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Cardiomyocyte death is a fundamental progress in cardiomyopathy. However, the
mechanism of triggering the death of myocardial cells remains unclear. Ferroptosis,
which is the nonapoptotic, iron-dependent, and peroxidation-driven programmed cell
death pathway, that is abundant and readily accessible, was not discovered until recently
with a pharmacological approach. New researches have demonstrated the close
relationship between ferroptosis and the development of many cardiovascular diseases,
and several ferroptosis inhibitors, iron chelators, and small antioxidant molecules can
relieve myocardial injury by blocking the ferroptosis pathways. Notably, ferroptosis
is gradually being considered as an important cell death mechanism in the animal
models with multiple cardiomyopathies. In this review, we will discuss the mechanism
of ferroptosis and the important role of ferroptosis in cardiomyopathy with a special
emphasis on the value of ferroptosis as a potential novel diagnostic and therapeutic
target for patients suffering from cardiomyopathy in the future.
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INTRODUCTION

The death of myocardial cells is a crucial aspect of cardiac pathophysiology. Damaged
cardiomyocytes are eliminated through the activation of six major forms of regulated cell death
including necroptosis, ferroptosis, pyroptosis, mitochondrial-mediated necrosis, apoptosis, and
autophagic cell death under different conditions (Galluzzi et al., 2018). These regulated myocardial
cell death mechanisms participate in the onset and progression of cardiovascular diseases. For
example, the mechanism of cardiomyocyte apoptosis has been investigated to a great depth, has
been linked to inflammation, infection, ischemia, and immunologically induced damnification
in the heart and subsequently heart failure (Kerr et al., 1972; Kang and Izumo, 2003; Wencker
et al., 2003; Abbate et al., 2006). Among different necrotic cell deaths, necroptosis contributes
significantly to ischemic injuries of the heart, worsening heart function, as well as adverse cardiac
remodeling reported by several studies (Luedde et al., 2014; Adameova et al., 2016, 2017; Zhu and
Sun, 2018; Ghardashi Afousi et al., 2019). Compared with other forms of myocardial cell death
mechanisms, autophagic cell death is not a process that customarily commands the destruction of
the cell, it is believed to act as a protective mechanism that recycles the molecular components and
unwanted or damaged cellular constituents, thereby maintaining cell vitality. Akazawa et al. (2004)
reported that autophagic cell death played a certain part in the pathophysiology of heart failure in
transgenic mice. Ferroptosis is another newly identified programmed cell death mechanism that is
distinguished from necroptosis and apoptosis; it is iron-dependent and characterized by the toxic
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lipid reactive oxygen species (ROS) accumulation (Lu et al.,
2017), which were also associated with the pathogenesis of several
diseases, such as tumors, stroke, ischemia-reperfusion injury, etc.
(Guiney et al., 2017; Stockwell et al., 2017). Recently, several
studies have demonstrated that ferroptosis played a crucial role in
myocardial homeostasis and pathology (Akazawa, 2015; Conrad
and Proneth, 2019; Chen et al., 2020; Li W. et al., 2020). However,
the biological roles and regulation pathways of ferroptosis in
cardiovascular diseases have not been entirely understood.

Ferroptosis is a nonapoptotic, abundant and accessible cellular
iron-dependent, and peroxidation-driven programmed cell death
pathway, was not discovered until recently with the aid of a
pharmacological approach (Dixon et al., 2012). Surprisingly,
the erastin and RSL3 induced mode of cell death which was
revealed through high-throughput screening of small-molecule
libraries, was deemed to be nonapoptotic – as cell death in those
treated with erastin and RSL3 occurred without biochemical
apoptotic hallmarks. The principle apoptotic machinery with
regards to cells treated with erastin and RSL3 – caspases, Bcl-
2-associated X protein (Bax) and Bcl-2 homo-logous antago-
nist/killer (Bak) – was suppressed in the meantime (Dolma et al.,
2003; Yagoda et al., 2007; Yang and Stockwell, 2008; Wolpaw
et al., 2011). Further studies identified that the requirement for
cellular iron, disruption of the intracellular redox homeostasis
controlled by glutathione (GSH), glutathione peroxidase 4
(GPX4), and lipid peroxidation were incorporated in this cell
death process (Rui et al., 2020). Recent literature has established
key enzymes and metabolites of the ferroptosis pathway and
specified chemical modulators (Stockwell et al., 2017). The
research about ferroptosis has attached much attention in the
context of tumors, pathophysiologically degenerative conditions,
and other areas (Guiney et al., 2017; Stockwell et al., 2017; Lin
et al., 2020). However, ferroptosis is discovered in cardiac tissue
more recently, and there are many studies reported concerning
ferroptosis specifically in cardiovascular diseases by using several
methods of inducing and inhibiting ferroptosis in cardiac tissue
(Baba et al., 2018; Bai et al., 2018; Liu et al., 2018, 2020; Li
W. et al., 2019, 2020; Li et al., 2021; Wu et al., 2021). This
article will explain the mechanism of ferroptosis and summarized
advances of ferroptosis in cardiomyopathy. We hope to deliver
novel insights for the research of cardiomyopathy in the future.

THE MECHANISM OF FERROPTOSIS

The present definition of ferroptosis is a programmed cell
death (PCD) that is reliant on a large number of cellular
iron and lipid hydroperoxide, subsequently inducing copious
lipid accumulation in cells, interfering with the homeostasis of
redox reactions, and eventually promoting cell death (Xie et al.,
2016; Dixon, 2017; Imai et al., 2017; Stockwell et al., 2017).
This concept distinguishes from canonical signaling cascades
for apoptosis or necroptosis, in which the main antioxidant
system essentially comprises of various metabolic processes.
The associated mechanism of ferroptosis is involved in amino
acid metabolism, which was affected by GSH consumption
and reduced activity and availability of glutathione peroxidases

4 (GPX4), iron metabolism, lipid peroxidation metabolism,
etc. (Figure 1).

