible factor (HIF),
leading to a series of cellular responses, including cell death,
survival, angiogenesis, metabolic reprogramming, metastasis,
stemness, inflammation, immune evasion, etc., to help tumor
cells to adapt to the hypoxic environment and contribute
to tumor progression (Schito and Semenza, 2016; Petrova
et al., 2018; Choueiri and Kaelin, 2020; de Heer et al., 2020;
Lee et al., 2020). Loss of the tumor-suppressive function of
p53 and hypoxia are two common biological events in solid
tumors, and therefore, p53 and hypoxia in cancer have been
extensively studied. Many studies have demonstrated the close
but complex interplay between the p53 and the hypoxia signaling
pathways and its impact upon tumor progression, which are
summarized in this review.

THE p53 SIGNALING PATHWAY

p53 is a transcription factor, and mainly functions through
transcriptional regulation of its target genes, although p53 can
also directly interact with some other proteins to regulate cellular
processes (e.g., apoptosis and metabolism). Usually, p53 protein
is maintained at low levels with a very short protein half-life
under non-stressed conditions in normal cells and tissues. p53
can respond to a wide variety of stress signals, including DNA
damage, nutritional deprivation, impaired ribosome biogenesis,
activation of oncogenes, as well as hypoxia. In response to these
stress signals, p53 protein half-life is dramatically increased,
leading to p53 protein accumulation and activation in cells. Once
p53 is activated, p53 binds to the p53-binding elements in its
target genes to selectively transcribe these genes. A myriad of
protein-coding genes and many non-coding genes, including
microRNAs (miRNAs) and long non-coding RNAs (LncRNAs),
have been identified as p53 target genes (Feng and Levine,
2010; Liu et al., 2017a; Dangelmaier et al., 2019; Levine, 2019).
Through selective transcriptional induction or repression of
these target genes, p53 regulates various cellular responses,
including cell cycle arrest, senescence, apoptosis, autophagy,
ferroptosis, DNA repair, metabolism, cell migration/invasion,
modulation of oxidative stress, etc., which contribute to the
role of p53 in tumor suppression (Vousden and Prives, 2009;
Muller and Vousden, 2014; Levine, 2019; Liu J. et al., 2019;

Liu et al., 2020; Zhang et al., 2020). Besides of the role of p53 in
tumor suppression, p53 has also been shown to play important
roles in many other biological and pathological processes, such
as anti-infection, immune response, maternal reproduction,
development, metabolic diseases, ischemia and tissue injuries,
neurodegeneration, and aging (Hu, 2009; Levine and Oren, 2009;
Vousden and Prives, 2009; Muller and Vousden, 2014; Levine,
2019; Liu J. et al., 2019; Zhang et al., 2020).

p53 protein levels and activities are under tight regulation
in cells to ensure that p53 can function properly in these
fundamental cellular processes. The post-translational protein
modifications, including the ubiquitination modification, play
the most critical role in the regulation of the levels and activities
of p53 protein (Hock and Vousden, 2014; Meek, 2015; Levine,
2019; Liu Y. et al., 2019). The E3 ubiquitin ligase MDM2 is
the most critical negative regulator of p53, which directly binds
to p53 and ubiquitinates p53 for proteasomal degradation to
maintain p53 protein at a low level under the non-stressed
condition (Zhao et al., 2014; Karni-Schmidt et al., 2016; Haupt
et al., 2019). In addition to mediating proteasomal degradation
of p53, MDM2 also promotes p53 nuclear export to reduce
the binding of p53 to its target genes in the nucleus, leading
to the downregulation of the p53 transcriptional activities.
Interestingly, MDM2 is a p53 target gene that can be upregulated
by p53. In response to stress signals, p53 is disassociated from
MDM2, leading to p53 protein accumulation and activation in
cells. Once p53 is activated, MDM2 expression is induced by
p53, which in turn downregulates p53 levels and activities. Thus,
MDM2 forms a negative feedback loop with p53 to keep p53
levels under tight control in cells (Zhao et al., 2014; Karni-
Schmidt et al., 2016; Haupt et al., 2019). MDM4 (also known
as MDMX), a structural homolog of MDM2 that lacks the E3
ubiquitin ligase activity, is an additional important negative
regulator of p53. MDM4 negatively regulates p53 in both MDM2-
dependent and -independent manners; MDM4 interacts with
MDM2 and promotes MDM2−mediated ubiquitination and
degradation of p53, and also interacts with p53 to suppress
the transcriptional activities of p53 (Zhao et al., 2014; Karni-
Schmidt et al., 2016; Haupt et al., 2019). Both MDM2 and
MDM4 are overexpressed in a variety of tumors, which result
in the downregulation of p53 protein levels and activities,
leading to tumor initiation and/or progression (Karni-Schmidt
et al., 2016; Donehower et al., 2019; Haupt et al., 2019).
Furthermore, p53 has also been reported to be ubiquitinated
for proteasomal degradation by many other E3 ubiquitin
ligases, such as Pirh2, COP1, CHIP, TRIM32, etc. (Hock and
Vousden, 2014; Levine, 2019; Liu Y. et al., 2019). In addition to
ubiquitination, other post-translational modifications, including
phosphorylation, acetylation, methylation, neddylation, and
SUMOylation, have also been reported to play important roles
in the regulation of protein levels and transcriptional activities
of p53 (Hock and Vousden, 2014; Levine, 2019; Liu Y. et al.,
2019). Many proteins are involved in these post-translational
modifications of p53. Further, different positive and negative
feedback loops are formed between p53 and p53 regulators to
tightly regulate p53 levels and activities (Hock and Vousden,
2014; Levine, 2019; Liu Y. et al., 2019).
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HYPOXIA AND HIF SIGNALING
PATHWAY

Hypoxia refers to a condition in which oxygen levels are
limited in a tissue, and is associated with both physiological
and pathological conditions in humans. Hypoxia can result
from insufficient blood flow to specific organs, low levels of
hemoglobin, or exposure to chemical compounds. Hypoxia
in tumors is caused by a variety of mechanisms (Schito and
Semenza, 2016; Petrova et al., 2018; Choueiri and Kaelin, 2020;
de Heer et al., 2020; Lee et al., 2020). For instance, tumor
perfusion hypoxia arises from an abnormal disorganization of
tumor vasculature, characterized by structural, functional, and
cellular abnormalities and inadequate blood flow, leading to
transient ischemia. Tumor diffusion hypoxia is caused by long
oxygen diffusion distances between tumor cells and blood vessels,
and blood flow countercurrents within the tumor microvessels.
Tumor anemic hypoxia can be caused by the reduced oxygen
transport capacity due to the tumor itself or chemotherapy-
induced anemia. Generally, tumor hypoxia is independent of the
size, stage, histopathological type, or grade of tumors.