Glutathione Consumption
Xc-system, known as the glutamate-cystine reverse transport
system, transports glutamate (Glu) into the extracellular space
and, meanwhile, cystine is transported into the cell on an equal
ratio. P53 can specifically inhibit Xc-system through down-
regulating the expression of SLC7A11 (Kang et al., 2019).
The study conducted by Jiang et al. (2015) demonstrated that
the antioxidant capacity of human lung cancer H1299 cells
remarkably decreased after activation of the P53 gene and
cells were prone to ferroptosis (Han et al., 2020). Apart from
P53, clinical drugs for cancer cells, including sulfasalazine and
sorafenib, and erastin can also induce ferroptosis by inhibiting
the activity of cystine/glutamate antiporter Xc-system (Dixon
et al., 2012, 2014; Xie et al., 2016). After cystine is transported
into the cell, it is converted to cysteine and readily used
for GSH production with glutamate-cysteine ligase (GCLC)
and glutathione synthetase (GSS) acting as catalysts (Griffith,
1999; Dickinson and Forman, 2002). GSH, as one of major
intracellular antioxidant buffers, is widely distributed in tissues
of higher organisms. The concentration of intracellular GSH
decreases with aging due to variations of numerous factors,
including changes in activity of GSH synthetic and metabolic
enzymes as well as availability of precursor amino (Jones, 2006).
Under normal conditions, intracellular free GSH exists almost
exclusively in its reduced form. Reduced GSH is critical in
sustaining redox balance under the action of GPX4 in vivo
(Kalinina and Gavriliuk, 2020). GSH is able to protect important
cellular components against damage induced by ROS including
free radicals, peroxides, lipid peroxides, and heavy metals
(Pompella et al., 2003; Pompella and Corti, 2015). Oxidized
glutathione (GSSG) can be converted to free GSH from under
the action of GSH reductase. In mammalian cells, the ratio
of GSH/GSSG is conservatively estimated at approximately
10,000:1∼50,000:1 within the cytosol under physical condition
(Morgan et al., 2013; Lv et al., 2019). The lower ratio of
GSH/GSSG, decreasing to values of 10:1 and even 1:1, was
observed stimulated by various oxidative stress models (Zitka
et al., 2012). The ratio of GSH/GSSG is regarded as one of
indicators of oxidative stress in the body (Owen and Butterfield,
2010; Zitka et al., 2012; Sentellas et al., 2014; Kalinina and
Gavriliuk, 2020). The finding above was consistent with the
results of study by Wu et al. (2018). They found that ferroptosis
and mitochondrial dysfunction were induced after co-treatment
with 100 µM t-BHP for 1 h in PC12 cells, which was a widely
used oxidative stress stimulus, accompanied by GSH depletion,
decrease of the ratio of GSH/GSSG, reduced Gpx4 expression,
and increased lipid ROS (Wu et al., 2018). The results of study by
Wu et al. (2018) indicated that the ratio of GSH/GSSG is tightly
related to ferroptosis as well as GSH depletion. Importantly, Sun
et al. (2018b) conducted the study to explore the association
between GSH consumption and ferroptosis for the first time,
and the results demonstrated that GSH deletion could trigger
ferroptosis by generating lipid peroxidation build-up in retinal
pigment epithelial (RPE) cells (Qiu et al., 2020). Therefore, it
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FIGURE 1 | The mechanism of ferroptosis in cell. Amino acid metabolism, which can be affected by GSH consumption and reduced activity and availability of GPX4,
iron metabolism, lipid peroxidation metabolism, the high concentration of glutamic acid outside the cell, etc. are strongly implicated in the mechanism of ferroptosis.
Homocysteine is converted to cystathionine under the catalysis of the cystathionine b-synthase (CBS), and in the final step, cystathionine is converted to cysteine
under the action of the corresponding cystathionine g-lyase in the reverse trans-sulfurylation pathway, which can help maintain homeostasis of intracellular cysteine
level and subsequently reduce the sensitivity to ferroptotic cell death. The sec-tRNA and CoQ10 produced in the mevalonate pathway can also affect ferroptosis.
SLC7A11, the glutamate/cystine antiporter solute carrier family 7 member 11; SLC3A2, the glutamate/cystine antiporter solute carrier family 3 member 2; GSL,
glutaminase; Glu, glutamate; Gln, glutamine; GCLC, glutamate-cysteine ligase; GSS, glutathione synthetase; Gly, glycine; GSH, glutathione; GPX4, glutathione
peroxidases 4; GR, glutathione reductase; CBS, cystathionine b-synthase; CTH, ceramide trihexoside; Met, Methionine; ACSL4, acyl-CoA synthetase long-chain
family member 4; LPCAT3, lysophosphatidylcholine acyltransferase 3; LOXs, lipoxygenases; DMT1, divalent metal transporter 1; ROS, reactive oxygen species; IPP,
isopentenyl pyrophosphate; HMGCR, HMG-CoA reductase.

can be concluded that GSH consumption is regarded as an
indispensable process leading up ferroptosis.

The upstream factors mediating deprivation of intracellular
GSH can be summarized in three aspects: glutamine (Gln)
decomposition, reduced concentration of cysteine and high
concentration of extracellular glutamate. More than half of
the free amino acids in the human body are in the form of
glutamine in muscles and other tissues. Extracellular glutamine
could be transformed to Glu, under the action of glutaminase 1
(GLS1) and glutaminase 2 (GLS2), which is then converted to
a-ketoglutarate (a-KG) by using the deamination reaction. In a
final step, a-KG is degraded by the mitochondrial tricarboxylic