Tumor cells can adapt to the hypoxic environment through
activation of a large group of genes involved in different biological
processes (Schito and Semenza, 2016; Petrova et al., 2018;
Choueiri and Kaelin, 2020; de Heer et al., 2020; Lee et al., 2020).
HIFs, a family of transcription factors composed of a heterodimer
of an oxygen-dependent α-subunit and constitutively expressed
β-subunit, play a key role in response to hypoxia. HIF-1α

is the most well-studied member of the HIF family, which
regulates the expression of genes involved in response to
hypoxia in most mammalian cells (Schito and Semenza, 2016;
Petrova et al., 2018). The other members of this family include
HIF-2α, which also stabilizes under hypoxic conditions, and
HIF-3α, which lacks the transactivation domain of HIF-1α and
HIF-2α. Under the normoxic condition, HIF-1α is hydroxylated
by the prolyl hydroxylases (PHDs) in its oxygen-dependent
degradation domain (ODD) or by the factor inhibiting HIF
(FIH) in its inhibitory domain, leading to the interaction of
HIF-1α with the E3 ubiquitin ligase von Hippel-Lindau protein
(pVHL) and ubiquitination and proteasomal degradation of HIF-
1α (Huang et al., 2002; Paltoglou and Roberts, 2007; Schito
and Semenza, 2016). The hypoxic condition inactivates PHDs,
leading to HIF-1α stabilization and translocation to nuclear,
where it forms a dimer with HIF-1β and binds to E-box-like
hypoxia response elements (HREs) containing the consensus core
sequence RCGTG (where R is A or G) (Kaelin and Ratcliffe,
2008; Schito and Semenza, 2016). HIF-2α is regulated in a similar
manner to HIF-1α. HIF-1α and HIF-2α have a 48% amino
acid sequence similarity, but they show different patterns of
tissue distribution. While HIF-1α is ubiquitously expressed in
different tissues, HIF-2α is highly expressed in vascular tissues
such as the lung, heart, placenta, and kidney (Talks et al., 2000).
The majority of HIF target genes are regulated by HIF-1α,
whereas exclusively HIF-2α-dependent genes are scarce and cell
type-dependent (Raval et al., 2005; Elvidge et al., 2006; Schito
and Semenza, 2016). Interestingly, it was reported that HIF-
1α is activated by acute and intense hypoxia, whereas HIF-2α

is activated by chronic and mild hypoxia, suggesting that in

some contexts HIF-1α plays a key role in the initial response
to hypoxia, whereas HIF-2α drives the hypoxic response during
chronic hypoxic exposure (Holmquist-Mengelbier et al., 2006;
Koh et al., 2011; Kumar and Choi, 2015). The functions of HIF-
3α and its splice variants are not clear; while some variants can
activate gene expression, some variants act as negative regulators
of HIF-1α and HIF-2α (Makino et al., 2002; Yang et al., 2015;
Duan, 2016).

Through transcriptional regulation of HIF target genes,
hypoxia regulates tumor progression in many different aspects,
including cell survival and death, proliferation, angiogenesis,
metastasis, metabolic reprogramming, stemness, immune
evasion, and therapeutic resistance (Schito and Semenza, 2016;
de Heer et al., 2020; Sun et al., 2020; Vito et al., 2020).

p53 AND HYPOXIA

Hypoxia Regulates p53
The regulation of p53 by the hypoxia and HIF signaling
appears to be highly context-dependent. Many studies have
reported that while HIF-1α accumulates under both moderate
and severe hypoxia, p53 stabilization and activation usually
occur under severe hypoxia. In many cells, it appears that while
HIF-1α accumulation helps cells adapt to mild hypoxia, p53
accumulation and activation induce cell death under severe
hypoxia. However, hypoxia and HIF have been reported to both
activate and inactivate p53, which could be dependent on hypoxic
conditions and types of cells and tissues as well.

Hypoxia has been reported to induce p53 protein levels
and activities through both HIF-dependent and -independent
manners. HIF-1α can regulate p53 through modulating MDM2
by several different mechanisms. It was reported that HIF-1α

directly interacts with MDM2 but not p53 to block MDM2-
mediated ubiquitination and nuclear export of p53 (Chen et al.,
2003; Singh et al., 2017). As a HIF-1α target, PNUTS (protein
phosphatase-1 nuclear targeting subunit) has the HRE in its
promoter region and can be induced by hypoxia (Lee et al., 2007).
The induction of PNUTS by hypoxia increases the ubiquitin-
dependent proteasomal degradation of MDM2, leading to p53
activation and the p53-mediated apoptosis (Lee et al., 2007).
Studies also reported that hypoxia decreases MDM2 levels
partially through the activation of p38 MAPK via an unclear
mechanism, enhancing p53 protein levels and transcriptional
activities in neurons (Zhu et al., 2002). In addition to MDM2,
hypoxia can induce p53 via regulation of other p53 negative
regulators, such as E3 ubiquitin ligases CHIP and COP1. For
instance, hypoxia represses the transcription of CHIP, leading
to p53 accumulation in the heart after myocardial infarction
(Naito et al., 2010). LncRNA Fendrr can bind to p53 protein and
promote its interaction with COP1, leading to p53 ubiquitination
and degradation (Li et al., 2020). Hypoxia decreases the levels
of Fendrr, which in turn attenuates the p53–COP1 interaction
and leads to the increase of p53 levels in myocardial cells
(Li et al., 2020). Hypoxia also enhances p53 protein levels
through activating ATR/ATM kinases independently of HIF-1α,
leading to p53 phosphorylation at serine 15 and the resultant
p53 stabilization and activation (Hammond et al., 2002, 2003).
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Furthermore, hypoxia stabilizes p53 through the production
of mitochondrial reactive oxygen species (ROS) and hypoxia-
associated acidosis (Schmaltz et al., 1998; Chandel et al., 2000;
Humpton and Vousden, 2016). The RNA-binding protein HuR
can bind to the p53 mRNA to promote its translation in
response to ultraviolet light irradiation (Mazan-Mamczarz et al.,
2003). HuR also increases HIF-1α levels through promoting the
translation of HIF-1α mRNA (Galban et al., 2008; Wu et al.,
2019). Interestingly, pVHL was reported to increase p53 protein
levels through enhancing HuR levels and HuR-mediated p53
translation (Galban et al., 2003). However, it is unclear how
pVHL upregulates HuR expression and whether pVHL-HuR-p53
signaling is involved in the hypoxia-triggered induction of p53
protein levels. In addition, hypoxia was reported to increase the
mRNA levels of p53 in a HIF-1α-independent manner through
an unclear mechanism (Wang et al., 2004).

The induction of p53 levels and transcriptional activities
by hypoxia appears to be cell-type specific. Some studies
reported that hypoxia and HIF signaling can negatively regulate
p53 levels and activities in some cell lines. For instance,
it was reported that in human cell lines treated with the
chemotherapeutic agent etoposide, hypoxia induces p53 levels
in breast cancer MCF7 cells, reduces p53 levels in liver cancer
HepG2 cells, but does not affect p53 levels in lung cancer A549
cells under the same hypoxic condition (Cosse et al., 2007).
HIF-1α was reported to directly repress the transcription of
p53 in HeLa cells (Lee et al., 2001). Hypoxia also promotes
the expression of two p53 negative regulators, MDM2 and
MDM4, to downregulate p53 in human syncytiotrophoblasts
and murine KHT fibrosarcoma cells (Zhang and Hill, 2004;
Chen et al., 2010). Additionally, hypoxia was also reported to
inhibit the phosphorylation of p53 at ser15 and ser392, reducing
p53 activities in human syncytiotrophoblasts and normal
human fibroblasts (Li et al., 2004; Chen et al., 2010). HIPK2
(serine/threonine homeodomain-interacting protein kinase 2)
can phosphorylate p53 at ser46 to activate p53. In human
prostate cancer cells and hepatocellular carcinoma cells, HIF-1α

transcriptionally induces its targets to promote the proteasomal
degradation of HIPK2, and thus, HIF-1α reduces p53 activities
and p53-dependent apoptosis through downregulating HIPK2
(Nardinocchi et al., 2011; Chen et al., 2020). It was reported
that p53 is stabilized only under the severe hypoxic condition
(0.02% O2) but not under the mild hypoxic condition (2%
O2) in human colorectal RKO cells, suggesting that the p53
activation by hypoxia is dependent on the severity of hypoxic
conditions (Hammond et al., 2002; Humpton and Vousden,
2016). Taken together, hypoxia appears to regulate p53 in a
cell/tissue type- and duration and severity of hypoxia-dependent
manner, resulting in the increase or decrease of p53 levels and
activities in cells (Figure 1).

p53 Regulates the Hypoxia and HIF
Pathway
While hypoxia and the HIF signaling regulate p53 through many
different mechanisms, p53 has also been reported to regulate
the hypoxia and HIF signaling (Figure 2). p53 was reported to
act as a scaffold protein to bridge MDM2 to HIF-1α, leading to

the ubiquitination and proteasomal degradation of HIF-1α by
MDM2 in HCT116 cells (Ravi et al., 2000; Singh et al., 2017).
Blocking the interaction of p53 and MDM2 by the mutation of
p53 in the transactivation domain (responsible for p53–MDM2
interaction) or treatment with nutlin-3 (a small-molecule MDM2
antagonist that disrupts MDM2–p53 interaction) leads to the
accumulation of HIF-1α in p53 wild-type (WT) cells but not in
p53-deficient cells, which supports that p53 negatively regulates
HIF-1α through MDM2 (Ravi et al., 2000; Lee et al., 2009; Kojima
et al., 2011). However, some studies also reported that MDM2
can increase the levels of HIF-1α (Nieminen et al., 2005; LaRusch
et al., 2007), which suggests that the effect of MDM2 on HIF-
1α may vary depending on the cell/tissue type and severity of
hypoxia. Additionally, p53 can promote the ubiquitination and
degradation of HIF-1α in an MDM2-independent manner in
the transition from myocardial hypertrophy to cardiac dilatation
and heart failure. However, its mechanism is unclear, and the
inhibition of AKT phosphorylation may be involved in this
process (Choy et al., 2010). p53 may also downregulate HIF-
1α protein levels through another E3 ubiquitin ligase Parkin.
Originally identified as a gene associated with neurodegenerative
Parkinson’s disease, Parkin has been demonstrated to be a
tumor suppressor (Liu et al., 2018). Parkin is a p53 target gene;
p53 binds to the p53-binding element in the Parkin gene and
transcriptionally induces Parkin expression (Zhang et al., 2011;
Viotti et al., 2014). Interestingly, HIF-1α is an E3 ubiquitin
ligase substrate of Parkin; Parkin binds to and ubiquitinates
HIF-1α, leading to its proteasomal degradation (Liu et al.,
2017b). Notably, treating Parkin-deficient cancer cells with small-
molecule HIF-1α inhibitors greatly suppresses tumorigenesis
of cancer cells in xenograft tumor models (Liu et al., 2017b).
Furthermore, macrophage migration inhibitory factor (MIF), an
inflammatory cytokine, can bind to p53 and sequester p53 from
HIF-1α to block the MDM2-mediated degradation of HIF-1α,
which in turn increases the HIF-1α protein levels under hypoxia
(Oda et al., 2008). In addition to HIF-1α, p53 was also reported
to reduce the levels of HIF-1β; p53 transcriptionally induces the
expression of miRNA-107, which targets HIF-1β at its 3′-UTR to
repress its expression, inhibiting the HIF-1 signaling in colorectal
tumor cells (Yamakuchi et al., 2010).