acid cycle (TCA). The research proposed by Gao M. et al. (2019)
demonstrated that knockdown of GLS2 to inhibit glutamine
decomposition pathway could suppress ferroptosis. Cells can
maintain levels of intracellular cysteine by the glutamate–cystine
reverse transport system as described earlier, which can offer
the oxidized form of cellular cysteine–cystine, and the reverse
trans-sulfurylation pathway, which can convert methionine
to homocysteine, cystathionine, in turn, and eventually to
cysteine (Hayano et al., 2016). Factors contributing to decreased
availability of cysteine greatly promoted the occurrence of
ferroptosis. The glutamate/cystine antiporter solute carrier family
7 member11 (SLC7A11), cationic amino acid transporter,
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promotes the synthesis of GSH by mediating cystine uptake
and Glu release, protects cells from oxidative stress, maintains
cell redox balance, and prevents lipids peroxidation induced
ferroptosis. The study by Jiang et al. (2015) indicated that p53
could limit the availability of cysteine via suppression of SLC7A11
expression, making cells prone to ferroptosis. Cysteinyl-tRNA
synthetase encoded by the CARS gene is associated with protein
translation of tRNAs by using cysteine. The conclusion has been
proven by Hayano et al. (2016) that the knockout of CARS gene
by three additional Ambion Silencer Select siRNA sequences
could make the increase of intracellular free cysteine, preventing
Erastin-induced ferroptosis. Homocysteine is converted to
cystathionine under the catalysis of the cystathionine b-synthase
(CBS), and in the final step, cystathionine is converted to
cysteine under the action of the corresponding cystathionine
g-lyase in the reverse trans-sulfurylation pathway. In a study to
explore the influence of the reverse trans-sulfurylation pathway
on the resistance of drugs, the researchers discovered that
sensitivity of these resistant cells to ferroptosis might be restored
through upregulating the pathway, whereas the pathway cannot
prevent Ras-selective lethal small molecule 3 (RLS3), the GPX4
inhibitor, induced ferroptosis due to acting on the “upstream”
of ferroptosis (Hayano et al., 2016). In addition, when the
concentration of extracellular glutamate increases abnormally,
the concentration gradient of glutamate inside and outside the
cell changes, subsequently affecting the cellular exchange of
Glu and cystine in a 1:1 manner, ultimately leading to lipid
peroxidation accumulation, and consequently ferroptosis (Yang
and Stockwell, 2016; Yang et al., 2016; Latunde-Dada, 2017).
Studies have indicated that oxidation toxicity mediated by high
extracellular glutamate could induce nerve cell injury manifesting
as ferroptosis (Yang et al., 2014; Zheng et al., 2017), and the
results of the research conducted by Liu further support the
view above (Liu et al., 2017). In a nutshell, changes based on
Gln decomposition, reduced availability of cysteine and high
concentration of extracellular glutamate can silence the Xc-
system, causing GSH- consumption induced ferroptosis.

Decreased Activity or Availability of
GPX4
If GSH metabolism is the crux of the amino acid metabolism
mechanism of ferroptosis, GPX4 is the channel that join all
the modifications. GPX4, as a crucial antioxidant enzyme, is
different from the other GPX family members in the fields
of its monomeric structure, a less restricted dependence on
GSH as reducing substrate, and the ability to reduce lipid-
hydroperoxides inside biological membranes. Reduced GSH is
converted to the oxidized form of glutathione (glutathione
disulfide, GSSG), which is recycled by GSH reductase and
NADPH/H+, under the catalysis of GPX4 during the reduction of
hydrogen peroxide, organic hydroperoxides, and lipid peroxides,
protecting cells from oxidative stress. GPX4, the GSH-dependent
antioxidant enzyme, can reduce lipid hydroperoxides (PUFAs-
OOH) to the corresponding alcohol by using two units of
GSH as a donor, inhibiting the oxidative stress induced
ferroptosis (Lv et al., 2019). Inactivation of the system XC

(−)/glutathione/glutathione peroxidase 4 (Gpx4) axis can bring
about an accumulation of lipid peroxides, subsequently leading
to ferroptotic cell death (Friedmann Angeli et al., 2014; Yang
et al., 2014). The factors contributing to reduced activity
or availability of GPX4 will increase oxidative stress and
make cells prone to the occurrence of ferroptosis. At present,
specific ferroptosis-inducing agents included Erastin, RSL3, and
ferroptosis-inducing agents 56 (FIN56) (Yang and Stockwell,
2008; Shimada et al., 2016). In particular, RSL3 and FIN56
are usually used to trigger ferroptosis by limiting the activity
or availability of GPX4. Yang et al. (2014) found that RSL3
through the mechanism silencing GPX4 could increase oxidative
stress, resulting in ferroptosis. Moreover, the research led by
Shimada et al. (2016) has demonstrated that FIN56 can reduce
GPX4 abundance by consuming GPX4 protein. Moreover, the
study conducted by Dabkowski et al. (2008) reported that, for
the first time, mitochondria-specific transgenic overexpression
of GPX4 could attenuate myocardial ischemia/reperfusion (I/R)-
associated cardiac contractile dysfunction, which was relevant
to enhanced mitochondrial electron transport chain (ETC)
complex activities.

Recently, ferroptosis suppressor protein 1 (FSP1), which was
previously known as apoptosis-inducing factor mitochondrial 2
(AIFM2), is regarded as another potent factor to protect cells
against ferroptosis.

Bersuker et al. (2019) reported that myristoylation was capable
of recruiting FSP1, which was identified through a synthetic lethal
CRISPR–Cas9 screen, to the plasma membrane and reduced
coenzyme Q10 (CoQ10) as an oxidoreductase, subsequently
keeping lipid peroxides from propagation within membranes in
the absence of GPX4. The results of the study demonstrated
that a novel ferroptosis suppression pathway tightly related
to FSP1 acted in parallel to the canonical GSH-based GPX4
pathway. The findings by Bersuker et al. (2019) was consistent
with, to some extent, the results of the study conducted by
Doll et al. (2017, 2019). They also found that FSP1 was able to
protect cells from ferroptosis induced by GPX4 depletion in
a cDNA overexpression screen complementing for GPX4 loss
and CoQ10, known as ubiquinone, could be regenerated under
the catalysis of FSP1 using NAD(P)H. CoQ10 was capable of
scavenging small-molecule lipophilic radical, such as ferrostatin-
1 (Fer-1) and liproxstatin-1, leading to halting ferroptosis (Dixon
et al., 2012; Bebber et al., 2020). The findings above indicated
that pharmacological inhibition of FSP1 may be an effective
therapeutic method to sensitize cancer cells to ferroptosis-
inducing chemotherapeutic agents.