In addition to regulating the HIF-1 protein levels, p53 also
regulates the activities of HIF-1. Casein kinase 2 (CK2), a
serine/threonine kinase, was reported to negatively regulate
p53. It was reported that hypoxia activates CK2, which in
turn increases the HIF-1 activities through reducing the p53
levels with an unclear mechanism (Hubert et al., 2006). It was
reported that although high p53 expression reduces the HIF-
1α protein levels, low p53 levels attenuate HIF-1 transcriptional
activities by competing for p300, a coactivator required for
the full activities of both p53 and HIF-1 (Blagosklonny et al.,
1998; Schmid et al., 2004; Vleugel et al., 2006). Transfection
of the full-length p300 stimulates transcriptional activities
of both p53 and HIF-1, but does not relieve p53-mediated
inhibition of HIF-1 transcription activities. In contrast, a p300
fragment that binds to p53 but not to HIF-1 prevents p53-
dependent repression of HIF-1 activities (Blagosklonny et al.,
1998; Ye et al., 2019). p53 with a mutation in its DNA binding
domain (R273H) retains the ability to block the transactivation
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FIGURE 1 | The regulation of the p53 signaling by hypoxia. Hypoxia regulates p53 in a context-dependent manner. Hypoxia positively regulates the mRNA levels,
translation, protein levels, and activities of p53 through different mechanisms. At the same time, hypoxia can negatively regulate p53 mRNA levels, protein levels, and
activities in certain types of cells under certain conditions.

activity of HIF-1, whereas p53(22,23), a transcriptionally inactive
double point mutant defective for p300 binding, does not
inhibit HIF-1 (Blagosklonny et al., 1998). Furthermore, HIF-
1α induces expression of Cockayne syndrome B (CSB), which
competes with p53 for p300, leading to the redistribution of
p300 between p53 and HIF-1 (Filippi et al., 2008; Ye et al.,
2019). Under mild hypoxia, HIF-1α dissociates p300 from p53
to promote HIF-1 activation through inducing CSB, whereas
under severe hypoxia, the accumulation of p53 in cells wins
the competition for p300, leading to the inhibition of HIF-
1 activities. Thus, while HIF-1α accumulation induces its
targets, leading to the adaptation of cells to mild hypoxia, p53
accumulation and activation induce cell death under severe
hypoxia (Figure 2).

FIGURE 2 | The regulation of the hypoxia and HIF signaling by p53. p53
represses the protein levels and activities of HIF-1α and HIF-1β through
various mechanisms.

BIOLOGICAL OUTCOMES OF THE
INTERPLAY BETWEEN p53 AND
HYPOXIA PATHWAYS

Activation of the HIF pathway by hypoxia contributes to tumor
progression through many biological processes, including cell
survival and proliferation, angiogenesis, metastasis, metabolic
reprogramming, and cell stemness. As summarized above, the
p53 pathway cross-talks with the hypoxia and HIF pathway. This
cross-talk impacts biological outcomes in response to hypoxia in
tumors (Figure 3).

Cell Survival and Proliferation
Tumor progression is associated with enhanced cell proliferation
and decreased cell death. Many studies have suggested that
HIF-1 inhibits cell death, including apoptosis and autophagy,
and promotes cell proliferation (Kumar and Choi, 2015). In
contrast, p53 activation often leads to cell cycle arrest and
apoptosis (Levine et al., 2006; Vousden and Prives, 2009; Levine,
2019). Studies have reported a controversial role of hypoxia
in apoptosis, which appears to be dependent on the oxygen
concentration: oxygen levels in the range 0–0.5% in cells induce
apoptosis, while oxygen levels in the range of 1–3% in cells
do not induce apoptosis (Santore et al., 2002; Kumar and
Choi, 2015). It has been reported that p53 is usually activated
under severe hypoxia or anoxia, leading to rapid apoptosis;
whereas under mild hypoxia, p53 is constrained and tends to
support cell survival (Li et al., 2004; Hammond and Giaccia,
2005; Feng et al., 2011; Humpton and Vousden, 2016). As an
important regulator of apoptosis, p53 induces its target Bax,
which in turn initiates the cascade, leading to cytochrome c
release and apoptosis (Wei et al., 2001; Levine, 2019). Cells with
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FIGURE 3 | The biological outcomes of the interplay between the p53 and
hypoxia signaling pathways. p53 cross-talks with hypoxia to regulate cell cycle
arrest, apoptosis, autophagy, cell proliferation, angiogenesis, metastasis,
metabolic reprogramming, and cell stemness in cancer.

deficiency of pro-apoptotic proteins Bax and Bak are resistant
to hypoxia-induced apoptosis, whereas overexpression of anti-
apoptotic proteins Bcl-2 or Bcl-XL prevents hypoxia-induced
apoptosis by inhibiting the cytochrome c release (McClintock
et al., 2002; Moldoveanu and Czabotar, 2020). Severe hypoxia
induces the expression of pro-apoptotic gene BNIP3 via HIF-
1α, resulting in hypoxia-induced apoptosis (Guo et al., 2001;
Gorbunova et al., 2020). Under mild hypoxia, p53 directly
suppresses BNIP3 expression to protect cells against hypoxia-
induced apoptosis (Feng et al., 2011). Under severe hypoxia,
p53 induces apoptosis through inducing the expression of
another pro-apoptotic gene BNIP3L, a homolog of BNIP3, which
contributes to the role of p53 in tumor suppression (Fei et al.,
2004; Gorbunova et al., 2020).

In addition to apoptosis, hypoxia induces autophagy via
both HIF-1-dependent and -independent pathways, such as the
mTOR pathway, unfolded protein response (UPR) pathway and
PKCδ-JNK1 pathway (Fang et al., 2015; Daskalaki et al., 2018).
Autophagy plays a protective role by mediating the removal of
the damaged organelles and proteins under chronic and mild
hypoxia, whereas it may be detrimental and induce cell death
during rapid and severe hypoxia (Fang et al., 2015). p53 was
reported to facilitate autophagy by inducing the expression of
DRAM, Sestrins, and AMPK and inhibiting the mTOR pathway
(Crighton et al., 2006; Feng and Levine, 2010; Xu-Monette
and Young, 2012). BNIP3 and BNIP3L, which are induced

under hypoxia via HIF-1α (Gorbunova et al., 2020), also play
important roles in promoting autophagy in addition to apoptosis
(Bellot et al., 2009; Daskalaki et al., 2018). Ectopic expression
of BNIP3 and BNIP3L can activate autophagy by disrupting
the Bcl-2–Beclin1 complex (Bellot et al., 2009; Gorbunova
et al., 2020). p53 induces BNIP3 expression and leads to
autophagy (Wang et al., 2013). Furthermore, p53 also induces
expression of BNIP3L under hypoxia, which promotes autophagy
(Fei et al., 2004; Bellot et al., 2009; Gorbunova et al., 2020).
However, the role of p53 in autophagy appears to be context
dependent. It was also reported that the cytoplasmic fraction of
p53 represses autophagy (Tasdemir et al., 2008). Studies have
suggested that autophagy has dual functions in both tumor
suppression and promotion (White, 2015; Yun and Lee, 2018).
Therefore, it will be important to understand the precise role
of autophagy under different hypoxic conditions in different
cells and tissues.

Hypoxia also regulates cell proliferation in addition to cell
death. VEGF is an important target gene of the HIF pathway
involved in cell proliferation, which is upregulated in many
types of cancers (Barak et al., 2011; Schito and Semenza, 2016;
Choueiri and Kaelin, 2020; Lee et al., 2020). HIF-2α was reported
to promote the cell cycle progression through regulation of its
target Cyclin D1 and indirect regulation of p21 and p27, and by
enhancing c-Myc function as well (Barak et al., 2011; Schito and
Semenza, 2016; Choueiri and Kaelin, 2020; Lee et al., 2020). In
contrast, p53 was reported to induce cell cycle arrest of hypoxic
cells through transcriptional activation of p21 (Yu et al., 2003;
Levine, 2019).

Angiogenesis
Angiogenesis is one of the classic responses to hypoxia.
HIF-1α can induce the expression of several pro-angiogenic
factors, including VEGF and PDGF (platelet-derived growth
factor), to promote angiogenesis (Schito and Semenza, 2016;
Choueiri and Kaelin, 2020; de Heer et al., 2020). As a tumor
suppressor, p53 is known to inhibit angiogenesis, and p53
loss or inactivation promotes hypoxia-induced angiogenesis in
both HIF-dependent and -independent manners (Ravi et al.,
2000; Levine, 2019). Consistent with the regulation of p53
by hypoxia, the regulation of angiogenesis by p53 under the
hypoxic condition also appears to be context dependent. While
p53 can activate angiogenesis in the initial hypoxic phase,
p53 suppresses angiogenesis as a tumor-suppressive mechanism
under persistent hypoxic conditions (Farhang Ghahremani et al.,
2013). Loss of p53 in tumor cells leads to enhanced HIF-1α

levels and HIF-1-dependent VEGF activation upon hypoxia,
which in turn augments neovascularization and tumor growth
(Ravi et al., 2000; Schito and Semenza, 2016; de Heer et al.,
2020). p53 also decreases the levels of HIF-1β by transcriptionally
inducing miRNA-107, which in turn reduces VEGF expression,
leading to the inhibition of angiogenesis (Yamakuchi et al.,
2010). Interestingly, it was also reported that under acute
hypoxia, p53 can bind to the p53-binding element in the
promoter region of VEGF in a HIF-1α-dependent manner,
enhancing VEGF expression and angiogenesis, whereas under
chronic hypoxia, the expression of VEGF can be repressed by
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the retinoblastoma (Rb) pathway in a p21-dependent manner
(Farhang Ghahremani et al., 2013). On the contrary, HIF-
1α reduces HIPK2 levels to inhibit p53 activities, which
in turn enhances angiogenesis in hepatocellular carcinoma
(Chen et al., 2020).

Metastasis
Hypoxia also plays an important role in promoting metastasis,
which is the primary reason for cancer-related mortality. Many
target genes of HIFs are related to cancer metastasis, and
HIFs were reported to regulate different aspects of metastasis
(Keith et al., 2011; Balamurugan, 2016; de Heer et al., 2020).
p53 plays a key role in suppression of cancer metastasis
(Vousden and Prives, 2009; Muller and Vousden, 2014; Levine,
2019; Zhang et al., 2020). Parkin, as a p53 target, inhibits
metastasis of breast cancers through direct binding to HIF-1α

to lead to HIF-1α ubiquitination and degradation (Liu et al.,
2017b). p53 was also reported to decrease migration, invasion,
and metastasis of cancer cells via another p53 target GLS2
(Zhang et al., 2016). GLS2 is a mitochondria glutaminase,
which converts glutamine to glutamate. GLS2 expression can
be induced by p53 activation in response to ROS, which
is often a consequence of hypoxia (Suzuki et al., 2010).
GLS2 mediates the role of p53 in regulating mitochondrial
function and antioxidant defense in cells (Hu et al., 2010;
Suzuki et al., 2010). Interestingly, GLS2 directly binds to small
GTPase Rac1 independent of its glutaminase activities, which
in turn inhibits Rac1 activation to suppress cancer metastasis
(Zhang et al., 2016).