Lipid Peroxidation Metabolism
Recent evidence has demonstrated that lipid peroxidation
metabolism is associated with the form of ferroptosis, which
participates in the establishment of membranous micelles and
pores (Borst et al., 2000; Yang et al., 2016; Doll et al., 2017;
Agmon et al., 2018). At present, it is believed that the formation
of lipid hydroperoxides is related to lipoxygenase (LOXs)-
catalyzed autoxidation and enzymatic reactions rather than
cyclooxygenases (COXs) (Yang et al., 2016). Currently, studies
on lipid peroxidation metabolism related to ferroptosis mainly
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focus on enzyme-catalyzed lipid peroxidation reactions. Under
ferroptosis, the peroxidation of polyunsaturated fatty acids
(PUFAs) seems to be mainly regulated by LOXs and GPX4
(Seiler et al., 2008; Yang et al., 2016). In particular, LOXs, which
are iron-containing nonheme dioxygenases, directly catalyze
lipid peroxidation by promoting the di-oxygenation of free and
esterified PUFAs (Kuhn et al., 2015), whereas GPX4 indirectly
inhibits lipid peroxidation (Seiler et al., 2008). Friedmann Angeli
et al. (2014) found that multiple LOXs were associated with PUFA
peroxidation and under GPX4 inactivity the accumulation of
oxidized PUFAs could make cells to occur ferroptosis (Dixon
et al., 2012). Additionally, ROS scavengers, such as liproxstatin-1
(Lip-1), ferrostatin-1 (Fer-1), as well as coenzyme Q10, vitamin
E and their analogs can inhibit the lethal cascade related to
ferroptosis (Yagoda et al., 2007; Friedmann Angeli et al., 2014;
Matsushita et al., 2015; Kagan et al., 2017; Zilka et al., 2017).
The metabolism of arachidonic and adrenic acids, which are
groups of PUFAs, are associated with two important enzymes –
acyl-CoA synthetase long-chain family member 4 (ACSL4) and
lysophosphatidylcholine acyltransferase 3 (LPCAT3), both of
which engage with the incorporation of long PUFAs into lipid
membranes, and several studies have proven that inhibition of
ACSL4 and 3 LPCAT3 by genetic and/or pharmacological can
protect cells from ferroptosis in some settings (Dixon et al., 2015;
Yuan et al., 2016b; Doll et al., 2017; Kagan et al., 2017). PUFAs
can be converted to PUFA-CoA under the catalysis of acyl-
CoA synthase. Arachidonic acid (AA) is usually preferentially
thioesterified under the action of ACSL4, subsequently are
involved in the formation of phospholipids, when oxidized,
it forms phosphatidy-lethanolamine to make cells prone to
ferroptosis in a final step (Golej et al., 2011). Doll et al. (2017) has
highlighted that inactivating ACSL4 gene and pharmacologically
inhibiting ACSL4 with distinct thiazolidinediones (TZDs),
namely rosiglitazone (ROSI), pioglitazone (PIO) and troglitazone
(TRO), can effectively obstruct ferroptosis as this hinders the
assembly and movement of PUFAs-OOH, indicating that Acsl4
inhibition is a viable therapeutic method to prevent diseases
related to ferroptosis.

Although enzyme-catalyzed lipid peroxidation reactions have
become the focus of many researchers, it is also essential not
to ignore the importance of non-enzymatic lipid peroxidation.
The progression of oxygen-driven free radical chain reaction,
namely non-enzymatic lipid peroxidation, includes three main
processes in turn (Frank, 1950). Initiation refers to the generation
of early lipid radical L·, since a hydrogen atom is pumped
away from the lipid molecule LH under the premise of
generating a large number of sufficiently reactive free radicals
such as ·OH; During the next step propagation, L· undergoes a
series of stages including hydrogen pumping, addition, fracture,
etc. This process continuously repeats to produce a chain
reaction. The oxidation process will not be stopped as long as
the reaction remains dominant. The progress of termination
occurs with a limited amount of antioxidants acting as free
radical scavengers, and eventually, the reaction slows down and
becomes terminated. Moreover, lipid molecules are constantly
recruited to free radical reactions by PLOO· and PLO· produced
through the spontaneous oxidation of lipid peroxidation

(Davies and Guo, 2014). Fenton reaction discovered in 1984 by
H. J. H. Fenton is currently believed to be the provider of free
radicals for lipid peroxidation metabolism, so are the Fenton-like
reaction (Lai and Piette, 1978).

Iron Metabolism
Iron is known as one of important trace elements for cell
survival in the body, the majority of which is distributed in cells
and stored in ferritin and incorporated into heme and iron-
sulfur (Fe-S) cluster proteins (Wang and Pantopoulos, 2011).
Iron is closely related to a variety of biological processes under
physiological states, such as delivering oxygen to cells by binding
to heme for cellular generation of ATP and that is energy
metabolism, deoxyribonucleic acid (DNA) synthesis and repair,
cellular respiration, and electron transfer, participation in redox
reactions, and the generation (Fe-S) protein clusters which can
regulate gene expression, as well as overall metabolism (Johnson
et al., 2005; Pantopoulos et al., 2012; Hirst, 2013; Lawen and
Lane, 2013; Abbaspour et al., 2014; Loreal et al., 2014; Sumneang
et al., 2020). Similar to other cell types, the endogenous
levels of iron concentration in cytosol, mitochondria, nuclei,
or lysosomes within cardiomyocytes is approximately 6, 16, 7,
and 16 µM, respectively, under normal conditions (Petrat et al.,
2001; Rauen et al., 2007; Nakamura et al., 2019; Sumneang
et al., 2020). There is only one pathway for iron export from
cardiomyocytes and that is through Fpn1. Nevertheless, iron
is able to enter cardiomyocytes through several ways, which
makes cardiomyocytes particularly prone to iron overload under
pathological conditions. A detailed discussion with regard to
the mechanism of cellular iron regulation in the heart has
been reviewed elsewhere (Abbaspour et al., 2014; Gao G.
et al., 2019; Ghafourian et al., 2020; Ravingerova et al., 2020).
Moreover, cellular excess iron makes cardiomyocytes vulnerable
to ferroptosis through the production of ROS. There exists a close
relationship between the ferroptosis and the homeostasis of iron
metabolism in cells.