Metabolic Reprogramming
Metabolic reprogramming is a hallmark of cancer, which plays a
key role in cancer progression. The most well-known metabolic
change in cancer is the Warburg effect, which is characterized
by the enhanced glycolysis under the normoxic condition
and is crucial for cancer progression (Liu J. et al., 2019;
Hoxhaj and Manning, 2020). Hypoxia induces similar metabolic
changes as the Warburg effect. HIF-1 activation promotes
glycolysis by enhancing the expression of genes encoding glucose
transporters (GLUTs) and glycolytic enzymes such as hexokinase
1/2, phosphoglycerate mutase 1, enolase 1, and pyruvate kinase
M2 (Gonzalez et al., 2018; Kierans and Taylor, 2020). HIF-
1 can also inactivate the pyruvate dehydrogenase complex via
promoting the expression of pyruvate dehydrogenase kinases
(PDKs), which in turn decreases the flux of pyruvate into the
tricarboxylic acid (TCA) cycle and mitochondrial respiration,
and increases its flux to the lactate (Kim et al., 2006;
Papandreou et al., 2006). p53 has been reported to play an
important role in inhibiting glycolysis through transcriptional
regulation of its targets, such as TIGAR, Parkin, hexokinase
2, phosphoglycerate mutase 1, and RRAD (Zhang et al., 2011,
2014; Kruiswijk et al., 2015; Liu J. et al., 2019). Under the
hypoxic condition, p53 activation leads to the induction of the
expression of its target RRAD, a small GTPase. RRAD binds to
p65 and inhibits the NF-kB signaling, which suppresses GLUT1
translocation to the cell surface to reduce glucose uptake in cells
(Zhang et al., 2014).

In addition to glycolysis, hypoxia has also been reported
to impact other metabolic pathways. Hypoxia induces
the glycosylation and activation of glucose-6-phosphate
dehydrogenase (G6PD), the rate-limiting enzyme of the pentose
phosphate pathway (PPP), to promote the PPP and tumor
growth (Rao et al., 2015). Interestingly, p53 inhibits G6PD
activities by preventing the formation of the active G6PD dimer
(Jiang et al., 2011). Hypoxia also modulates lipid metabolism.
Hypoxia can promote acetate-dependent epigenetic activation
of lipogenic genes such as acetyl-CoA carboxylase α (ACACA)
and fatty acid synthase (FASN) to enhance the uptake of fatty
acids and de novo lipid synthesis (Gao et al., 2016). Hypoxia
elevates glutamine-dependent lipid synthesis via the degradation
of α-ketoglutarate dehydrogenase (αKGDH) and carboxylation
of α-ketoglutarate (α-KG) (Wise et al., 2011; Sun and Denko,
2014). p53 transcriptionally inhibits SREBP1c, a transcription
factor that activates the transcription of many lipogenic genes
(Yahagi et al., 2003). Further, p53 transcriptionally induces
the expression of ABCA1, a transporter controlling retrograde
cholesterol transport, leading to the inhibition of maturation and
nuclear translocation of SREBP2, another transcription factor
that mainly contributes to the lipid synthesis via the mevalonate
pathway (Moon et al., 2019).

Additionally, HIF1α can suppress fatty acid β-oxidation by
regulating the expression of medium/long-chain acetyl-CoA
dehydrogenases (M/LCADs) and fatty acid binding proteins
(FABPs) (Bensaad et al., 2014; Huang et al., 2014). On the
contrary, p53 promotes fatty acid β-oxidation by inducing
the expression of carnitine O-octanoyltransferase (CROT) that
facilitates fatty acids efflux out of the peroxisome (Goldstein
et al., 2012), and the expression of the transporters that convey
fatty acids into the mitochondria (CPT1A and CPT1C) (Sanchez-
Macedo et al., 2013), as well as the expression of several genes that
are directly or indirectly involved in the fatty acid β-oxidation
(e.g., ACAD11, HMGCLL1, and MCD) (Liu et al., 2014; Jiang
et al., 2015). Further, hypoxia increases both ROS and HIF
activities as a function of decreasing oxygen levels (Chandel
et al., 1998; Bell et al., 2007). In response to ROS, p53 promotes
antioxidant defense through inducing the expression of a group
of antioxidant genes, including Sestrins 1/2, TIGAR, GPX1,
ALDH4, GLS2, and Parkin (Berkers et al., 2013; Liang et al.,
2013). For instance, p53 enhances the intracellular levels of
glutathione (GSH) to reduce ROS levels by inducing its target
GLS2 and Parkin (Hu et al., 2010; Suzuki et al., 2010; Zhang
et al., 2011). Further, p53 reduces ROS levels in cells by promoting
the stabilization of NRF2, a transcription factor that plays a
critical role in antioxidant defense, through its upregulation of
p21 (Chen et al., 2009).

Cell Stemness
A small part of the heterogeneous cancer cell population with
high self-renewal potential, which is known as cancer stem
cells (CSCs), is responsible for tumor initiation, recurrence,
and metastasis. CSCs are resided in a specific tissue niche,
forming complicated interactions with the supporting cells
and microenvironment factors, such as hypoxia. Hypoxia can
promote the stem cell-like phenotype in cancer cells and increase
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the expansion of CSCs in cancers (Soeda et al., 2009; Bar
et al., 2010; Sun et al., 2020). It was reported that HIF-1α

activation promotes the expansion of CD133-positive CSCs in
brain and pancreatic cancers, whereas HIF-1α deletion decreases
leukemia stem cell capacity (Soeda et al., 2009; Bar et al.,
2010; Hashimoto et al., 2011; Sun et al., 2020). Similarly, HIF-
2 was reported to induce the expression of genes related to
the stem cell function, such as Oct-4 in cancer cells under
hypoxia (Covello et al., 2006; Sun et al., 2020). p53 also regulates
the stemness of both normal and cancer cells. p53 can inhibit
the reprogramming of differentiated somatic cells to induced
pluripotent stem cells (iPSCs) by inducing the expression of
p21 and miRNAs (e.g. miR-34), and repressing the expression
of stem cell markers, such as Oct-4, Sox-2, and Nanog (Levine
et al., 2016; Koifman et al., 2019). Compared with normoxia,
hypoxia is favorable for maintaining the stemness of human
endothelial progenitor cells, which shows the low activities
of the p53 signaling (Lin et al., 2019). In human embryonic
stem cells, HIF-2α was reported to suppress p53 to promote
the expression of Nanog, leading to the reprogramming of
SSEA3+ /ABCG2+ cells to an even higher state of stemness
(Das et al., 2012). Furthermore, physiological hypoxia (10%
O2) enhances the stemness properties and promotes the
proliferation ability of induced hepatic stem cells by inhibiting
the p53–p21 signaling pathway to accelerating G1/S transition
(Zhi et al., 2018).

In sum, the hypoxia/HIF and p53 pathways can cross-talk at
different levels. This cross-talk appears to be highly cell type-
and context-dependent. Furthermore, as a tumor suppressor, p53
antagonizes the oncogenic effects of hypoxia in different aspects.

GOF MUTANT p53 AND HYPOXIA

Most of p53 mutations in cancers are missense mutations,
which encodes the full-length mutant p53 proteins. In addition
to the loss of WT p53 function as a tumor suppressor, many
tumor-associated mutant p53 proteins display oncogenic
activities, which is known as gain-of-function (GOF), to promote
tumor progression by regulating cell proliferation, survival,
metastasis, metabolic reprogramming, genomic instability,
stemness, tumor microenvironment adaption, and immune
evasion (Muller and Vousden, 2014; Donehower et al., 2019;
Levine, 2019; Zhang et al., 2020). These mutant p53 proteins
often accumulate to very high levels in cancer cells through
different mechanisms, including posttranslational modifications
(such as ubiquitination, acetylation, and phosphorylation),
interaction with chaperones and co-chaperone proteins, as well
as induction by different stress signals (Muller and Vousden,
2014; Yue et al., 2017; Donehower et al., 2019; Zhang et al., 2020).
Hypoxia has been reported to increase GOF mutant p53 protein
levels (Mantovani et al., 2019; Zhang et al., 2020). Although
it is still unclear how hypoxia enhances mutant p53 levels,
some mechanisms by which hypoxia induces WT p53 may also
contribute to the induction of mutant p53 in cells (Yamamoto
and Iwakuma, 2018). It was reported that tumors bearing p53
mutations are generally characterized by higher HIF-1α levels,

and mutant p53 appears to stimulate HIF-1α stabilization by
blocking its interaction with MDM2 under the hypoxic condition
(Kamat et al., 2007).

Gain-of-function mutant p53 can promote the adaptation of
cancer cells to hypoxia. Mutant p53 activates several intracellular
signaling pathways to promote angiogenesis, which helps the
survival of cancer cells under the hypoxic condition. It was
reported that mutant p53 activates protein kinase C (PKC)
to increase the expression of VEGF, which in turn promotes
angiogenesis (Kieser et al., 1994; Zhang et al., 2020). Mutant
p53 induces VEGF expression through forming a complex with
the lncRNA MALAT1 to promote the chromatin association
of MALAT1, leading to recruitment of MALAT1 on VEGFA
pre-mRNA to enhance its pro-angiogenic isoform expression
in breast cancer cells (Pruszko et al., 2017). Mutant p53 forms
a complex with E2F1 and induces ID4 (inhibitor of DNA-
binding 4) to enhance the expression of pro-angiogenic factors
IL8 and GRO-α, which promotes angiogenesis (Fontemaggi
et al., 2009). Mutant p53 also promotes tumorigenesis through
the HIF pathway. It was reported that loss of one allele of
HIF-1α, but not HIF-2α, in a mutant p53 mouse model (p53
R270H/R270H) reduces the incidence of thymic lymphomas
(Bertout et al., 2009). Further, mutant p53 forms a complex
with HIF-1α, which in turn binds to the SWI/SNF chromatin-
remodeling complex and induces the expression of a selective
subset of its target genes, including VEGFR2 (VEGF receptor 2),
to promote angiogenesis (Pfister et al., 2015). The mutant p53-
HIF-1α complex also induces expression of some extracellular
matrix (ECM) genes such as type VIIa1 collagen (COL7A1)
and laminin-γ2 (LAMC2) (Amelio et al., 2018). Depletion
of mutant p53 impairs hypoxia-mediated metastasis of non-
small cell lung cancer (NSCLC) cells, which can be reverted
by overexpression of COL7A1 and LAMC2. Consistently, the
higher levels of COL7A1 and LAMC2 are correlated with HIF-
1 activation in NSCLC carrying p53 mutations, and associated
with a poor prognosis of the patients (Amelio et al., 2018).
Mutant p53 was reported to promote metastasis of cancer cells
by regulating different pathways, including ZEB1, Rac1, EGFR,
NF-Y, and Smad2/3 pathways, which may allow tumor cells to
escape from the hypoxic environment (Pitolli et al., 2019; Zhang
et al., 2020). In addition, mutant p53 interacts with p63 to
inhibit the expression of Sharp1, an anti-metastatic p63 target
gene. Sharp1 promotes ubiquitination-mediated degradation
of HIF-1α and HIF-2α to attenuate HIF-induced malignant
cell behavior (Adorno et al., 2009; Montagner et al., 2012;
Zhang et al., 2020).