Gao et al. (2015) confirmed the significance of iron in the
formation of ferroptosis through experimental methods and
established that cells became more susceptible to ferroptosis
after a rise in iron level within the redox-active labile iron
pool (LIP) (Hou et al., 2016). The study by Dixon et al.
(2012) indicated that reduce iron in LIP by several methods
could suppress the formation of ferroptosis (Kwon et al.,
2015). Notably, ferritinophagy is a critical mechanism to
regulate the level of LIP. LIP is composed of ferrous iron
in a soluble, chelatable state within the cytoplasm and is
regulated by ferritin, the substrate of ferritinophagy, which is
a highly conserved iron storage protein and is made up of
two subunits including H-ferritin and L-ferritin (Cordani et al.,
2019; Zhang et al., 2019). Ferritinophagy is a process that
ferritin is sequestered into autophagosomes and delivered to
lysosomes for degradation and is important for maintaining iron
homeostasis in cells (Kidane et al., 2006; Asano et al., 2011;
Mancias et al., 2014; Masaldan et al., 2018). Previous studies
have reported that iron chelator, such as DFO and DpdtC,
is capable of inducing ferritinophagy (Mancias et al., 2014;
Huang et al., 2018). The study conducted by Gao et al. (2015)
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demonstrated that ferritinophagy could trigger ferroptosis by
promoting the accumulation of iron and ROS, which was
consistent with the finding by Hou et al. (2016) and Tang
et al. (2018). Controlling iron level in cells by interrupting
ferritinophagy may be a new therapeutic target for inhibiting
ferroptosis in the future (Sui et al., 2019; Li N. et al., 2020).
However, the human body can sustain iron homeostasis in
both the cell and the whole by several proteins and pathways,
such as the iron-responsive element (IRE)-binding proteins,
also known as IRE-BP, IRBP, IRP and IFR, which attach
to IREs during the regulation of iron metabolism within
human bodies (Gray and Hentze, 1994; Eisenstein, 2000). In
addition, transferrin, which is an important carrier glycoprotein
of serum iron that becomes endocytosed into cells through
transferrin receptor (TFRC). Both transferrin and its receptor
are perceived as important participants of regulating iron
metabolism (Gao et al., 2015). Yang and Stockwell (2008)
found that increasing unstable iron intake by upregulating
TFRC could increase the sensitivity of cells toward ferroptosis.
Iron is a central co-factor for several molecules and enzymes
and is particularly involved with regulating mitochondrial
function (Levi and Rovida, 2009; Stehling and Lill, 2013). In
the context of cardiomyocyte, mitochondria is predominantly
crucial for sustaining the normal functions of cardiomyocyte,
hence further highlighting the indispensable role of iron during
cardiac function, since mitochondria fuel the cardiac muscles
to constantly contract (Barth et al., 1992). Disturbance of
iron homeostasis including iron deficiency and accumulation
of iron can impair the normal cardiac function and result in
various cardiovascular diseases (von Haehling et al., 2015; de
Montalembert et al., 2017; Fujikura et al., 2018; Lakhal-Littleton,
2019). Excess iron can be transported and accumulated into
cardiac tissue and cardiomyocytes from iron-overload disorders
or other cardiac pathologies (Oudit et al., 2003). Accordingly,
excess iron will cause the overproduction of mitochondrial ROS.
When the surplus of iron is also taken into the mitochondria,
it consequently becomes a hotbed of ROS production from
oxidation phosphorylation and H2O2 production (Oudit et al.,
2003; Levi and Rovida, 2009; Bolduc et al., 2019; Fang et al.,
2019; Gao M. et al., 2019). In addition, Fe3+ can be converted
to Fe2+, under the action of the metal reductase STEAP3, and
then divalent metal transporter 1 (DMT1) releases Fe2+ in
lysosome into cytoplasmic LIP through. These soluble, redox-
active free iron in the LIP is considered as the catalyst that induces
the elevated ROS production in ferroptosis, thereby causing
cardiomyocytes more sensitive to oxidative stress in the presence
of excess iron (Thomas et al., 2013; Melenovsky et al., 2017;
Xu et al., 2019).

Other Pathways Related to Ferroptosis
Apart from GSH consumption, reduced activity and availability
of GPX4, lipid peroxidation metabolism, iron metabolism, and
other pathways are also correlated with the mechanism of
ferroptosis; for instance, organelle-mediated pathways, Nrf2
pathway, TP53 pathway, etc. Importantly, Statin drugs is
capable of making cells vulnerable to ferroptosis through
inhibiting the rate-limiting enzyme of the mevalonate pathway,