p53 AND HYPOXIA IN CANCER
THERAPY

Since over 50% of human tumors contain p53 mutations
including many GOF mutations, and over 80% of human
tumors are estimated to have the impaired p53 function, p53
has become a very attractive target for cancer therapy. Many
strategies have been tested and developed to restore WT p53
function and/or block GOF mutant p53 function and signaling in
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tumors (Sabapathy and Lane, 2018; Zhou et al., 2019; Zhang et al.,
2020). As a hallmark of the majority of solid tumors, hypoxia is
associated with insufficient response to standard cancer therapies
and poor prognosis of cancer patients (Baran and Konopleva,
2017; Albadari et al., 2019; Spiess, 2020). Therefore, like p53,
the hypoxia/HIF signaling pathway is an attractive target for
cancer therapy. Currently, several hypoxia-activated prodrugs
that selectively kill tumor cells in hypoxic zones of tumors, and
oxygen-carrier compounds that reverse the effects of aberrant
tumor vasculature, as well as small-molecule inhibitors of both
HIF-1 and HIF-2 are available (Baran and Konopleva, 2017;
Albadari et al., 2019; Spiess, 2020; Schonberger et al., 2021).
Given that loss of p53 function and hypoxia are common events
in solid tumors, targeting p53 and hypoxia simultaneously has
been tested as a promising strategy for cancer therapy. Based
on the finding that HIF-1α interacts with p53 and inhibits its
transcriptional activity in hypoxic cancer cells, Topotecan (TPT),
a topoisomerase inhibitor used in ovarian cancer treatment,
was reported to downregulate HIF-1α in hypoxic cells to
enhance p53 transcriptional activities and restore p53 tumor-
suppressive function, which may offer a novel approach to
reverse hypoxia-related cisplatin and paclitaxel resistance in
ovarian cancers expressing WT p53 (Parmakhtiar et al., 2019).
RITA, a small-molecule that activates WT p53 through blocking
MDM2-p53 interaction, can induce p53 and inhibit expression
of HIF-1α and VEGF in vivo and induce apoptosis of tumor
cells under hypoxia in tumor cells expressing WT p53 (Yang
et al., 2009). TAT-ODD-p53, a p53 fusion protein conjugated
with the minimum motif of oxygen-dependent degradation
domain (ODD) and the basic domain of the TAT (transactivator
of transcription) protein of HIV-1, was reported to induce
the cell cycle arrest and apoptosis to inhibit the growth of
human lung H1299 cancer cells in a p53-dependent manner
especially under hypoxia in vitro. Furthermore, TAT-ODD-p53
selectively accumulates in the hypoxic areas of solid tumor
tissues and inhibits the growth of xenograft tumors in a p53-
dependent manner (Zhao et al., 2011). This strategy may be
particularly useful for hypoxic tumors with WT p53 deficiency.
Recently, a manganese-clay hybrid compound (MHC), which
targets hypoxia by generating molecular oxygen in aqueous
solution, was shown to induce p53-dependent apoptosis under
hypoxia, suggesting that MHC can be used to treat hypoxic
tumors containing WT p53 (Deepa et al., 2020). p53 contains
a single zinc ion near its DNA-binding interface, which
is critical for p53 conformation and transcriptional activity.
Supplementation of zinc was reported to restore the WT
DNA-binding activities of mutant p53 to reactivate the p53-
induced apoptosis in response to chemotherapeutic drugs (Puca
et al., 2011). Zinc supplementation was shown to increase the
stability and nuclear translocation of HIPK2, which binds to
the HIF-1α promoter to repress transcriptional activities of HIF-
1 (Nardinocchi et al., 2009). Based on these findings, targeting
both hypoxia and mutant p53 by zinc supplementation was
used in combination with other chemotherapeutic drugs to
improve the treatment for hypoxic tumors expressing mutant p53
(Nardinocchi et al., 2009). Inhibition of the proteins regulating
the G2/M checkpoint, such as Chk1, has been shown to

potentially induce synthetic lethality in tumors expressing
mutant p53 (Zhou et al., 2019; Zhang et al., 2020). Interestingly,
inhibition of Chk1 was shown to enhance the anti-tumor
activity of hypoxia-activated prodrug TH-302, suggesting that
the combination of CHK1 inhibitors and TH-302 could be
a potential treatment for hypoxic tumors expressing mutant
p53 (Meng et al., 2015). These studies provide evidence of
targeting the hypoxia/HIF and p53 signaling pathways in
cancer simultaneously for improved cancer treatment, which
will inspire many future studies and better strategies in
cancer therapies.

DISCUSSION

Both hypoxia and p53 signaling pathways in cancer have
been extensively studied for decades. Although many studies
have demonstrated the close interplay between hypoxia and
p53 signaling pathways, our current understanding of this
interplay and its impact on cellular responses, tumor progression,
and cancer therapy is still far from clear. Hypoxia and
the HIF pathway play important roles in tumor progression
through promoting cell proliferation, angiogenesis, metastasis,
metabolic reprogramming, and cell stemness. As a tumor
suppressor, p53 often negatively regulates these cellular processes
to display its tumor suppressive function. However, cellular
responses to hypoxia appear to be extremely complicated,
depending on the duration and severity of the hypoxia as
well as cell and tissue types. It appears that in some types
of cells and tissues, severe hypoxia increases p53 levels
and activities to induce cell death, whereas mild hypoxia
decreases p53 levels and activities to promote cell survival.
Although many mechanisms have been proposed on how
hypoxia regulates p53, it is still not clear how this context-
dependent regulation is achieved, which may involve the
selective transactivation of different p53 target genes under
different conditions. Similarly, although some recent studies
have revealed that mutant p53 coordinates with the hypoxia
and HIF pathway and helps the cancer cells to adapt to
the hypoxic environment, which is consistent with the GOF
oncogenic effect of mutant p53, our understanding of the
interplay between mutant p53 and the hypoxia and HIF
pathway is still very limited. Additionally, it is also worth
noting that the physiological hypoxia and the conditions used
in the in vitro culture experiments to mimic physiological
hypoxia in vivo are not the same. Many studies used anoxic
conditions (nearly 0% oxygen) or chemicals to stabilize HIF,
such as cobalt chloride or deferoxamine, to mimic the hypoxic
conditions in their experiments, which could be different
from the hypoxic conditions in tumors and other diseases.
Using the non-invasive electron paramagnetic resonance imaging
technique, it was reported that the oxygen concentration in
solid tumors varies from 0.3 to 2.2% (Bratasz et al., 2007;
Muz et al., 2015). Furthermore, many of these studies on
the interplay between p53 and hypoxia were performed in
in vitro cell culture systems using different cell lines, including
many cancer cell lines containing mutations of different genes.
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Different genetic or epigenetic backgrounds of these cancer cell
lines may affect the interplay between p53 and hypoxia/HIF
signaling pathways. Future studies should better mimic hypoxic
conditions in tumors and use in vivo animal models to further
elucidate the interplay between hypoxia and p53 in tumors and
its underlying mechanisms. Given that the loss of p53 tumor-
suppressive function and hypoxia are two common biological
events observed in solid tumors, targeting p53 and hypoxia
simultaneously could be a promising strategy for cancer therapy,
which is being actively tested. In addition to cancer, both hypoxia
and p53 have been shown to play important roles in other
physiological and pathological processes, including immunity,
inflammation, tissue ischemia/reperfusion injuries, reproductive
defects, neurodegenerative diseases, and aging. Therefore, a
better understanding of the interplay between hypoxia and p53
pathways, the underlying molecular mechanisms, and its impact
on these afore-mentioned biological processes and diseases will

lead to novel and effective therapeutic strategies for cancer
and other diseases.
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