HMG CoA reductase, presumably by depleting CoQ10 and
possibly by also inhibiting downstream tRNA isopentenylation
via TRIT1, which is necessary for the biosynthesis of GPX4
(Fradejas et al., 2013; Shimada et al., 2016; Viswanathan et al.,
2017). Moreover, several cell structures including mitochondria,
endoplasmic reticulum (ER), lysosomes are involved in the
formation of ferroptosis by mediating multiple pathways.
The research led by Gao M. et al. (2019) have confirmed
that mitochondria have a central role in ferroptosis, which
can affect the pathway of glutamine decomposition and
subsequently result in ferroptosis (Tadokoro et al., 2020).
Yuan et al. (2016a) also discovered that inhibition of CDGSH
iron sulfur domain 1 (CISD1), which is an iron sulfur
protein that can suppress iron transportation during the
aforementioned progression, could prevent lipid peroxidation
and ferroptosis by suppressing mitochondrial iron uptake
through RNAi technology or pioglitazone pharmacology. The
evidence indicated that ER oxidative stress markers that
activate cation transport regulator homolog 1 (CHAC1),
transcription factor 4 (ATF4), and phosphorylation of eIF2a
were all upregulated during ferroptosis (Dixon et al., 2014).
However, the precise correlation between ER and ferroptosis
still remains vague, and further research is needed to explore
its function in ferroptosis. Recent researches suggest that
lysosomes are also related to ferroptosis. Mancias et al. (2014)
found that the cargo receptor NCOA4 transferring ferritin
to lysosomes also participates in ferroptosis. In addition, the
study by Hou et al. (2016) proposed that the knockout of
autophagy-related genes Atg5 and Atg7 also limits Erastin-
induced ferroptosis in cells, since ferroptosis is dependent
on autophagy. Abdalkader et al. (2018) found multiple genes
controlled by the transcription factor nuclear factor erythroid
2-related factor 2 (Nrf2) were involved in ferroptosis, such as
GCLM, GSS, SLC7A11, MT1G, TFRC, and so on. The study
conducted by Jennis et al. (2016) indicated that the up-regulated
GLS2 targeting for TP53 (p53 genes) could result in p53-
dependent ferroptosis.

THE ROLE OF FERROPTOSIS IN
CARDIOMYOPATHY

Cardiomyopathy is closely related to the progress of heart failure,
especially lethal heart failure, such as diabetic cardiomyopathy
(DCM), doxorubicin (DOX)-induced cardiotoxicity, dilated
cardiomyopathy, hypertrophic cardiomyopathy, and so on
(Maron et al., 2018; Fang et al., 2019; Rosenbaum et al.,
2020; Wei et al., 2020). Loss of terminally differentiated
cardiomyocytes is identified as a principle risk factor in the
onset of multiple cardiomyopathies. However, the mechanism
of cardiomyocyte death has not been completely unveiled.
Literature has indicated that the newly discovered iron-
dependent ferroptosis is implicated in many cardiomyopathies
including ischemia/reperfusion (I/R)- and DOX-induced
cardiomyopathy (DIC), iron overload cardiomyopathy (IOC),
DCM, septic cardiomyopathy, etc. The focus of this study
will be on the role of ferroptosis in the pathophysiology
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of the four kinds of cardiomyopathy above, and we hope
to provide a fresh insight for the diagnosis and treatment
of cardiomyopathy.

Ferroptosis and Doxorubicin-Induced
Cardiomyopathy
There are two main classifications for DOX-induced myocardial
injuries: contractile dysfunction and loss of myocyte. Though
both are deemed crucial in the progression of DIC, loss of
myocyte could be more important as it is an irreversible process
and generates a poorer prognosis, even fatal decades after onset
(Felker et al., 2000). However, the mechanisms that lead to
cardiomyocyte death are not fully understood. Fang et al. (2019)
proposed that ferroptosis, which is an iron-dependent, and
peroxidation-driven programmed cell death form, was observed
in the murine model of DIC, and suppression of ferroptosis by
ferrostatin-1 (Fer-1) substantially alleviated DIC. The outcomes
of the study also revealed hemeoxygenase-1 (Hmox1), which is
widely acknowledged for its robust cardioprotection (Yet et al.,
2001; Wang et al., 2010), was significantly stimulated in heart
induced by DOX, and free iron released on heme degradation
by Nrf2-mediated up- regulation of Hmox1 was necessary for
inducing cardiac injury. Importantly, Fer-1 and iron chelation
also alleviated both acute and chronic I/R induced heart failure
in mice models. The results above were consistent with the
finding by Liu et al. (2020) that Fer-1was capable of inhibiting
ferroptosis, subsequently preventing cardiac injury, along with
the ultrastructural changes of cardiomyocyte mitochondria. The
study conducted by Liu et al. (2020) also showed ferroptosis
was a crucial mechanism in DIC and highlighted the crucial
role of Acyl-CoA thioesterase 1 (Acot1) during the process,
which was related to its biochemical function by shaping the
lipid composition, indicating that Acot1 bears the potential of
becoming a therapeutic target in preventing DIC by inhibition
of ferroptosis. The findings by Tadokoro et al. (2020) suggested
that mitochondria-dependent ferroptosis played an important
role for cardiomyopathy induced by DOX (DIC) in the mice
model via downregulated glutathione peroxidase 4 (GPX4) and
excessive lipid peroxidation caused by DOX through DOX-Fe2+

complex in mitochondria, which could be reversed by GPX4
overexpression or iron chelation targeting Fe2+ in mitochondria
in cardiomyocytes. They also reported that Fer-1 and zVAD-
FMK, which were concomitant inhibitors of ferroptosis and
apoptosis, were capable of fully protecting cardiomyocytes
against death induced by DOX (Tadokoro et al., 2020). These
researches emphasize that targeting ferroptosis would be a
reasonable protective approach for preventing DIC. Interestingly,
although Fang et al. (2019) demonstrated that ferroptosis
induced by iron overload is a major pathogenesis factor of
the DIC, knocking out receptor interacting serine/threonine
kinase 3 (Ripk3) could increase survival rates compared with
Fer-1 treatment alone, which indicated that ferroptosis and
necroptosis were simultaneously involved in tissue damage as
researchers had reported before (Linkermann et al., 2014).
The link between ferroptosis and necroptosis warrants further
investigation in DIC.

Ferroptosis and Iron Overload
Cardiomyopathy
At the cellular level, iron is involved in multiple biochemical
reactions, which serves as crucial component of a variety of
enzymes participating energy metabolism, cellular respiration,
synthesis and repair of DNA (Lawen and Lane, 2013; Loreal
et al., 2014). However, excessive iron accumulation, namely iron
overload, in cells is an important implication of several diseases
disrupting the homeostatic systemic iron regulatory mechanism,
such as primary hemochromatosis and transfusion-dependent
anemia (Gujja et al., 2010; Gao et al., 2014; Kontoghiorghe
and Kontoghiorghes, 2016). Importantly, iron overload in
cardiomyocyte can result in IOC, the major reason of fatality
in patients suffering from hemochromatosis. IOC manifests
as progressive electromechanical deterioration of the heart
(Nakamura et al., 2019). It is well known that the lethal level of
lipid peroxidation is the significant feature of ferroptosis, which
can be influenced by several factors, such as ROS, lipoxygenases
(LOX), cyclooxygenases (COX), and GPX4. Hence, excessive
accumulation of ROS, enhanced activities of LOX and/or COX,
and decreased activity or availability of GPX4 are capable of
inducing irresistible lipid peroxidation, subsequently resulting in
ferroptotic cell death (Friedmann Angeli et al., 2014; Yang et al.,
2014; Galluzzi et al., 2018; Lei et al., 2019). In this regard, iron
overload in cardiomyocyte is able to trigger ferroptosis through
several means, including using the Fenton reaction to catalyze
the reactions for ROS production, and serving as a co-factor for
LOX, allowing this enzyme to oxidize PUFAs, indicating that
ferroptosis may be tightly related to IOC (Friedmann Angeli
et al., 2014; Yang et al., 2014; Baba et al., 2018; Galluzzi et al.,
2018; Lei et al., 2019). However, the mechanism underling
how iron overload leads to IOC has not been fully elucidated
and more studies need to be conducted to investigate the role
of ferroptosis in IOC in the future (Ravingerova et al., 2020;
Sumneang et al., 2020). In addition, Baba et al. (2018) reported
that erastin (8 µM), RSL3 (1 µg/ml), and isoprenaline (1 µM),
which were specific ferroptosis-inducing compounds, could lead
to ferroptosis by reducing GSH availability, suppressing GPX4
activity, and interfering with many of the molecules involved in
regulating iron concentration and iron-mediated redox reactions,
such as GPX4, NADPH oxidase 4 (Nox4), and ferritin heavy
chain (Liu et al., 2018). Ferroptosis in cardiomyocyte can
be inhibited by ferrostatin-1, increased mechanistic rapamycin
signaling target (mTOR), overexpression of ectonucleotide
pyrophosphatase/phosphodiesterase family member 2 (ENPP2),
and administration of puerarin (Baba et al., 2018; Bai et al., 2018;
Liu et al., 2018).

Ferroptosis and Diabetic
Cardiomyopathy
Diabetic cardiomyopathy, which manifests as hypertrophy and
fibrosis in the heart, can result in early ventricular diastolic
dysfunction and late ventricular systolic dysfunction in a
chronological order without changes in blood pressure and
coronary disease in clinic (Bugger and Abel, 2014; Kurmus
et al., 2018; Parim et al., 2019), which is perceived as one
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of the most common complications of diabetes that is linked
with increased risk of heart failure (Paolillo et al., 2019). DCM
is a kind of multifactorial disorder, and the mechanism of
DCM are involved in insulin resistance, hyperglycemia, oxidative
stress, fatty acids, myocardial fibrosis, inflammatory response,
mitochondrial dysfunction, hypertrophy, ER stress, etc. (Wang
et al., 2014; Cao et al., 2015; Chen et al., 2018). Basically, the
terminal pathway of cardiomyocytes during DCM is cell death.
Many studies have found that myocardial cell death patterns in
DCM include four types, such as apoptosis, autophagy, necrosis,
and entosis (Martins et al., 2017; Tang et al., 2019). More recent
researches have elucidated that ferroptosis, which is a recently
discovered form of cell death first proposed by Dixon et al. (2012),
is linked with the pathological progress of DCM. Oxidative stress,
which can interfere the balance between antioxidant capacity and
the production of ROS, has been widely accepted as a common
mechanism of DCM (Khullar et al., 2010; Huynh et al., 2014).
Considering that ROS formation promotes ferroptosis, it is very
likely that ferroptosis is involved in DCM (Anandhan et al., 2020;
Chen et al., 2020). Zang et al. (2020) showed that diabetes was
capable of inducing autophagy deficiency with time, resulting
in Nuclear factor-erythroid factor 2-related factor 2 (Nrf2)-
mediated defense was turned off. Subsequently, Nrf2-operated
pathological program was turned on, which made cells prone
to ferroptosis, leading to worsening the progression of DCM
(Zang et al., 2020). This indicated that more attention should be
given with regard to ferroptosis mediated by the Nrf2 pathway.
A growing number of evidence showed that Nrf2 and its target
genes, which possessed the anti-oxidant, anti-inflammatory, anti-
apoptotic, anti-ferroptotic, and anti-fibrotic functions, could
protect β islet cells of the pancreas against the oxidative damage
induced by high glucose in DCM. Studies demonstrated that
many natural and synthetic activators of Nrf2 might have the
promising therapeutic values on DCM in in animal models of
DCM (Ge et al., 2019). Pharmacological inhibition of Nrf2-
mediated pathway may be a therapeutic target for preventing
DCM in the future. Bruni et al. (2018) reported that β islet cells of
the pancreas in the body were vulnerable to ferroptosis induced
by erastin or RSL3, and the damage to the human β islet cells
could be reversed by Fer-1. However, they also found that the
function of β islet cells, which were treated with erastin, RSL3, or
both compounds, were not weakened before transplantation into
an immunodeficient recipient mouse, indicating that the relation
between ferroptosis and the dysfunction of β islet cells needs
further investigation. Moreover, Li W. et al. (2020) indicated
that ferroptosis was implicated in the ischemia/reperfusion injury
of DCM through endoplasmic reticulum stress (ERS), which
is a cellular response to ER dysfunction and can be induced
by ROS, and suppression of ferroptosis could alleviate diabetes
mellitus myocardial ischemia/reperfusion injury (DIR), which
may provide a new therapeutic target for DCM.

Ferroptosis and Septic Cardiomyopathy
Septic cardiomyopathy is a kind of reversible complication in
patients suffering from sepsis, and is also one of the major
causes of high mortality of sepsis (Zechendorf et al., 2020).
A prominent feature in the progress of septic cardiomyopathy

is death of terminally differentiated myocardial cells. Previous
studies demonstrated that lipopolysaccharide (LPS) or stimulator
of interferon genes (STING) were closely implicated in sepsis-
induced cardiac dysfunction by causing apoptosis, autophagy,
pyroptosis, or cardiomyocytes necroptosis (Suzuki et al., 2003;
Wang et al., 2015; Sun et al., 2018a; Li N. et al., 2019).
Nevertheless, evidence shows that other kinds of cell death may
be part of the pathogenesis of septic cardiomyopathy, because
the suppression of autophagy, pyroptosis, or apoptosis alone
is able to partially relieve the sepsis-induced cardiac injury
(Suzuki et al., 2003; Sun et al., 2018a; Li W. et al., 2019).
The higher expression level of cyclooxygenase-2 (COX-2), also
known as prostaglandin endoperoxide synthase 2 (PTGS2) – a
recognized marker of ferroptosis – was observed in the heart
of murine model with sepsis (Shen et al., 2007; Frazier et al.,
2012; Yang et al., 2014). In addition, mitochondria changes in
myocardial cell damage induced by LPS were consistent with
mitochondrial characteristics of ferroptosis in cardiomyocytes
(Xie et al., 2016; Sun et al., 2018a). The findings above indicated
that ferroptosis may be closely linked to the progression of
septic cardiomyopathy induced by LPS. Importantly, the study
conducted by Li W. et al. (2020), which aimed to investigate
the role and underlying mechanism of ferroptosis on septic
cardiac injury induced by LPS, demonstrated that LPS was
able to promote the expression of nuclear receptor coactivator
4 (NCOA4) but decrease the level of ferritin, which was
degraded in a ferritinophagy-dependent manner through the
interaction between NCOA4 and ferritin, leading to a higher
level of Fe2+ was released into cytoplasm. Subsequently,
the expression of siderofexin (SFXN1) on mitochondrial
membrane was activated by Cytoplasmic Fe2+, which in turn
transported cytoplasmic Fe2+ into mitochondria, resulting in the
accumulation of mitochondrial ROS and making cardiomyocyte
sensitive to ferroptosis. This indicated that ferroptosis mediated
by ferritinophagy could confer damage upon cardiomyocyte
for sepsis-induced cardiac injury. The results of the study
were consistent with the discovery of previous research that
mitochondrial iron reduction could avert cardiac ischemic
damage through suppressing mitochondrial ROS production
(Chang et al., 2016; Sumneang et al., 2020). Therefore, aiming
ferroptosis in cardiomyocyte could be a novel clinical approach
of treating cardiac injury induced by sepsis.

SUMMARY AND PROSPECT

This review has outlined our knowledge about the mechanism
of ferroptosis, and described the role of ferroptosis in
cardiomyopathy. An emphasis in the duality of ferroptosis,
including amino acid metabolism and iron-overload
counterparts, is evident throughout the manuscript, derived
mostly from recent studied aiming to investigate the role and
underlying principles of ferroptosis on cardiomyopathy.

However, apart from amino acid metabolism and iron
metabolism, lipid peroxidation metabolism, the high
concentration of glutamic acid outside the cell, organelle-
mediated pathways, Nrf2 pathway, TP53 pathway, etc. are also
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implicated in the mechanism of ferroptosis. Oxidative stress,
which is the final downstream event of the pathway related
to ferroptosis, could be induced either by way of a lack of
enzymatic antioxidants, or loss of iron homeostasis, subsequently
causing ferroptosis. Ferroptosis was also involved in pathological
cell death of other diseases of cardiovascular system, for
instance heart failure and myocardial infarction (Liu et al., 2018;
Chen et al., 2019; Park et al., 2019; Yoshimura et al., 2020).
However, there is no study conducted to explore the relationship
between ferroptosis and the pathogenesis of arrhythmia, such
as ventricular tachycardia, atrial fibrillation, and ventricular
fibrillation. Interestingly, to identify atrial fibrillation (AF) -
related mRNAs, we collected human right atrial appendage
tissues from five patients suffering persistent AF (AF group)
and five patients with normal sinus rhythm (NSR group) and
characterized the global changes in mRNA expression with high-
throughput sequencing technology. We found that SLC7A11 was
significantly downregulated (the results of our study have not
been published), which is a cystine/glutamate transporter gene, a
key gene regulating “iron overload-mediated ferroptosis,” and an
important part of the amino acid reverse transport system (Fang
et al., 2020). Additionally, further research is called for to clarify
the mechanism of triggering of ferroptosis at the molecular level
in various chronic and acute cardiovascular system disorders;
and whether there exists any difference in the regulation of
ferroptosis based on myocardial cell type, patient age, and other
factors. To respond to the questions above, it is imperative
to establish methods to identify the specific cells that undergo
ferroptosis in the heart.

Considering that many studies have successfully observed
ferroptosis in animal models of multiple cardiomyopathy
and that inhibition of ferroptosis by several methods can
relieve cardiomyocyte injury, the major problem is how to
immediately apply these findings to the diagnosis and treatment
of cardiomyopathy in clinic. Combining existing information of
antioxidant function with the growing mechanistic knowledge
of ferroptosis to design novel approaches that may help
in the identification and advancement of materials that can
result in more specific methods to block iron-dependent ROS
accumulation in vivo. While there are many obstacles to
overcome, researching in the area has the possibility to illuminate
new insights into cardiomyopathy and generate more efficient
treatment modalities.
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